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Introduction

IL-33 is a recently identified member of the IL-1 family

and signals through its receptor ST2, which activates

NF-jB and MAP-kinases [1,2]. ST2 is principally

expressed on Th2 and mast cells, but also on basophils,

natural killer cells, eosinophils, and myeloid progenitor

cells [3–6]. It has been shown that IL-33 plays an impor-

tant role in the pathophysiology of asthma, allergies, sep-

sis, arthritis, and inflammatory bowel disease by

induction of Th2 cytokines and activation of mast cell-

mediated inflammation [1,3,7–10]. Furthermore, it has

been shown that IL-33 inhibits the development of ath-

erosclerosis by inducing a switch from Th1 to Th2 cell

differentiation and reducing macrophage foam cell for-

mation [11,12].

In the context of transplantation, a Th1 response with

upregulation of proinflammatory cytokines like IL-2,

TNF-a, and IFN-c is known to be principally responsible

for allograft rejection [13,14]. In the absence of a Th1

immune response it has been shown that a T cell produc-

ing the proinflammatory cytokine IL-17A mediates allo-

graft rejection [15]. However, these pathways leading to

allograft rejection can be influenced. After blocking an

acute graft-deteriorating rejection through anti-CD4

mAb, a change in T-cell homeostasis is thought to be

involved in the regulatory process [16]. This is supported

by the finding that exogenous administration of the Th2
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Summary

Interleukin-33 (IL-33) stimulates the generation of cells and cytokines charac-

teristic of a Th2 immune response. We examined the effects of IL-33 on allo-

grafted heart tissue in a chronic cardiac rejection model, including analysis of

the peripheral myeloid and lymphoid compartments. B6.C-H2bm12/KhEg

hearts were transplanted into MHC class II-mismatched C57Bl/6J mice; IL-33

was administered daily. Cells from allografts and spleens were isolated for flow

cytometry and cultured for cytokine production; some tissues were used for

immunohistochemistry. Animals treated with IL-33 showed significantly longer

allograft survival, which was associated with a distinct cytokine profile pro-

duced by graft-infiltrating cells. Proinflammatory IL-17A production was

decreased with IL-33 treatment, while increased levels of IL-5, IL-10, and IL-13

were observed. After IL-33 therapy, flow cytometry showed a direct induction

of CD4+ Foxp3+ Treg, whereas the number of B220+ CD19+ B cells, and circu-

lating, as well as allograft deposited, alloantibodies was reduced. Following

IL-33 treatment, a significant decrease in graft-infiltrating CD11bhighGr1high

granulocytes coincided with a significant increase in CD11bhighGr1intermediate

myeloid-derived suppressor cells (MDSC). In conclusion, IL-33 treatment in

the setting of chronic rejection promotes the development of a Th2-type

immune response that favors MDSC and Treg expansion, reduces antibody-

mediated rejection (AMR), and ultimately, prolongs allograft survival.
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cytokines IL-4 and IL-10 results in prolongation of allo-

graft survival [17]. Thus, knowing that IL-33 is a strong

inducer of a potentially beneficial Th2 response in the

organ transplantation setting, we decided to test IL-33

therapy in a chronic murine heart rejection model.

Besides monitoring for heart transplant survival, immune

cells from transplanted heart tissue were profiled for dif-

ferential phenotype and cytokine production patterns

consistent with Th2 responses and immune regulation.

Material and methods

Heart transplantation and IL-33 treatment

An MHC class II mismatched model with female B6.C-

H2bm12/KhEg (bm12) mice as donors and female C57Bl/

6J mice as recipients was used (The Jackson Laboratory,

Bar Habor, ME USA) [18]. Vascularized cardiac allografts

were transplanted into the abdomen using a microsurgical

technique as previously described by Corry et al. [19]. To

increase the rejection intensity, we performed a reduced

donor heart perfusion via the abdominal vena cava with

cold 0.9% saline (3 ml) containing 500 IE heparin. Allo-

graft failure was defined as complete cessation of a palpa-

ble heart beat, which was confirmed by laparotomy.

Foxp3-GFP-reporter mice (C57Bl/6J background) that

express GFP under control of the Foxp3 gene promoter

were used for Treg induction experiments (The Jackson

Laboratory).

IL-33 protein

Purified biotinylated IL-33 protein was produced as

described by Ali et al. by transformed Escherichia coli

BL21 (DE3) [20]. Starting at day 5 after transplantation

1 lg of IL-33 in 100 ll PBS or only PBS was adminis-

tered i.p. daily. Experiments were approved by the local

animal commission of the University of Regensburg, and

regional government authorities.

Histology

Cardiac allografts were harvested at day 20, and, in the

IL-33 group, additionally at day 50 after transplantation.

Formalin fixed, paraffin embedded heart and spleen tissue

was sectioned for hematoxylin and eosin (H&E) staining.

For immunohistochemical staining 2 lm sections were

incubated with 5% albumin bovine (Biomol, Hamburg,

Germany) for 1 h at RT. After washing with PBS (with

0.3% Triton-X-100; Sigma, Munich, Germany), sections

were stained with monoclonal rat anti-mouse Ki-67 anti-

body (Dako M7249, Glostrup, Denmark) or purified

Foxp3 rat anti-mouse antibody (14-5773 eBioscience, San

Diego, CA USA) for 1 h at RT. After rinsing with PBS/

Triton, sections were incubated for 1 h at RT with ready-

to-use biotinylated goat anti-rat IgG (sc-3826 Santa Cruz

Biotechnology, Heidelberg, Germany). For determination

of IgG deposition in allografts, sections were stained with

ready-to-use biotinylated goat anti-mouse IgG antibody

(ab 64255, Abcam, Cambridge, UK). Streptavidin-HRP

reagent (ImmunoBioScience, Everett, WA, USA) was

applied for 15 min, followed by 3,3’-diamino-benzidine

tetrahydrochlorhydrate (Merck, Darmstadt, Germany) for

5 min and finally washed with distilled water. The slides

were counterstained with hematoxylin. Sections were ana-

lyzed by light microscopy. For quantitative analysis, posi-

tive cells from three random high-power fields (HPF; 20x

magnification) were counted. Histologic evaluation of

cardiac allograft rejection was performed according to the

revised 2004 ISHLT grading system [21].

Cell isolation from cardiac grafts and spleens

Cardiac tissue was minced in 10 ml of RPMI 1640 med-

ium with 10% fetal calf serum, 600 U/ml collagenase II

(Roche Diagnostics, Mannheim, Germany) and desoxyri-

bonuclease I (DNase, Sigma). This mixture was shaken at

RT for 2 h and supernatant was flushed through a

100 lm nylon cell strainer (Schubert & Weiss, Munich,

Germany). Remaining tissue was again digested in 5 ml

of RPMI-collagenase-DNase solution at 37�C and strained

through a 100 lm nylon strainer. Splenic tissue was

minced and strained through a 100 lm nylon strainer.

Digested cell suspensions were centrifuged for 5 min at

1500 rpm (4�C). To remove red blood cells, the pellet

was treated with ACK lysis buffer (Lonza Walkersville,

Walkersville, MD, USA) and incubated for 2 min at RT.

After centrifugation, cells were suspended in HBSS med-

ium (Gibco, NY, USA) and counted.

ELISA

Cardiac allografts were harvested at day 20 and graft-infil-

trating cells were isolated; 5 · 105 cells/500 ll medium

were cultured and stimulated with plate-bound anti-CD3

and soluble anti-CD28 antibodies. Supernatants were

removed after 48 h and levels of IL-5, IL-10, IL-13, IL-

17A, and IFN-c were determined in duplicate by ELISA

(R&D Systems, Minneapolis, MN, USA; eBioscience, San

Diego, CA, USA; BD Biosciences, San Jose, CA, USA).

Flow cytometry

Analyses were performed using a FACSCalibur or FACSC-

anto II flow cytometer (BD Biosciences). Data were

obtained using BD CellQuest Pro acquisition software

(BD Biosciences) and analyzed via FlowJo software (Tree
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Star Inc., Ashland, OR, USA). Cell isolates were blocked

with 1% mouse serum (Dako, Glostrup, Denmark) and

stained with appropriate nonoverlapping conjugated

monoclonal antibodies (anti-Gr1 antibody from Miltenyi

Biotec, Bergisch Gladbach, Germany; all other antibodies

from eBioscience). Foxp3 staining was carried out by first

fixing and permeabilizing cells with Cytofix/Cytoperm

solution (BD Pharmingen, San Diego, CA, USA). To

determine if IL-33 directly or indirectly causes Treg induc-

tion, we reconstituted C.129S7Rag1tm1Mom/J (Rag1)/))

mice (Charles River, Sulzfeld, Germany) with 5 · 106 i.p.

injected, MACS-sorted, CD4+ cells from spleens of either

wild-type or MyD88)/) C57Bl/6J mice (Oriental Bioser-

vice Inc., Nishikyogoku, Japan). Reconstituted mice were

treated with IL-33 for 20 days. Then splenic cells were

harvested for flow cytometric evaluation. For cell cycle

analysis of Treg, Vybrant Dye Cycle Violet Stain

(V35003, Invitrogen, Carlsbad, California, USA) was

used.

Serum alloantibody measurement

For analysis of alloantibodies, serum from C57Bl/6J recip-

ients grafted with bm12 donor hearts was collected at day

20 after transplantation. 5 · 105 splenocytes isolated from

bm12 mice per tube were incubated with recipient serum

for 1 h. Cells were stained using appropriate nonoverlap-

ping conjugated rat anti-mouse CD3, IgG and IgM anti-

bodies and analyzed by flow cytometry. The mean

fluorescence intensity of CD3+ cells with respect to

anti-IgG or anti-IgM fluorescence was determined and

compared between the groups.

Statistical analysis

Kaplan-Meier graphs were constructed for survival analy-

ses. Group comparisons were made using the log-rank

(Mantel–Cox) test. ELISA data are presented as

means ± SD, and comparisons between the values were

performed using the two-tailed Student¢s t-test. The level

of significance was set at a probability of P < 0.05.

Results

IL-33 prolongs allograft survival following cardiac

allograft transplantation

We performed heterotrophic cardiac transplantation in an

MHC class II mismatched model. Starting at postoperative

day 5 we administered IL-33 or control solution. Allograft

function was evaluated daily by palpation. In controls a

median allograft survival of 21.5 days was observed. The

IL-33-treated group showed a statistically significant

prolonged allograft survival to >50 days (Fig. 1a).

IL-33 prevents coronary allograft vasculopathy

To detect changes in the allograft architecture H&E stain-

ing was performed on heart transplants after 20 days in

control, and after 20 and 50 days in IL-33-treated mice.

In controls we found signs of chronic allograft rejection

with perivascular leucocytic infiltration, destruction of

cardiac muscle structure, and coronary allograft vasculop-

athy (CAV) with complete or nearly complete obstruction

of the vessels (Fig. 1b). In contrast, under IL-33 treatment

we detected reduced leucocytic infiltration and normal

cardiac muscle architecture. In addition, no CAV was

observed. Control mice predominantly showed severe

Grade 3R rejection according to the revised 2004 ISHLT

grading system [21]. Mild Grade 1R allograft rejection

was observed in the majority of IL-33-treated mice. These

histologic differences were statistically significant (Fig. 1c).

Similar results were found in sections from IL-33-treated

recipients on postoperative day 50.

IL-33 induces splenomegaly

We also examined spleens from these mice to investigate

IL-33 effects on the peripheral myeloid and lymphoid

compartment. IL-33-injected mice showed splenomegaly,

in contrast to the normal spleen size found in controls

(Fig. 1d). This significant difference was confirmed when

counting cells from dissociated spleens, where more than

twofold the number of cells was present in IL-33-treated

mice. In addition to the splenomegaly, we noted at lapa-

rotomy that mice treated with IL-33 had accumulated

significant amounts of intraperitoneal fluid.

IL-33 induces cell proliferation in the spleen,

but not in cardiac allografts

As increased numbers of spleen cells gave rise to the

assumption that IL-33 affects cell proliferation in the

periphery, we evaluated the proliferation rate of cells in car-

diac allografts and spleens by staining tissue sections for the

proliferation marker Ki-67. Based on the number of Ki-67

positive cells/HPF in cardiac allografts, an increased prolif-

eration rate was observed in the IL-33-treatment group,

though the difference compared with the control group

was not significant (Fig. 2a and b). In contrast, in spleens

of IL-33-treated mice, a significantly higher proliferation

rate was detected compared with controls (Fig. 2c and d).

These results suggest that IL-33 is a strong inducer of cell

proliferation in the peripheral cell compartment.

IL-33 changes the cytokine expression of cardiac

allograft-infiltrating cells

For surveying the effects of IL-33 treatment on the cyto-

kine environment within allografts, graft-infiltrating cells
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were harvested from transplanted hearts on postoperative

day 20. These cells were cultured and analyzed for cyto-

kine production by ELISA. Regarding IFN-c levels, we

found no significant differences between the IL-33-treat-

ment group and the controls (Fig. 3). However, IL-33

induced significant increases in IL-5, IL-10, and IL-13

production from graft-infiltrating cells. In contrast,

IL-17A production was strongly down-regulated in graft-

infiltrating cells from IL-33-treated mice. These experi-

ments suggest that while IL-33 treatment has little effect

on the local Th1 cell response, it promotes polarization of

the local immune response towards a Th2 phenotype, and

at the same time inhibits Th17 reactivity. The molecular

mechanism underlying changes in cytokine expression is

unclear. However, it should be noted that the IL-33

receptor ST2 is generally expressed on T cells (Fig. S1).

IL-33 decreases antibody-mediated rejection

To examine the effect of IL-33 treatment on B cells,

which are also important in the setting of chronic allo-

graft rejection, we analyzed cells from study animal

spleens by flow cytometry for changes in B cell numbers.

After IL-33 therapy, we detected a significant decrease in

the number of B220+ CD19+ B cells in the spleen (Fig. 4a

and b). To test if the reduction in B cell numbers that

was detected in 4 independent experiments led to

decreased antibody-mediated rejection (AMR), allograft

sections were stained for IgG deposition in control and in

IL-33-treated mice. In controls we found high levels of

IgG deposited in the allografts compared with low IgG

levels in the IL-33-treated mice (Fig. 4c). These findings

suggest that IL-33 treatment not only influences B cell
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Figure 1 IL-33 treatment prolongs allograft survival and preserves cardiac muscle architecture in an MHC class II mismatched model. (a) Heart

transplant survival (bm12 donor hearts to C57Bl/6J recipient mice) from mice treated with IL-33 or control PBS (Kaplan-Meier; P < 0.0001

between groups). (b) H&E staining of representative cardiac sections at postoperative days 20 and 50 from mice treated with IL-33 or control PBS

(CAV coronary allograft vasculopathy; LI perivascular leucocytic infiltration). (c) Histologic grading of allograft rejection according to the revised

2004 ISHLT grading system in H&E stained sections of cardiac allografts treated with IL-33 or control PBS (N = 10 per group; *P < 0.05). (d) IL-33

induces splenomegaly and significantly increases absolute cell numbers in the spleen. Absolute cell numbers were counted from seven mice per

group (*P < 0.05).
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numbers in the periphery, but also reduces antibody

deposition in the graft.

We further tested whether decreased B cell numbers

are associated with reduced alloantibody production. We

incubated donor bm12 splenocytes with C57Bl/6J recipi-

ent serum obtained on day 20 after transplantation.

FACS analysis of CD3+ cells in 5 independent experi-

ments revealed significantly lower IgG and IgM alloanti-

body binding on cells incubated with serum from

IL-33-treated mice (Fig. 4d and e). Altogether, these

results suggest that IL-33 reduces AMR in cardiac

allografts in this model.
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sections at postoperative day 20 from
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IL-33 directly induces the proliferation of Foxp3+ Treg

in spleens and cardiac allografts

We suspected that Treg may play an important role in

prolonged allograft survival after IL-33 therapy. FACS

analysis of splenic cells from Foxp3-GFP mice showed

that while IL-33 treatment had little influence on the rela-

tive number of CD4+ T cells (data not shown), the same

CD4+ T-cell population showed an approximate doubling

of Foxp3+ Treg on day 20 post-transplantation (Fig. 5a).

Further characterization of this phenomenon was con-

ducted by cell-cycle analysis. Flow cytometric evaluation

demonstrated that upon IL-33 treatment, Foxp3+ Treg

start to proliferate, as approximately 10% of those cells

leave the resting G0 and G1 phases and enter the active S

and G2 phases (Fig. 5b).

To discriminate if IL-33 directly or indirectly increases

the Treg pool we generated an in vivo situation in which

all cells, except T cells, were able to respond to IL-33

stimulation. This was achieved by reconstitution of

Rag1)/) mice with CD4+ T cells from MyD88)/) mice, as

MyD88 is a necessary component for IL-33-induced

intracellular signaling. In contrast to Rag1)/) mice recon-

stituted with MyD88-deficient T cells, in Rag1)/) mice

reconstituted with wild-type T cells, both antigen-present-

ing cells and T cells are able to respond to IL-33 therapy

[22]. Following 20 days of IL-33 treatment, FACS analysis

of isolated splenic cells demonstrated a significant

increase in CD4+ CD25+ Foxp3+ Treg in Rag1)/) mice

reconstituted with wild-type, but not with MyD88-defi-

cient, T cells (Fig. 5c–e and Fig. S2). This finding suggests

that IL-33 directly induces Treg proliferation and that the

proliferative effect is not mediated by antigen-presenting

cells or soluble factors derived from them.

The increase in Treg was confirmed through immuno-

histochemical analysis of spleens, where IL-33-treated ani-

mals showed a significant, and similar, twofold increase

in Foxp3+ cell numbers/HPF, compared with controls

(Fig. 6a and b). We also tested for Treg in allografts

20 days post-transplantation. As a result of the limited

availability of leucocytes from transplanted hearts, we

were only able to perform analyses by immunohistochemis-

try. As in the spleen, IL-33 treatment significantly increased

the number of Foxp3+ cells/HPF at postoperative day 20,
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versus control transplants at postoperative days 12 (data

not shown) and 20; the increase in Treg remained steady

out to day 50 after transplantation (Fig. 6c and d).

Together, our results suggest that Treg, directly induced

by IL-33, both locally in the allograft and in the periph-

ery, play a role in the immunological protection afforded

by IL-33 treatment.

IL-33 strongly induces CD11bhighGr1intermediate

myeloid-derived suppressor cells

We hypothesised that prolonged allograft survival may

also be because of an induction of myeloid-derived sup-

pressor cells (MDSC) by IL-33 therapy. MDSC potentially

have tolerogenic capacity and can therefore affect allograft

rejection. To test this idea graft-infiltrating cells were

examined for CD11bhighGr1intermediate MDSC 20 days after

transplantation. In the IL-33 group we observed a con-

spicuous expansion of cells with a high forward and side

scatter (Fig. 7a). These cells were CD45+ and therefore

represent leucocytes (Fig. S3). Further, a significant pro-

portion of these cells was CD11b+Gr1+ and, additionally,

expresses the ST2 receptor (Fig. 7b). This suggests that

these cells can directly be influenced by the ST2 receptor

ligand IL-33.

Comparing graft-infiltrating cells, a shift from

CD11bhighGr1high granulocytes under PBS treatment to

CD11bhighGr1intermediate MDSC with IL-33 therapy was
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evident. More specifically, amongst all CD11bhigh cells

isolated from the cardiac allografts we found that in con-

trols approximately one-third of these cells were

CD11bhighGr1high and approximately two-thirds were

CD11bhighGr1intermediate, versus 2.6% of these cells being

CD11bhighGr1high and 87.1% CD11bhighGr1intermediate in

IL-33-injected mice (Fig. 7c). Further evaluations regard-

ing spleen, bone marrow and peritoneal fluid revealed

similar results. In particular, in spleens we found a shift

from two-thirds CD11bhighGr1high and one-third

CD11bhighGr1intermediate cells in the controls to 16%

CD11bhighGr1high and 67% CD11bhighGr1intermediate cells

out of all CD11bhigh cells in the IL-33 group. Analysis of

four independent experiments, each experiment being

conducted using pooled splenic cells from five mice per

group, showed significant differences (Fig. 7d–f). Bone

marrow of control mice also contained two-thirds

CD11bhighGr1high and one-third CD11bhighGr1intermediate

cells compared with an opposite relation with one-third

CD11bhighGr1high and two-thirds CD11bhighGr1intermediate

cells under IL-33 treatment. (Fig. 7g) Interestingly, we

found a striking enrichment of CD11bhighGr1intermediate

cells in peritoneal fluid that normally accumulated in

IL-33-treated mice; (Fig. 7h) not enough ascites was avail-

able in control mice to perform a comparative analysis.

These results suggest that the increase in MDSC under

IL-33 treatment might contribute to improved allograft

survival.

Discussion

Allograft rejection is the result of a complex interplay

between tolerogenic mechanisms and factors promoting

rejection. In this setting, it is generally accepted that naı̈ve

T-helper cells can differentiate into Th1, Th2, Th17, and

Treg depending on the local cytokine milieu. These cells
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can either be identified by their specific transcription fac-

tors, T-bet for Th1, GATA-3 for Th2, RORct for Th17,

and Foxp3 for Treg, or by the cytokines they produce

[23]. Th1 cells are involved in acute allograft rejection,

[24,25] where Th1 responses are characterized by the pro-

duction of IL-2, IL-12, IFNc, and TNF [26]. In the clini-

cal reality of early post-transplant rejection driven by Th1

cells, these responses can be effectively inhibited with

standard immunosuppressors like cyclosporine, rapamy-

cin or tacrolimus [27]. However, side effects of long-term

pharmacological immunosuppression and late graft loss

caused by chronic rejection remain unsolved problems

[28].

In the absence of a Th1-mediated alloimmune response

Th17 cells drive a proinflammatory response that acceler-

ates chronic allograft rejection and CAV. This was

demonstrated in a chronic rejection model using T-bet)/)

mice by Yuan et al. In this context IL-17A has been

shown to be the key cytokine for reduced allograft sur-

vival time [15]. Booth et al. also found IL-17A to be

involved in chronic rejection [29]. Further studies under-

lined the importance of Th17 cells in rejection, as anti-

body blockade of IL-6 resulted in reduced IL-17A

transcript levels and attenuated cardiac allograft rejection

[30]. In our study we were able to demonstrate a strong

downregulation of the proinflammatory cytokine IL-17A
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in allografts under IL-33 treatment. The effect of IL-33

on IL-17A can be one of the reasons for the observed

prolonged allograft survival.

Th2 immune responses are mainly characterized by an

induction of the cytokines IL-4, IL-5, IL-10 and IL-13.

Th2 cells normally control immune reactions to extracel-

lular parasites and are involved in the pathophysiology of

asthma and other allergic inflammatory diseases [31]. It is

also reported that under certain circumstances Th2 cyto-

kines, especially IL-4 and IL-13, are able to prolong allo-

graft survival [32–34]. Previous results have shown that

IL-33 induces Th2 cytokines in the periphery [9]. In this

setting IL-33 administration potentially aggravates the

course of allergic-induced airway inflammation by an IL-

4-independent Th2 differentiation [7]. In contrast to the

results from Yin et al. who found an IL-33-induced Th1

to Th2 polarization in the periphery responsible for pro-

longed allograft survival in an acute rejection model [35],

our studies show an IL-33-mediated Th17 to Th2 switch;

moreover, we show that this switch occurs within the

allograft itself, and in the situation of a chronic rejection.

IL-33 treatment induced a reduction in pathogenic IL-17A

production by graft-infiltrating cells, which was combined

with an upregulation of IL-5, IL-10, and IL-13 production

by graft-infiltrating cells. These results support the conten-

tion that graft-infiltrating cells shift phenotypically under

these circumstances from CD4+ Th17 to CD4+ Th2 cells.

Alloantibody responses to an allograft are another

major reason for allograft injury and rejection. In our

study, the novel finding of IL-33-mediated reduction of

B220+ CD19+ B cells in the periphery and decreased allo-

antibody production suggest that IL-33 treatment

decreases the humoral response directed against the car-

diac allograft. This is important especially in the setting

of chronic rejection with the development of CAV;

indeed, this type of rejection is typical for the MHC class

II-mismatched model we used in our study. Russel et al.

were able to demonstrate that CAV in the cardiac allo-

grafts is dependent on antibodies to donor cells [36].

Together our study suggests IL-33 treatment serves to

diminish antibody-mediated vasculopathy associated with

chronic rejection.

A major finding of our study was the strong induction

of CD4+ Foxp3+ Treg by IL-33. Our results give rise to

the assumption that IL-33 induces an expansion of the

Treg pool by directly mediating Treg proliferation. This

direct effect of IL-33 on Foxp3+ Treg mediated by the

ST2 receptor is a novel finding regarding the influence of

the cytokine milieu on Treg homeostasis and might even

impact future therapeutic options in terms of allograft

rejection. Importantly, a doubling of CD4+ Foxp3+ Treg

was observed in allografts, accentuating the balance

within the graft to an immunoregulatory environment.

Immunohistochemistry for Ki-67 showing an increased

proliferation rate in the spleen and some increase of pro-

liferation in the allograft suggests that IL-33-mediated

changes in lymphocyte homeostasis mostly take place in

the periphery, and to a lesser degree within the allograft.

It has been shown previously that adequately prestimulat-

ed CD4+ Foxp3+ regulatory T cells can prevent acute and

chronic cardiac allograft rejection [37–39]. Allograft toler-

ance can be achieved either by immunotherapy with

ex vivo-expanded CD4+ CD25+ Foxp3+ natural Treg,

ex vivo-induced CD4+ CD25+ Foxp3+ inducible Treg or

by in vivo induction of CD4+ CD25+ Foxp3+ Treg [40].

In the setting of in vivo expansion of Treg it has been

shown that ‘alternatively activated’ DCs were ‘tolerogenic’

and were able to induce Treg in vitro and in vivo [40].

Complementing our finding of directly-mediated

enhanced Treg development with IL-33 treatment, we also

detected the expansion of regulatory MDSCs both in the

graft and peripherally in the spleen. Supporting our

observation, it has been previously shown that IL-33 pro-

motes in vitro DC generation in a GM-CSF-dependent

manner [41]. These CD11bhighGr1+ cells have been

described as MDSCs [42]. Amongst this cell population

are three distinct types of cells with different immunosup-

pressive capacities [43]. CD11bhighGr1low cells showed

some immunosuppressive potential in selective tumor

models and CD11bhighGr1high cells demonstrated some

minor tolerogenic capacity in vitro, but not in vivo. How-

ever, the third population, CD11bhighGr1intermediate cells,

were immunosuppressive both in vitro and in vivo

following adoptive transfer [44]. Interestingly, CD11bhigh

Gr1intermediate MDSCs may promote tolerance through the

induction of CD4+ Foxp3+ Treg, which has been

described by Serafini et al. using an A20 B-cell lymphoma

model [45]. In this context MDSCs likely contribute to

tumor immune evasion by restraining T-cell activation

[44,46,47]. Consistent with this hypothesis, in cancer

patients Lechner et al. have demonstrated a positive cor-

relation with increased MDSC levels and aggressive dis-

ease with poor prognosis [48]. The importance of MDSC

has also been shown in transplant tolerance studies

[49,50]. Mechanistically, MDSCs have been shown to

inhibit T-cell activation by depleting cystin and cystein,

and by downregulating L-selectin expression on CD4+

and CD8+ T cells [51,52]. After kidney or liver transplan-

tation, it has been suggested that MDSCs promote stable,

antigen-specific, tolerance through NO-dependent path-

ways [49,50,53].

In conclusion our study shows that IL-33 treatment

prolongs allograft survival in a chronic transplant rejec-

tion model. We propose that IL-33 mediates this positive

effect by inducing regulatory MDSCs and Treg; IL-33

additionally enhances allograft survival by reducing B
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cell-dependent AMR. Another potential pro-tolerance

mechanism of IL-33 demonstrated in our study is related

to the reduction of Th17 responses and the induction of

Th2 cytokines. Together, our results indicate that IL-33

may be exploitable as a future therapeutic intervention to

reduce chronic rejection in organ transplantation.
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Figure S1 The ST2 receptor is expressed on Th1, Th2,

Th17 and Treg. Flow cytometric analysis of ST2 expres-

sion of Th1, Th2, Th17 and Treg compared with an iso-

type control. Methods: Cells out of the spleens of naı̈ve

C57Bl/6J mice were isolated. Then naı̈ve CD4+

CD25)CD62L+ T cells were stimulated with CD28, IL-12,

IL-21 and anti-IL-4 for Th1, with CD28, IL-4, anti-IL-12

and anti-IFNc for Th2, with CD28, TGFb and IL-6 for

Th17 and with CD28, TGFb and IL-2 for Treg and cul-

tured in CD3-coated cell culture plates for 96 h. After

restimulation with PMA/ionomycin we analyzed these

cells by flow cytometry and tested for ST2 expression.

Figure S2 (a and b) Flow cytometric analysis of CD4+

CD25+ cells obtained from Rag1)/) mice reconstituted

with wild-type or MyD88)/) CD4+ T cells treated with

IL-33 or control PBS. All FACS blots shown are represen-

tative of three independently conducted experiments; each

experiment was conducted with pooled splenic cells from

five mice per group.

Figure S3 Flow cytometric analysis of splenic cells of

mice treated with IL-33 or control PBS. (a) Appropri-

ate gating in the FSC/SSC diagram. (b) Indentification

of CD45+ and CD45) cells. (c) CD45+ cells represent

leucocytes and include CD11b+ cells, whereas CD45)

cells represent parenchymal cells and do not contain

CD11b+ cells. (d) ‘Back-gating’ demonstrates that those

leucocyte cells are in the appropriate gate in the FSC/

SSC diagram.

Please note: Wiley-Blackwell are not responsible for the

content or functionality of any supporting materials sup-

plied by the authors. Any queries (other than missing

material) should be directed to the corresponding author

for the article.
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