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History of biologics

This year marks the 50th anniversary of immunosuppres-

sion used in transplantation, with the introduction of

6-mercaptopurine and azathioprine in kidney recipients

in 1962 [1]. The subsequent incorporation of chemical

and biological immunosuppressive agents has revolution-

ized organ transplantation, allowing many recipients to

enjoy years of graft success. The use of biologics – thera-

peutic agents derived from microbials, proteins, antibod-

ies, cells, and tissues – has shown great promise for the

field of transplantation.

The last few decades have witnessed a pandemic in

antibody development, with over 600 entering clinical

studies and a total of 28 approved by the European

Union and US Food and Drugs Administration by 2010

[2,3]. They comprise the majority of induction agents,

and those being developed for maintenance immunosup-

pression (i.e. costimulation blockade). The prospect of

avoiding side effects related to long-term calcineurin inhi-

bition or steroid use has driven the development of

agents such as cytotoxic T-lymphocyte antigen (CTLA) 4-

based CD28/B7 costimulation inhibitor belatacept. The

targeting of specific molecules and immunologic pathways

has also led the field to adopt biologics from oncology,

rheumatology, and dermatology in several preclinical

studies. Herein, we review the armamentarium of clinical

and preclinical biologics used for organ transplantation

(Fig. 1). Discussion of belatacept will be reserved for

another review in this current issue.

Significant contributions to the development of biolo-

gics originate from European discoveries. In 1890, Emil

von Behring and Shibasaburo Kitasato published their

work on tetanus anti-toxin, and shortly thereafter on

diphtheria anti-toxin [4]. This launched the widespread

use of biologics in medicine, allowing vaccines, serum,

and antitoxins to be administered for various infections.

Also, at the turn of the century was Paul Ehrlich, who

highlighted the need for quantifying the potency – or

standardizing – this therapeutic antitoxin sera [5]. Along-

side the initiatives of regulating and standardizing

biologics followed the development of insulin, penicillin,

and the myriad of vaccines that transformed the treat-

ment and prevention of common diseases [5,6]. By the
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Summary

The last two decades have witnessed a pandemic in antibody development, with

over 600 entering clinical studies and a total of 28 approved by the FDA and

European Union. The incorporation of biologics in transplantation has made a

significant impact on allograft survival. Herein, we review the armamentarium

of clinical and preclinical biologics used for organ transplantation – with the

exception of belatacept – from depleting and IL-2R targeting induction agents

to costimulation blockade, B-cell therapeutics, BAFF and complement inhibi-

tion, anti-adhesion, and anti-cytokine approaches. While individual agents may

be insufficient for tolerance induction, they provide possibilities for reduction

of steroid or calcineurin inhibitor use, alternatives to rejection episodes refrac-

tory to conventional therapies, and specialized immunosuppression for highly

sensitized patients.
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1970s, George Kohler and Cesar Milstein produced the

first mouse monoclonal antibody [7]. Since the late

1990s, the European Union has approved of at least one

monoclonal antibody per year (except 2002 and 2008),

exemplifying the interest and promise in this therapeutic

modality [3].

Biosimilar antibody development is predicted to

undergo considerable growth this year, as the European

Medicines Agency is re-evaluating current guidelines [8].

While target specificity makes biologics appealing, consid-

erations must be made regarding cost, antibody stability,

immunogenicity, and dose-effect standardization [6,9–12].

Furthermore, in testing safety and toxicity of novel biolo-

gics in relevant animal species (i.e. nonhuman primates

and transgenic mice), biological differences across species

also must be considered [13].

Biologics in clinical practice: induction agents

Allotransplantation requires immunosuppression to coun-

ter the inflammatory and allospecific immune response

launched immediately after surgery [14]. Induction

immunosuppression not only addresses this immediate

immune activation but also may allow for a more tolera-

ble maintenance regimen free of steroids or calcineurin

inhibition [15]. In 2008, over 80% of American kidney

transplant recipients received induction immunosuppres-

sion. Most were depleting agents: equine anti-thymocyte

globulin (eATG – 1.5% of all recipients), rabbit ATG

(44.8%), muromonab (1%), and alemtuzumab (10.7%).

Basiliximab (17.8%) and daclizumab (10.9%) comprised

of the remaining induction regimens [16]. In Europe, the

Collaborative Transplant Study reported 38% induction
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Figure 1 Clinical and preclinical biologics in organ transplantation. APC = antigen presenting cell, BAFF = B-cell activating factor, BCMA = B-cell

maturation antigen, ICAM = intercellular adhesion molecule, MAC = membrane attack complex, TACI = transmembrane activator and calcium-

modulator and cyclophilin ligand interactor.
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use (13% depleting, 25% nondepleting) [17]. In 2009, the

Kidney Disease: Improving Global Outcomes (KDIGO)

group and European Renal Best Practice Advisory Board

recommended in their set of clinical guidelines for kidney

transplant recipients to receive IL2R antagonists as first

line induction therapy, except in patients with high

immunologic risk, who are suggested to undergo lympho-

cyte depletion. Discussion of the agents in the following

sections will be limited mainly to their uses as induction

and not rescue therapies.

Depleting agents

Polyclonal anti-thymocyte globulins (ATG). Rabbit ATG

(Thymoglobulin, Genzyme, Cambridge, MA, USA, indi-

cated for treatment of acute rejection) and equine ATG

(Atgam; Pfizer, New York, NY, USA) are polyclonal

antithymocyte antibodies prepared from the sera of rab-

bits and horses immunized with human thymocytes. Such

heterologous antilymphocyte sera, first described in 1899

by Mechnikov, have been used for transplantation since

the 1960s [18]. Their diverse mechanisms of action

include lymphocyte depletion by T-cell apoptosis and

complement-dependent lysis, interference of surface,

adhesion, and trafficking molecules, and induction of

T-regulatory and natural killer cells [19–23]. Antibody

specificities are staggeringly diverse as well, as they target

immune response antigens (CD1a, CD3, CD4, CD8, CD6,

CD7, CD16, CD19, CD20, CD25, CD28, CD30, CD32,

CD40, CD80, CD86, CTLA-4, HLA class 1 & II, b2-M),

adhesion and trafficking molecules (LFA-1, LFA-3, CD44,

VLA-4, ICAM-1,2,3, CD51/61, CCR5, CCR7, CXCR4,

CD56, LPAM-1), and many others (CD2, CD5, CD6,

CD11b, CD29, CD38, CD40, CD45, CD95, CD126,

CD138) [20–22,24–26]. This heterogeneity is likely owing

to the many immune cell types present in the human thy-

mus that are used to immunize the animals [22]. While

ATG may induce immune suppression through numerous

mechanisms, a prominent finding is the promotion of

regulatory T cells by rATG in vivo and in vitro [27–30].

Broady et al. [31] recently challenged these findings

by describing a transient induction of CD4 +

CD25 + FoxP3 + T cells without immunosuppressive

capacity after rATG exposure in vitro.

The ATG-Fresenius, commonly used outside of the

U.S., and rATG have equivalent results for patient and

graft survival [32,33]. In 1998, a multicenter, double-

blinded, randomized trial found rATG to be superior to

eATG in treating acute rejection [34]. Brennan et al. [35]

also reported that a 7-day course of rATG induction

compared with eATG resulted in fewer (4% vs. 25% at

1 year, P = 0.014) and less severe acute rejection episodes,

and fewer serious adverse events including cytomegalovi-

rus (CMV) disease (10% vs. 33%, P = 0.025). Ten years

later, patients randomized to rATG compared with eATG

induction had higher event-free survival and improved

quality-adjusted life years at 10 years, without increased

CMV disease or post-transplant lymphoproliferative dis-

order (PTLD) [36].

Today, rATG continues to be the most widely used

induction agent in the US, despite the development of

newer biologics. Intraoperative dosing reduces delayed

graft function and hospital length of stay when compared

with postoperative induction [37], which may be attrib-

uted to its role in preventing ischemia-reperfusion injury

[38–42]. While historically used for high-risk patients

(retransplants, extended criteria donation, or donation

after cardiac death) [34,37,43–45], its use has recently

been extended to living donor transplantation. Hardinger

et al. [46] (2006) found improved 5-year patient (96% vs.

90%) and graft survival (82% vs. 79%), and lower 1-year

acute rejection rate (2% vs. 21%) at their institution

compared with living donor recipients nationwide.

The rATG is generally well-tolerated, but symptoms

related to cytokine release, myelosuppression, and rarely

serum sickness may be experienced [18,47,48]. Several

studies have found increased CMV and other viral infec-

tions in rATG induction recipients compared with no

induction or basiliximab [49–51]. While the data for

increased risk of PTLD with rATG are mixed [52–56],

our understanding of Epstein Barr viral (EBV) infection,

patient characteristics, and types of combination immu-

nosuppression may help identify patients at higher risk

for malignancies [57–61].

Muromonab-CD3 (Orthoclone OKT3; Janssen-Cilag),

the first monoclonal antibody in clinical medicine, is a

murine IgG2 monoclonal antibody binding to the CD3e
antigen and therefore to the CD3 complex on mature T

lymphocytes [62]. Its mechanism of action involves dis-

ruption of T-cell receptor (TCR) binding, internalization

of OKT3-CD3/TCR complex, complement-mediated cell

lysis, and resultant T-cell depletion [47,63]. Muromonab

was approved for use in 1986 after demonstrating supe-

rior rejection reversal rate (94% vs. 75%, P = 0.009) and

1 year graft survival (62% vs. 45%, P = 0.029) over con-

ventional corticosteroid therapy [64–66].

Although, an effective induction agent as well [67–71],

muromonab carries a significant side effect profile, which

includes cytokine release syndrome secondary to its mito-

genic properties [72–79], pulmonary edema [80,81], asep-

tic meningitis [82], and EBV related PTLD [54,83]. In

addition, up to 80–85% of patients develop antimurine

antibodies that may neutralize the drug and its immuno-

suppressive effects [65,84–86]. Side effects may be

mitigated with steroid premedication [72,87–89]; never-

theless, manufacturer Janssen-Cilag announced the
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discontinuation of muromonab production in January

2010 [48]. A well-tolerated substitute for muromonab,

A1-CD3, was prepared in Prague and offered to 19 renal

allograft recipients [90]; this therapy was not further

developed for general clinical use.

Alemtuzumab (Campath-1H) is a humanized IgG1

monoclonal antibody targeting the surface molecule

CD52, a membrane glycoprotein densely distributed on T

and B lymphocytes (450 000 molecules per cell), natural

killer cells, and less so on monocytes, macrophages, and

eosinophils. By complement activation and antibody-

dependent cellular cytotoxicity, alemtuzumab induces

profound and sustained lymphopenia (50% T cell recov-

ery at 36 months [91]). Macrophages, natural killer cells,

and B cells may reconstitute to normal levels as rapidly as

1–3 months [92].

Early studies confirmed its efficacy as an induction agent

[93–96], including ours from the University of Wisconsin

where renal transplant patients receiving Campath-1H

experienced overall less rejection (P = 0.04), less rejection

(P = 0.01) and improved graft survival (P = 0.12) among

patients with delayed graft function, and no difference in

infection or malignancies when compared with

basiliximab, daclizumab, rATG, and muromonab [97]. In

May 2011, Hanaway et al. presented a multicenter, ran-

domized, prospective trial of renal transplant recipients

assigned to alemtuzumab versus basiliximab in low-risk

and versus rATG in high-risk stratification (retransplant,

PRA > 20%, or black race). Alemtuzumab induction

resulted in significantly fewer biopsy-confirmed acute

rejection rates at 6 and 12 months for both risk groups,

and fewer 3-year rejection rates among low-risk patients

[98]. In comparison with rATG, alemtuzumab showed

mixed results in kidney and kidney-pancreas transplants,

with equivalent or decreased acute rejection rates seen with

alemtuzumab [99–103]. Alemtuzumab does confer a sig-

nificant cost benefit, as a course of rATG cost over 400%

more than a single dose of alemtuzumab in 2005 [99].

Alemtuzumab has been associated with a rapid

reconstitution of memory T-cells [104,105]. Early B-cell

reconstitution to greater than pretreatment levels with a

concurrent surge in serum B-cell activating factor (BAFF)

levels has also been described [106,107]. Alemtuzumab and

sirolimus treated patients experienced a higher incidence

of antibody mediated rejection, with 42% developing HLA

antibodies [95,108]; fewer humoral rejection events were

observed when alemtuzumab was combined with other

agents, especially calcineurin-inhibitors [97,109]. When

used alone, alemtuzumab was associated with a 100% inci-

dence of rejection with weeks, proving that depletion alone

does not induce tolerance in humans [110].

In summary, Alemtuzumab effectively prevents early

T-cell mediated rejection and may play a growing role in

prophylaxis of acute rejection. The combination of Belata-

cept and depletion with Alemtuzumab appears to be

highly immunosuppressive yet safe in humans [110],

reducing the risk of antibody-mediated rejection seen in

other calcineurin inhibitor-free protocols.

IL2Ra (CD25) blockade

Interleuking-2 receptor a chain (CD25) enhances binding

of IL2 to the receptor complex, augmenting lymphocyte

activation and proliferation [111]. Two monoclonal anti-

bodies targeting IL2Ra and thus inhibiting IL-2 mediated

lymphocyte activation/proliferation are used for induction

immunosuppression: basiliximab (Simulect, Novartis) is a

recombinant chimeric mouse/human IgG1 monoclonal

antibody, and daclizumab (Zenapax, Hoffmann-La

Roche) a humanized monoclonal antibody. Anti-IL2R

antibodies reduce the risk of acute rejection without

increasing the incidence of adverse effects, namely CMV

infection and malignancy [48,54,112]. While their efficacy

in immunoprophylaxis compared with thymoglobulin is

debatable as discussed above, their tolerability and safety

profile make IL2R blockade attractive for induction. No

significant difference between the two agents has been

found [113,114]; however, daclizumab was discontinued

in 2009 and is no longer available for clinical use.

The IL2R antagonists increasingly have been employed

for induction immunosuppression. In 2009, 92% of kid-

ney recipients in Australia received IL2R blockade (ANZ-

DATA Registry, Annual Report 2010). While IL2R

antagonists have a more tolerable side effect profile, stud-

ies have demonstrated reduced incidence and severity of

acute rejection in high-risk patients receiving thymoglob-

ulin induction over basiliximab [115,116]. Five-year fol-

low-up by Brennan and Schnitzler revealed lower rates of

acute rejection, graft loss, and death with thymoglobulin

compared with basiliximab (37% vs. 51%, P = 0.04)

[117]. Others have found comparable outcomes between

the two induction agents [118–120].

Biologics in clinical development: costimulation
blockade

As the CD28/CD80/CD86 pathway will be well described

in the review of Belatacept, here we will focus on the

CD40/CD154 pathway and its role in organ transplanta-

tion. CD40 is a molecule constitutively expressed on sur-

face of B cells, dendritic cells (DC), and macrophages.

When these cells present antigen to T cells, signaling

through CD40 after its activation by CD154 results in

B-cell activation, DC maturation, and increased production

of pro-inflammatory cytokines. CD154, however, is rapidly

induced on the surface of T cells after the activation of the
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TCR. Thus, CD40/CD154 provides an attractive target for

immunosuppressive therapies for both the constitutive nat-

ure of expression of CD40 on APC’s and the activation spe-

cific expression of CD154 on T cells [121,122].

Early studies in mouse models first published by the

groups of Larsen and Hancock demonstrated that block-

ade of CD154 could result in prolonged but not indefinite

allograft survival. Long-term acceptance of allografts,

however, required additional immunosuppressive thera-

pies [123–125]. Follow-up studies in nonhuman primate

models demonstrated similar results. The groups of Kirk

and Knechtle found that blockade of CD154 prevented

allograft rejection in nonhuman primates but unfortu-

nately did not provide indefinite graft survival [126,127].

Based on these results, development of humanized

anti-CD154 antibodies for clinical use moved forward.

However, progress stalled when clinical and nonhuman

primate trials demonstrated that blockade of CD154 was

associated with thromboembolic complications [128].

Recent developments of humanized, nondepleting, anti-

CD40 antibodies have renewed interest in blockade of this

costimulation pathway [129]. Humanized anti-CD40 anti-

bodies have been able to prevent acute rejection and pro-

long renal and islet allograft survival in nonhuman

primate models of transplantation. In addition, these anti-

CD40 antibodies appear to be safe and effective as mainte-

nance immunosuppressive therapy as well [129,130].

These discoveries would suggest that co-stimulation block-

ade of the CD40/CD154 pathway is still viable as an

immunosuppressive strategy and may potentially benefit

patients undergoing organ transplantation. Monoclonal

antibodies to CD40 include lucatumumab, Chi220,

ASKP1240, PG102, and PRO64553 [131].

Biologics in clinical development: B cell
therapeutics

The detrimental impact of alloantibodies on long-term

allograft function and survival has been well documented

over the last decade [132–134]. As such, several antibod-

ies and small molecules have emerged in the transplant

setting, targeting CD20+ B cells, BAFF, and complement

components. Currently, rituximab has shown most prom-

ise in sensitized patients among B-cell therapeutics, but

data supporting the clinical use of these biologics in

transplantation are incomplete. We believe that evaluation

of their use in high-risk patients in a rigorously con-

trolled study will provide valuable information. Objective

comparison of the new immunosuppressive agents will

depend on the ability to conduct clinical trials involving

multiple agents that are owned by different companies.

Unless public support is available, such comparative trials

may not readily occur.

B cell depletion

Rituximab (Rituxan; IDEC Pharmaceuticals) is a mouse/

human chimeric IgG1 monoclonal antibody to CD20. It

induces B-cell depletion through antibody and complement

dependent cytotoxicity and apoptosis, primarily in periph-

eral blood [135]. In the spleen, it preferentially depletes

naı̈ve B cells but not memory B or plasma cells [136]. Simi-

larly, in vitro, naı̈ve B cell (CD19+CD27)) but not memory

B cell (CD19+CD27+) proliferation is inhibited [137].

Rituximab was introduced in the early 1990s to the

transplant field as a therapy for PTLD [138,139]. Its main

successes in transplantation involve its use for ABO

incompatible transplants and desensitization. Genberg et

al. presented 3-year results for pediatric and adult kidney

patients receiving ABO incompatible versus compatible

living donor transplants. Twenty ABO incompatible

patients received a single dose of rituximab day -30, oral

immunosuppressants day starting day -10, and intrave-

nous immunoglobulin on day -1; no difference in patient

or graft survival, acute rejection, nor infectious complica-

tions were observed [140]. In 2011, Fuchinoue reported

5-year outcomes of living related recipients that were ABO

compatible (n = 280), ABO-incompatible with splenec-

tomy (n = 63), or ABO-incompatible with rituximab

induction (n = 50), concluding that ABO incompatible

recipients undergoing rituximab induction had 100% graft

survival at 5 years with equivalent risk of antibody-medi-

ated rejection and CMV infection as the other groups

[141]. Vo et al. shared their desensitization experience

using rituximab and intravenous immunoglobulin in 20

highly sensitized patients, where 100% and 94% 12-month

patient and graft survival rates were achieved with no seri-

ous adverse events [142]. When used as rescue therapy for

antibody-mediated rejection, 22 patients treated with rit-

uximab and plasmapheresis had 77% graft survival at

median 9 months but a high incidence of serious infec-

tions (86%) [143]. Epratuzumab (Immunomedics/UCB),

a humanized IgG1 monoclonal antibody to CD22 in phase

III trials for lupus, improves the efficacy of rituximab

when given as combination therapy for lymphoma [144],

and may be a promising target for alloimmunity as well.

BAFF blockade

The BAFF, also known as B Lymphocyte Stimulator

(BLyS), TALL-1, THANK, and zTNF4, is a member of the

tumor necrosis factor cytokine family expressed mainly on

T cells and dendritic cells for B-cell costimulation

[145,146]. BAFF binds to receptors BCMA (B cell matura-

tion antigen), TACI (transmembrane activator), and

BAFF-R (BAFF receptor) for B cell survival, proliferation,

and maturation. Initially studied in autoimmune disease,

Page et al. Biologics in organ transplantation

ª 2012 The Authors

Transplant International ª 2012 European Society for Organ Transplantation 25 (2012) 707–719 711



its role in transplantation has been described in chronic

graft-versus-host disease and correlation with donor spe-

cific HLA antibodies, diminishing graft function, higher

panel reactive antibodies, B-cell reconstitution, and C4d+

allograft rejection in kidney recipients [147–151].

Belimumab (Benlysta; Human Genome Sciences/Glaxo-

SmithKline) is a fully human recombinant IgG1 monoclo-

nal antibody to BAFF, FDA approved in March 2011 for

SLE. Mustafa et al., in a murine cardiac allograft model,

found that treatment with anti-BAFF mAB depleted follicu-

lar (B220+IgM+CD21/35+) and alloreactive B cells and

abrogated the alloantibody response, compared with

untreated controls [152]. The same group is enrolling

patients in a phase II clinical trial of desensitization with

belimumab in sensitized patients awaiting kidney trans-

plantation (clinicaltrials.gov).

Atacicept (ZymoGenetics/Merck Serono) is a recombi-

nant Fc fusion protein, composed of the extracellular por-

tion of the transmembrane activator and calcium-

modulator and cyclophilin ligand interactor (TACI)

receptor and the Fc portion of human IgG1. It neutralizes

BAFF and its sister ligand APRIL (a proliferation-induc-

ing ligand), and has been evaluated in rheumatoid arthri-

tis, SLE, multiple sclerosis, and B-cell malignancies [153].

In cynomolgus macaques, atacicept only modestly

reduced peripheral B cells by 20%, but in combination

with rituximab induced greater (near-complete) B-cell

depletion in lymphoid tissues than either drug alone. In

addition, significant reduction of serum Ig was induced

with atacicept with or without rituximab [153]. In allo-

sensitized nonhuman primates, atacicept reduced T-cell

and B-cell alloantibodies by 36% and 24%, respectively

[154]. Atacicept is in phase II/III clinical trials for SLE

and has yet to be evaluated in human transplant patients.

It has failed to show efficacy in clinical trials for rheuma-

toid arthritis and multiple sclerosis [155,156].

The BR3-Fc (Briobacept, Genentech/Biogen Idec, dis-

continued in 2011) is a recombinant homodimeric fusion

protein made of the extracellular domain of human BR3,

also known as BAFF-R, and the Fc portion of human

IgG1. In cynomolgus macaques, BR3-Fc induced 45–60%

peripheral B-cell reduction in a dose-independent man-

ner, mostly of naı̈ve (CD21+CD27)) B cells; significant

reduction of naı̈ve and memory (CD21+CD27+) B cells

was noted in secondary lymphoid organs. Additional

analysis with immunohistochemistry revealed decreased

follicular, marginal, and mantle zone B cells [157].

Complement blockade

Complement fixing actions of antibodies are well known,

and complement deposition (i.e. C4d) in histologic prep-

arations is often used in the diagnosis of antibody-medi-

ated rejection. In addition, elevated levels of urine C5a

and plasma levels of C1rsC1-inhibitor complexes have

been detected in acute renal allograft rejection [158,159].

Eculizumab (Soliris, Alexion) is a recombinant human-

ized IgG2/4 monoclonal antibody to complement protein

C5, FDA approved for the treatment of paroxysmal noc-

turnal hemoglobinuria and atypical hemolytic uremic syn-

drome. Stegall et al. compared post-transplant eculizumab

versus pre-operative plasma exchange (control) in patients

with pretransplant B flow cytometric crossmatch channel

shifts between 200 and 450. Incidence of antibody-medi-

ated rejection within 3 months was 7.7% for eculizumab

recipients compared to 41% for controls (P = 0.0031);

however, a high number of patients developed donor spe-

cific antibodies by 3 months (50% eculizumab vs. 43%

control, P = 0.63) [160]. Case reports have demonstrated

effective rescue treatment of severe complement activation

and antibody-mediated rejection by eculizumab in

an ABO-incompatible kidney-pancreas transplant and a

re-transplanted kidney recipient [161,162].

The C1 esterase inhibitor (Berinert, Aventis-Behring) is

a plasma-derived human C1 esterase inhibitor, FDA

approved for the treatment of hereditary angioedema. Its

use in allotransplantation has primarily been dedicated to

tissue protection from ischemia/reperfusion injury [163].

In a case study from 1997, a 19-year-old O-typed boy

accidentally received a B-typed heart transplant and

underwent an assortment of therapies, including plasma

exchange, extracorporeal immunoabsorption, intravenous

immunoglobulins, and C1 inhibition. While inadequate

maintenance immunosuppression necessitated total lym-

phoid irradiation for 2 months, the patient stabilized and

was doing well at 42 months. Early successes were attrib-

uted to complement inhibition [164]. C1 inhibition in

animal models of xenotransplantation has demonstrated

tissue protection by reducing complement deposition and

destruction in hyperacute rejection [163].

Biologics in clinical development: anti-adhesion
and anti-cytokine approaches

Efalizumab (Raptiva, Genentech/Merck Serono) is a

humanized monoclonal antibody to the CD11a subunit of

the leukocyte function antigen (LFA-1) pathway, thereby

disrupting lymphocyte adhesion and migration into tis-

sues. In an islet cell transplantation trial, Turgeon et al.

compared a group receiving an efalizumab-based protocol

(daclizumab, mycophenolate mofetil, efalizumab, with

tacrolimus taper) versus the Edmonton protocol (dac-

lizumab, tacrolimus, and sirolimus). Efalizumab-treated

patients experienced fewer immunosuppression related

events and none required repeat islet infusion to achieve

insulin independence. Efalizumab was withdrawn from
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the market in 2009 owing to risk of progressive multifocal

leukoencephalopathy; patients whose efalizumab in the

above study was discontinued shortly experienced islet

dysfunction, suggesting efficacy of the drug [165]. Posselt

et al. achieved similar outcomes in a calcineurin inhibi-

tor-free regimen, using ATG induction with efalizumab

and sirolimus or mycophenolate; tacrolimus replaced

efalizumab after the drug was withdrawn. All patients

achieved insulin independence, half after a single trans-

plant, without serious adverse events [166]. Interestingly,

all patients were found to have a significant, persistent

increase in CD25hi and CD127lo CD4 + FoxP3 + regula-

tory T cells out to 1 year.

Serum and urine biomarkers for acute allograft rejection

clearly demonstrate the presence and impact of cytokines

in the rejection process [167,168]. In addition to IL2R

blockade as described above, therapeutic targeting of other

cytokines may provide important immune suppression in

induction and rescue settings. Ustekinumab (Stelara,

Centocor) is a human IgG1 monoclonal antibody to the

p40 subunit of interleukins 12 and 23, cytokines involved

in T-cell differentiation into Th1 and Th17 phenotypes

[169]. A similar antibody is Briakinumab, which is cur-

rently in phase III studies for the treatment of psoriasis

[170]. Tocilizumab (RoActemra or Actemra, Roche/Genen-

tech/Chugai) is a recombinant humanized IgG1 monoclo-

nal antibody to interleukin 6 receptor, developed for

rheumatoid arthritis. IL6R promotes T-cell activation and

B-cell differentiation among other pleiotropic effects [171],

making it an attractive candidate for use in transplantation.

Proinflammatory cytokine tumor necrosis factor (TNF)

alpha is elevated in the serum of acutely rejecting patients

[172]. Hu et al. conducted a meta-analysis of TNF-A-

308G/A polymorphisms and found an increased risk of

acute rejection in renal allografts with donor and recipi-

ent TNF2 allele positive genotypes. Thus, TNFa blockade

may also emerge as an adjunct therapeutic. Etanercept

(Enbrel, Amgen/Pfizer), a fusion protein of TNF receptor

2 with human IgG1, combined with exenatide improved

engraftment and long-term survival in patients undergo-

ing supplemental islet infusions [173]. FDA approved

anti-TNF antibodies include chimeric IgG1 infliximab

(Remicade), human IgG1 golimumab (Simponi), pegylat-

ed humanized Fab certolizumab pegol (Cimzia), and

human IgG1 adalimumab (Humira) [170].

Conclusion

The deluge of novel biologic agents entering clinical trials

has yielded several that may be promising for immuno-

modulation in transplantation. These therapies may help

us identify a better solution to steroid-refractory rejection,

chronic allograft loss, transplantation in highly sensitized

recipients, avoidance of calcineurin inhibition, and rescue

immunosuppression, among others. While individual

agents may be insufficient for tolerance induction, the

ability to target specific pathways may allow for highly

customized treatment.
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