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Impact of immunosenescence on transplant outcome
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Summary

Aging affects all compartments of the immune response and has a major impact

on transplant outcome and organ quality. Although clinical trials in the aging

transplant population remain rare, our current understanding of immunosenes-

cence provides a basis for an age-adapted immunosuppression and organ alloca-

tion with the goal to optimize utilization and to improve outcomes in older

recipients. From a more general perspective, understanding the mechanisms and

consequences of immunosenescence will have a broad impact on immune thera-

pies in and beyond transplantation.

Introduction

The prevalence of end-stage organ diseases among older

patients is imposing growing challenges on organ trans-

plantation. The proportion of patients over the age of

75 years developing end-stage renal disease (ESRD), for

example, has almost tripled from 7.6% to over 20% during

the last three decades [1]. As renal transplantation is the

treatment of choice for many of these patients [2], the

majority of those on waiting lists for kidney transplants are

now older than 50 years [3]. To meet this rapidly increas-

ing demand, more than half of all currently transplanted

kidneys are from donors older than 50 years [3]. Improved

longevity linked to medical progress and ongoing demo-

graphic changes will likely aggravate the necessity of care

for the elderly and the aging transplant population in par-

ticular.

Aging affects all compartments of innate and adaptive

immunity. It is important to note that immunosenescence

should not be conceptualized as a uniform deterioration,

but rather as a plethora of complex modifications of

immunologic functions and regulations with broad conse-

quences on alloimmune responses. Clinical implications

of immunosenescence for organ transplantation may

include an adaptation and selection of immunosuppres-

sion for older patients or recipients of older organs, but

are also far reaching beyond the field of organ transplan-

tation with increased risks of infections, malignancies,

autoimmune disorders, atherosclerosis, and neurodegen-

erative changes.
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Clinical outcomes

Older renal transplant recipients have an overall higher

mortality [4] and almost 50% of graft losses in old recipi-

ents are related to death with a functioning graft compared

with 15% in young recipients [5]. Of note, older recipients

demonstrate improved long-term graft survival when cen-

sored for death with a functioning graft [6]. Interestingly,

more than 50% of all mortalities in older recipients have

been linked to complications that are exacerbated by

immunosuppressive therapy and age such as cardiovascular

disease, infections, or malignancies [7].

Immunosenescence has been linked to lower rates of

acute rejection episodes in clinical trials with corneal, kid-

ney, heart, liver, and lung transplantation [8–12]. In renal

transplantation, less than 25% of graft failures in old recipi-

ents have been attributed to rejections compared with 50%

in recipients <45 years [13]. Acute rejections in the elderly,

however, exert more pronounced detrimental effects on

patient and graft survival [14]. Intrinsic organ age-related

effects and aspects of immunogenicity may be of relevance

in this context [6] as older recipients are more likely to

receive organs from old donors.

Advanced recipient age has also been identified as an

independent clinical risk factor for chronic allograft failure

[15], which might be explained by the dysfunctional

immune responses in the elderly, further aggravated by

organ age-related impairments, an increased susceptibility

to calcineurin inhibitor (CNI)-related nephrotoxicity, and

a more pro-inflammatory environment in older organs.

The detrimental effects of advanced recipient age on

chronic allograft nephropathy have also been reported in

experimental models [16,17].

Projected life expectancies, nevertheless, almost dou-

bled from 6 to 10 years in renal transplant recipients

older than 65 years compared with age-matched con-
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trols staying on dialysis [18], although older recipients

are more likely to receive older and functionally com-

promised organs [6]. At the same time, it has to be

noted that older recipients represent a highly selected

patient population [2].

Thus, clinical studies assessing both transplant and

patient survival are in need for the implementation of age-

adapted immunosuppressive protocols.

Consequences of advanced donor age

Organs from donors older than 60 years show a signifi-

cantly reduced projected half-life of 5 years compared with

10.2 years when kidneys from young donors were trans-

planted [19]. Unspecific injuries may have a more pro-

nounced effect in older organs as adverse effects of donor

age were not observed in living donor transplants [20].

Intrinsic functional impairments of old organs such as a

decrease in kidney weight, number of glomeruli, and mean

glomerular volume may play an additional role [21]. Fur-

thermore, aging seems to lead to functional deficits in the

ability to respond to challenges of fluid excess or deficit [22].

Advanced donor age has also been associated with

increased risks of delayed graft function (DGF) and pro-

nounced detrimental consequences subsequent to ische-

mia/reperfusion injury (IRI). Donor age per se has been

identified as an independent risk factor for DGF [14] and a

retrospective clinical analysis showed an increased need for

postoperative dialysis when older kidneys were transplanted

[19]. DGF, in turn, has lead to increased rates of acute

rejection episodes in some studies [23].

An increased susceptibility for IRI with advancing age

has been demonstrated in several experimental models,

potentially linked to an augmented release of mitochon-

drial reactive oxygen species [24–27].
Tissue injury, in turn, promotes a stereotyped immune

response that facilitates immune recognition and subse-

quent injury leading to an augmented immunogenicity of

old donor organs [28–30].
Inflamm-aging is a more general concept explaining the

impact of donor age on immunogenicity. Subclinical infec-

tions in the elderly, at least in part related to a compro-

mised integrity of epithelial barriers, present a persisting

challenge to the innate immune system, which – also

because of deficiencies in adaptive immunity and compro-

mised hematopoietic stem cells – may gain importance in

preserving immunologic protection [31,32]. This shift may

lead to elevated levels of pro-inflammatory cytokines in the

elderly [33] and impact the immunogenicity of older

organs utilized for transplantation. In line with this con-

cept, we were able to demonstrate elevated frequencies of

donor-derived leukocytes in hearts from old mice prior to

transplantation [34].

The increased incidence of acute rejection episodes after

transplantation of old kidneys [14,35–37] may be explained

by the augmented immunogenicity of older donor organs.

Experimentally, engraftment of old organs has been linked

to more potent early immune responses [38,39], higher fre-

quencies of effector/memory T cells, and an augmented al-

loreactivity in vitro [40].

Old organs may also have a compromised capacity to

repair and increased rates of graft losses after acute

rejection episodes have been observed clinically for kid-

neys from old donors [41]. The consequences of specific

and unspecific injuries in old kidneys may be further-

more exacerbated by a reduced reserve of functioning

nephrons. Moreover, repeated injuries may also contrib-

ute to premature senescence of stromal and parenchymal

cells [42].

Cellular consequences of immunosenescence
on alloimmune responses

Consequences of aging on hematopoietic stem cells

Hematopoietic stem cells (HSCs) are long-lived and give

rise to all blood cell types of the myeloid and lymphoid lin-

eages to replenish the cellular components of the immune

system. Despite their extensive proliferative and regenera-

tive capacity, a growing body of evidence suggests that

these cells show signs of aging [43,44]. Both, clinical and

experimental data support a measurable and successive

functional decline in the reconstitution capacity of old

purified HSCs [45,46]. This functional compromise is in

part compensated by an enhanced expansion potential

[47,48] and some recent data have also suggested an

increase in the frequency of human HSCs with aging

[44,49]. Murine HSCs furthermore show changes in lineage

potential with aging, resulting in attenuated lymphoid line-

age output and preserved or even increased myeloid lineage

output [50,51]. Interestingly, pediatric leukemias tend to

involve lymphoid lineages, while leukemias in the adult

population tend to involve myeloid leukemias [52].

Aging broadly affects T cell responses to alloantigens

Thymic involution as a hallmark of immunosenescence

starts at the age of 1 year and advances rapidly with pub-

erty [53]. Measurements of changes in thymic output with

the signal joint T cell receptor excision circle assay revealed

that T cell output declines as a function of thymopoietic

tissue, with a retained residual capacity to produce naive T

cells [54].

While the loss in thymic output with age does not result

in significant changes in the total amount of peripheral T

cells [55] as this number seems to be regulated via a thy-

mus-independent expansion of mature T cells [56], the
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decreased amount of naive T cells and their peripheral

expansion, however, results in a significantly limited TCR

repertoire with the diversity of TCR-b chains dropping

1000-fold in individuals older than 70 years [57]. Changes

of the T cell repertoire with aging are also expected to

impact allorecognition [58].

An age-related increase in the frequency of CD8+ T cells

lacking the expression of CD28 has been described [59]. As

a consequence of oligoclonal expansion, TCRs of CD28� T

cells display reduced diversity [60], a finding that may also

contribute to the overall limitation of the TCR repertoire

[61]. Moreover, CD28� T cells show an altered expression

of co-stimulatory receptors [62] and a gain in cytolytic

functions [63]. They also acquire the expression of NK cell

receptors such as killer immunoglobulin like receptors

(KIRs) [64].

Loss of CD28 expression in T cells with age has been

attributed to repeated antigenic stimulation [65] and short-

ened telomeres with depleted proliferative potential [66].

In addition, the presence of a pro-inflammatory environ-

ment with type I interferons during TCR activation

increases the proportion of CD28� T cells in vitro [67].

Chronic viral stimulation representing a repeated antigenic

stimulus and an inflammatory environment might thus

drive the generation of CD28- T cells [68].

Loss of CD28 expression has also been associated with

reduced proliferative capacity during repeated cycles of rep-

lication (‘replicative senescence’) [69,70], besides a reduced

proliferative response of old T cells to antigenic as well as

mitotic stimuli [71,72]. In keeping with this, adoptively

transferred old T cells proliferate less well in response to

their specific antigen [34] and young T cell deficient mice
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reconstituted with old T cells demonstrate a delayed rejec-

tion, illustrating an overall compromise of T cell-mediated

alloresponses with increasing age [73].

When old CD4+ T cells were stimulated ex vivo with

irradiated donor spleen cells, they manifested impaired al-

lospecific IL-2 and IFN-c responses [73], a finding that is

in line with previously reported decreased capacities of old

naive T cells to produce and respond to IL-2 upon stimula-

tion with antigen [74,75]. A number of reports have also

linked aging to a decrease in the Th1/Th2 cytokine ratio

[76,77], whereas the overall frequency of type 1 and type 2

cytokine-producing T cells seems to increase with age. This

may be linked to higher frequencies of memory T cells [78]

and high levels of lymphocyte function-associated antigen

1 on CD28� T cells that reduce their activation threshold

[79]. Of additional importance seem cytokine expression

shifts toward an IL-17 repertoire or augmented IL-17 allo-

immune responses with aging [80,81]. Recently, a potential

role for cd T cell-derived IL-17 in acute allograft rejection

has been proposed [82].

The two classical signals required for T cell activation

(TCR ligation and co-stimulation) seem to be affected by

aging as old murine CD4+ T cells are less efficient in forming

TCR synapses with APCs [83] and show a limited expression

of several activation and differentiation markers such as

CD40L/CD154, CD25, and CD28 [84,85]. In addition,

adoptively transferred antigen-specific CD8+ T cells showed

a decreased expression of CD62L in young recipients com-

pared with old recipients [73], a finding that together with

other recent observations indicates that both human and

murine T cells may show age-dependent modifications in

migration patterns because of altered expression of selected

pro-inflammatory chemokines and receptors [86].

Potentially linked to the cumulative exposure to patho-

gens and environmental antigens paralleled by a decreased

output of naive T cells [87], a number of studies found

increased relative numbers of memory T cells in the

elderly. While old mice with larger numbers of memory

T cells prior to transplantation exhibited comparable in

vitro alloreactivity [88], memory T cells derived from old

naive cells showed compromised proliferative responses

and cognate helper functions as well as reduced levels of

cytokine production [89]. Higher frequencies of human

regulatory T cells (Tregs) with age were also reported

[90] and in a recent experimental study, we were able to

show that Treg functions in old recipient mice remained

intact [34], findings that have also been confirmed clini-

cally [91,92].

Effects of aging on B cells

Production rates in pro-, pre-, and immature bone marrow

B cell pools [93,94] and expression of critical transcrip-

tional regulators as well as of the recombination activating

gene enzymes all diminish with age [95–97]. The number

of peripheral B cells, however, seems to be maintained

through a decreased turnover of mature B cells [98]. The

entailing significant loss in diversity of the B cell receptor

(BCR) with aging has been correlated with poor health and

compromised survival [99]. In addition to a reduced out-

put of naive B cells and intrinsic repertoire differences of

old HSCs, some truncation of the repertoire might reflect

expanded clones of memory B cells [100]. Moreover, aging

may impact the balance between B1 and B2 cells [101] as

the proportional contribution of B1 cells increases with the

waning production of B2 cells.

Age-dependent limited formation of germinal centers

(GCs) and altered T cell-dependent responses impair B cell

expansion, antibody affinity maturation and memory B cell

differentiation [102,103], and are possibly linked to intrin-

sic class switching defects [104], modified cytokine secre-

tion by T cells as well as reduced CD40L/CD154 expression

by T cells and subsequently impaired cognate interactions

between T and B cells [84,100]. Furthermore, follicular

dendritic cells as organizers of the lymphoid microarchitec-

ture in GCs have been found to be less effective in trapping

and dispersing antigen, correlating with fewer and smaller

GCs [105].

Aging impacts innate immune responses and augments

the immunogenicity of older organs

Depletion of interstitial dendritic cells (DCs) in kidneys of

CD11c-DTR reporter mice reduced tubular cell necrosis

and renal dysfunction after IRI [106]. Mice lacking specific

toll-like receptors or intracellular proteins required for sub-

sequent signaling showed significantly reduced tissue dam-

age after IRI [107], linked to prolonged allograft survival

[108].

Interstitial intragraft DCs may mediate the aforemen-

tioned increased immunogenicity of old donor organs.

Enhanced antigen-presenting capacities of DCs have been

reported previously [109–111] and in own experimental

studies, we observed that old murine DCs induced more

potent alloimmune responses in vitro (unpublished obser-

vations). Clinically, older monocyte-derived DCs (MDDCs)

have shown impaired capacity of phagocytosis and pinocy-

tosis [112] including impaired phagocytosis of apoptotic

cells [113]. Apoptotic cells may accumulate and become

necrotic, thus inducing maturation of DCs with subse-

quently enhanced antigen presentation and increased secre-

tion of pro-inflammatory cytokines [113].

Various numerical and phenotypic age-dependent

changes in DCs have been described for specific subsets

and tissues of residence [114–117], while data on the

capacity of old DCs to prime and activate T cells have
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been inconsistent [118–120]. In addition, some clinical

studies have reported comparable levels of TLR-induced

activation and cytokine secretion by MDDCs [121,122]

and an impaired migration of DCs to draining lymph

nodes has been observed in experimental and clinical set-

tings [123,124].

A significant decrease in macrophage precursors and

mature macrophages has been observed clinically in parallel

to aging [125]. Aging human and rodent macrophages

seem to have reduced levels of MHC class II expression

[126], which may contribute to poorer T cells responses

[127]. Increased production of PGE2 by macrophages may

be of additional importance for modified T cell responses

with aging [128] as PGE2 critically influences DC functions

by altering the secretion of IL-12, IL-10, IL-2 and by

decreasing the expression of MHC class II, thus impacting

proliferative responses in T cells and the Th1/Th2 cytokine

balance [129–131].
It has been discussed whether macrophages are the

source of elevated levels of pro-inflammatory cytokines

found in the elderly (‘inflamm-aging’) [132]. Although sev-

eral recent reports have suggested a decrease in the produc-

tion of pro-inflammatory cytokines by both, human and

murine macrophages [133,134], chronic inflammatory dis-

eases and poor nutrition might also be of relevance in this

context [135,136].

Both, human and murine natural killer (NK) cells have

shown a decreased proliferative response following stimu-

lation with IL-2 [137] and IL-2-induced production of

IFN-c was decreased in NK cells from old individuals

[137,138], possibly compromising immune responses dri-

ven by NK cells. An age-related relative increase in human

NK cells has been reported [139] that may represent a

compensatory mechanism [140]. These changes were

accompanied by an increase in the more mature, highly

cytotoxic CD56dim population [137] and unaltered [141]

or even enhanced [142] cytotoxicity. Antibody-dependent

cell-mediated cytotoxicity does also seem to be preserved

with aging [143].

A recent study identified neutrophils as an important

link between innate and adaptive immunity as they stimu-

lated donor DCs in a contact-dependent fashion to aug-

ment their production of IL-12 and expand alloantigen-

specific T cells [144]. Chemotaxis of neutrophils was found

to be impaired in the elderly [145,146] and there seems to

be an age-dependent loss of microbiocidal capacity [147].

Impaired phagocytosis of opsonized bacteria and yeast by

neutrophils has been observed [148,149] and Fc receptor-

mediated production of reactive oxygen species was found

to be significantly decreased in the elderly [150]. Old neu-

trophils also showed limited anti-apoptotic responses to

pro-inflammatory signals like IL-2, LPS, or GM-CSF

[151,152].

Clinical consequences of immunosenescence

Analyses of clinical outcomes after transplantation of old

recipients and allocation of old donor organs show inde-

pendent deleterious effects of advanced donor and recipient

age. The multifaceted modifications in adaptive and innate

alloresponses linked to immunosenescence may justify both

reduced and adapted immunosuppressive maintenance

therapy in old recipients. The augmented immunogenicity

of older organs, at the same time, may require a potent

early immunosuppression. Moreover, some allocation sys-

tems such as the Eurotransplant Senior Program have

already implemented the clinical reality of an aging donor

and recipient population, whereas other allocation systems

are currently in the process of being modified to implement

the consequences of aging.

Organ allocation

The transplantation of older kidneys into older recipients

has been proposed to optimize outcome as the less vigorous

alloresponses of old recipients may counterbalance the

increased immunogenicity of old organs [13]. Moreover,

organs from older donors might be sufficient to meet the

metabolic demands of older recipients while allowing a

more efficient utilization of older organs [153].

The Eurotransplant Senior Program (ESP) is allocating

kidneys from donors >65 years of age regardless of HLA

matching to nonsensitized local recipients � 65 years of

age [154]. In a 5-year follow-up study, waiting times had

decreased significantly and allocation to local recipients

had led to reduced cold ischemic time and reduced inci-

dence of DGF [155]. Patient and graft survival were compa-

rable to standard allocation policies, although a slightly

higher rate of acute rejection episodes was noted.

Immunosuppression

While minimizing side effects such as opportunistic infec-

tions and post-transplant malignancies, lower doses or dif-

ferent combinations of immunosuppressive agents might

be able to provide an appropriate level of immunosuppres-

sion for the elderly transplant recipient.

Prospective randomized trials evaluating adapted immu-

nosuppressive protocols for old transplant recipients are so

far not available, possibly because of comorbid conditions,

altered drug pharmacokinetics, and higher rates of adverse

effects leading to frequent exclusions of the elderly from

clinical trials.

Pharmacokinetics of immunosuppressive drugs in the

elderly may be altered by reduced gastric emptying and

decreased splanchnic blood flow, in addition to changes

in cytochrome isoenzymes, P-glycoprotein, and protein

© 2012 The Authors

Transplant International © 2012 European Society for Organ Transplantation. Published by Blackwell Publishing Ltd 26 (2013) 242–253 247

Heinbokel et al. Immunosenescence and transplant outcome



binding [156]. Decreased hepatic blood flow and renal

clearance are age-related factors that may augment organ-

specific toxicities [157] and numerous comorbid condi-

tions and drug–drug interactions in the elderly increase

side effects furthermore.

Protocols designed for the minimization of maintenance

immunosuppression in the elderly have mainly focused on

CNI avoidance or withdrawal. In two studies with myco-

phenolate mofetil (MMF) and steroid maintenance follow-

ing induction with basiliximab, patient and allograft

survival as well as graft function were comparable to stan-

dard protocols [158,159]. Furthermore, a retrospective

cohort study recently reported that reduced doses of MMF

and tacrolimus in renal transplant recipients over 60 years

of age were associated with improved graft and patient sur-

vival without an increased risk of AR [160].

Thus, a less potent maintenance immunosuppression in

the elderly with reduced levels of CNIs and anti-prolifera-

tive agents seem feasible, but require confirmation in pro-

spective clinical trials.

Although the augmented immunogenicity of older

organs may require a more potent early immunosuppres-

sion, its clinical benefit and the preferred induction

immunosuppressive agent in the elderly remain unclear.

Interleukin 2 receptor antagonists, however, seem prefera-

ble over anti-lymphocytic agents in older recipients

because of a reduced risk of infections and malignancies

[161,162].

The role of mammalian target of rapamycin (mTOR)

inhibitors in immunosuppressive protocols for the elderly

is still controversial. Although an improvement in renal

function [159] and reduced incidences of post-transplant

malignancies [163] have been reported with mTOR-based

CNI-free immunosuppressive protocols, abnormal lipid

metabolism, pulmonary infections, and impaired wound

healing may be side effects that limit the benefit of mTOR

inhibitors for old transplant recipients [164].

In a recent experimental study, co-stimulatory blockade-

based treatment failed to extend allograft survival in older

mice to the same extent as in younger recipients [88] and

altered expression of CTLA4 was reported for T cells of

aged individuals [165,166], thus leaving the role of co-stim-

ulatory blockade approaches in age-adapted immunosup-

pressive protocols unclear.

Conclusions

Understanding the misbalanced and overzealous immune

responses linked to the complex modifications of the

immune system during aging is rapidly gaining clinical sig-

nificance. Older organs show impaired repair mechanisms

and compromised functional reserves while at the same

time, an augmented immunogenicity of older organs has

been reported. Older recipients mount compromised allo-

immune responses in experimental and clinical studies.

Both, advanced donor and advanced recipient age are thus

risk factors for inferior transplant outcome and require

adapted organ allocation concepts and modified, clinically

validated immunosuppressive protocols.

The relevance of organ-specific aging processes reaches far

beyond the field of transplantation. As our current knowl-

edge of transplant-relevant immunosenescence remains in its

infancy, organ-specific aging effects remain unclear.

Clinically, immunosenescence may not only require a

reduced but also an age-specific immunosuppressive ther-

apy as some approaches such as co-stimulatory blockade

may be less effective in the elderly. Thus, with an increasing

clinical significance, it will be important to integrate older

recipients and older organs into clinical trials to confirm

the relevance of experimental data for clinically age-

adapted immunosuppression. From a general biological

perspective, advancing our understanding of immunose-

nescence may help to explore novel treatment approaches

in and beyond organ transplantation.
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