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Summary

Serial monitoring of peripheral blood lymphocyte subpopulations (PBLSs) counts

might be useful in predicting post-transplant opportunistic infection (OI) after

kidney transplantation (KT). PBLSs were prospectively measured in 304 KT recip-

ients at baseline and post-transplant months 1 and 6. Areas under receiver operat-

ing characteristic curves were used to evaluate the accuracy of different

subpopulations in predicting the occurrence of overall OI and, specifically, cyto-

megalovirus (CMV) disease. We separately analyzed patients not receiving

(n = 164) or receiving (n = 140) antithymocyte globulin (ATG) as induction

therapy. In the non-ATG group, a CD8+ T-cell count at month 1

<0.100 9 103 cells/ll had negative predictive values of 0.84 and 0.86 for the sub-

sequent occurrence of overall OI and CMV disease, respectively. In the multivari-

ate Cox model, a CD8+ T-cell count <0.100 9 103 cells/ll was an independent

risk factor for OI (adjusted hazard ratio: 3.55; P-value = 0.002). In the ATG

group, a CD4+ T-cell count at month 1 <0.050 9 103 cells/ll showed negative

predictive values of 0.92 for the subsequent occurrence of overall OI and CMV

disease. PBLSs monitoring effectively identify KT recipients at low risk of OI, pro-

viding an opportunity for individualizing post-transplant prophylaxis practices.
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Introduction

Infection remains one of the main causes of morbidity

and mortality after kidney transplantation (KT) [1,2].

Current immunosuppressive regimens are mostly tar-

geted against the adaptive arm of the immune system

[3]. Monitoring of cell-mediated immunity (CMI) has

been proposed as a promising strategy to reduce the

incidence of post-transplant infection by individualizing

immunosuppressive therapy. This monitoring may rely

on in vitro functional measures after nonspecific (i.e.,

phytohemagglutinin) or specific antigen stimulation [i.e.,

cytomegalovirus (CMV) viral peptides] [4–6]. In addi-

tion, an alternative approach to the CMI status could be

based on quantitative surrogate parameters, such as the

counts of total lymphocyte and peripheral blood lym-

phocyte subpopulations (PBLSs). Kinetics of PBLSs could

be able to identify recipients at risk of post-transplant

infection in a similar way than that of other immuno-

compromised hosts, such as those infected with human

immunodeficiency virus (HIV) [7,8].

Others and we have analyzed the performance of moni-

toring of PBLSs in predicting the occurrence of infection in

different transplant populations [9–14]. Nevertheless, pre-
vious studies focused on KT are old, retrospective in

design, comprised small sample sizes or included only

HIV-infected recipients [11–13]. On the other hand, it is

well recognized the long-lasting and profound dose-depen-

dent T-cell depletion induced by polyclonal antithymocyte

preparations [3,15–17]. Therefore, the assessment of the

predictive capacity of PBLSs for post-transplant infection

should take into account the type of induction therapy

used. Notwithstanding this rationale, some of the previous

studies did not separately control for the effect of such a

variable [11].

This study was aimed at analyzing the association

between total lymphocyte and PBLS counts—as surrogate

markers of post-transplant CMI status—and the occur-

rence of opportunistic infection in a cohort of KT recipi-

ents stratified by use of antithymocyte globulin (ATG) as

induction therapy.

Patients and methods

Study population

Beginning in November 2008, all consecutive adult patients

who underwent KT at the University Hospital “12 de Octu-

bre” (Madrid, Spain) are being enrolled in a prospective

immune status assessment that includes measurements of

total lymphocyte and PBLS counts, serum immunoglobulin

levels, and serum complement levels at different time

points, as detailed below and elsewhere [18,19]. Patients

with known pretransplant primary immunodeficiencies or

HIV infection and those who died or developed graft loss

within the first week after transplantation are excluded.

Our Clinical Research Ethics Committee approved the

study protocol, and written informed consent is obtained

from all participants prior to their inclusion. This study

was performed in accordance with the ethical standards laid

down in the Declaration of Helsinki (2008 version) and the

Declaration of Istanbul.

Immune status assessment

Whole-blood samples were collected just before transplan-

tation (baseline) and at post-transplant months 1 and 6

and analyzed within 18 h at the Department of Immunol-

ogy. Whole blood (50 ll) was stained with 10 ll of BD
Multitest 6-color TBNK reagent in Trucount tubes for

15 min. Red blood cells were lysed using fluorescence-acti-

vated cell sorting lysing solution. Determination of PBLSs

was performed with a FACSCanto II flow cytometer, and

data analyzed by FACSCanto clinical software (BD Bio-

sciences, San Jose, CA, USA) [20].

Study design

Patients were enrolled at the time of transplantation and

followed for at least 1 year, unless death or graft loss

occurred earlier. We divided the post-transplant follow-up

period in three intervals: early (first month), intermediate

(months 1–6), and late (>6 months). All the patients were

seen regularly in our outpatient transplant clinic. The pri-

mary study outcomes were the occurrence of overall oppor-

tunistic infection (including CMV disease, either viral

syndrome or end-organ disease) as defined below and,

independently, the occurrence of CMV disease during each

post-transplant period. All the episodes of infection were

prospectively collected by an infectious disease specialist

who was unaware of the patient’s immunological status.

We pre-established two different subgroups of patients:

those who received ATG as induction (ATG group) and

those who received anti-CD25 monoclonal antibodies or

no induction therapy (non-ATG group).

Immunosuppression and prophylaxis regimens

In an attempt to minimize the risk of calcineurin inhibitor

(CNI)-related nephrotoxicity, all recipients of organs from

donors after circulatory death (DCD) underwent induction

with intravenous (IV) rabbit ATG (ATG-Fresenius,

1.00 mg/kg daily for 5–7 days), with the delayed introduc-

tion of the CNI from day 6. Recipients at high immunologi-

cal risk—peak panel-reactive antibody >50%, second

kidney transplant in case the first graft was lost to rejection

within 2 years, or those receiving a third or fourth kidney
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graft—also received ATG induction for 1–3 days with the

early initiation of a CNI from day 0. Basiliximab induction

(20 mg on days 0 and 4) was used in patients at high risk of

CNI-related nephrotoxicity due to advanced age or pre-

transplant comorbidities, with the delayed introduction of

the CNI from day 5. Maintenance immunosuppression

consisted of tacrolimus (0.1 mg/kg daily, adjusted to a tar-

get level of 10–15 ng/ml for the first month and 5–10 ng/ml

for maintenance); mycophenolate mofetil (1000 mg twice

daily) or mycophenolic acid (360 mg twice daily); and

prednisone (1 mg/kg daily with progressive tapering).

All patients received a single dose of IV cefazolin preop-

eratively. Prophylaxis for Pneumocystis jiroveci pneumonia

with trimethoprim–sulfamethoxazole (160/800 mg three

times weekly) was administered for 9 months. In those

patients at high risk for CMV disease (serology mismatch

[donor positive (D+) and recipient negative (R�)] or

induction with ATG), either IV ganciclovir (5 mg/kg daily)

or oral valganciclovir (900 mg daily) was administered for

3 months. As neither systematic CMV viremia monitoring

nor pre-emptive therapy was performed during the study

period in the intermediate-risk group (R+ patients not

receiving ATG), we did not include the occurrence of

asymptomatic CMV viremia within the analysis of oppor-

tunistic infection.

Definitions

Opportunist infections were defined as those due to pre-

dominantly intracellular bacteria (mycobacteria, Nocardia

spp., Legionella spp. and Listeria monocytogenes), herpesvi-

ruses [CMV, herpes simplex virus (HSV) and varicella-

zoster virus (VZV) and Epstein-Barr virus-related post-

transplant lymphoproliferative disease], polyomaviruses

[polyomavirus BK-associated nephropathy (PyVAN)],

yeasts (Candida spp. and Cryptococcus spp.), molds, Pneu-

mocystis jiroveci, and parasites (Toxoplasma gondii and

Leishmania spp.) [13,21,22]. Bloodstream, intra-abdomi-

nal, surgical site, and urinary tract infections due to Can-

dida spp. were excluded as these episodes are usually

related to previous surgery or indwelling catheters rather

than to the CMI status. Tuberculosis was diagnosed if

Mycobacterium tuberculosis was isolated by culture or if

M. tuberculosis DNA was identified by polymerase chain

reaction (PCR) assay from a representative clinical sam-

ple; patients for whom tuberculosis was demonstrated his-

topathologically were also accepted [23]. CMV disease

included viral syndrome (defined by the demonstration of

CMV by pp65 antigenemia or a PCR-based assays plus

one or more of the following: fever; new onset malaise;

leukopenia; atypical lymphocytosis; thrombocytopenia; or

elevation of ALT or AST higher than two times the upper

limit of normal) or end-organ disease [24]. Invasive

fungal infection was defined as per the criteria proposed

by the European Organization on Research and Treatment

in Cancer and the Mycoses Study Group [25]. Only pro-

ven or probable cases were included. Pretransplant immu-

nosuppressive therapy was defined as the use of

corticosteroids (prednisone ≥5 mg daily for >2 weeks) or

other immunosuppressive drugs (i.e., rituximab or cyclo-

phosphamide) within 6 months before transplantation.

Delayed graft function denotes the need for dialysis within

the first week after transplantation. Acute graft rejection

was suspected in case of an elevation of the serum creati-

nine and diagnosed by histological examination if possible

[26]. Graft loss was defined as permanent return to dialy-

sis or retransplantation.

Statistical analysis

Both cumulative incidences and incidence rates for each

post-transplant period (early, intermediate or late) were

calculated using as denominators the number of patients

with available samples for PBLSs measurement at the

beginning of each period. Quantitative data were shown

as the mean � standard deviation (SD) or the median

with interquartile range (IQR). Qualitative variables were

expressed as absolute and relative frequencies. Categorical

variables were compared using the chi-squared test,

whereas Student’s T-test or U Mann–Whitney test was

applied for continuous variables. Areas under receiver

operating characteristic curves (auROC) were employed

to assess the diagnostic accuracy of total lymphocyte and

each PBLS in predicting the occurrence of the primary

study outcomes during the different post-transplant peri-

ods in both ATG and non-ATG groups. The best cut-off

values were then assessed through the calculations of sen-

sitivity and specificity. Survival curves to first episode of

opportunistic infection or CMV disease were plotted by

the Kaplan–Meier method, and differences between

groups were compared with the log-rank test. Univariate

and multivariate (backward conditional selection) Cox

regression models were used to evaluate the association

between the most predictive parameters identified by au-

ROC analysis and the primary study outcomes. Some

variables not achieving statistical significance in the uni-

variate analyses were forced into the multivariate models

due to its clinical relevance. Results were expressed as

hazard ratios (HRs) with 95% confidence intervals (CIs).

Correlations between recipient age and clinically relevant

PBLS counts were assessed by Pearson’s correlation coef-

ficients (r). All the significance tests were two-tailed. Sta-

tistical analysis was performed using SPSS v. 15.0

(Statistical Package for Social Sciences, Inc., Chicago, IL,

USA) and EPIDAT v. 3.1 (Conselleria de Sanidade, Xunta

de Galicia, Spain).
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Results

Baseline characteristics

We included 304 patients (164 in the non-ATG group and

140 in the ATG group) from November 2008 to July 2011,

whose clinical characteristics are summarized in Table 1.

Patients in the ATG group were younger, more likely to

have received a graft from a DCD, and exhibited lower cold

ischemia time and higher rates of retransplantation and

delayed graft function. All patients had measurements of

total lymphocyte and PBLS counts at baseline. Samples at

months 1 and 6 were available for 266 and 211 of these

patients, respectively (87.8% and 75.0% of those alive and

with functional grafts at each point). There were no signifi-

cant differences in baseline characteristics between patients

with immune assessment at months 1 and 6, and those

from whom no whole-blood specimens could be obtained.

The median interval between baseline blood sampling and

the onset of the first episode of opportunistic infection dur-

ing the early period (first month) was 27 days (IQR, 21.7–
29 days). The median interval between sampling at month

1 and the onset of the first episode of infection during the

intermediate period (months 1–6) was 48 days (IQR, 12–
107 days). Finally, the median interval between sampling at

month 6 and the onset of the first episode of late infection

(>6 months) was 102 days (IQR, 21–240 days). The

dynamics of major PBLS counts in both the non-ATG and

ATG groups during the monitoring period are depicted in

the Fig. 1.

Post-transplant outcomes

The median follow-up was 476.0 days (IQR: 407.2–
707.2 days), with 263 patients (86.5%) reaching

≥12 months. Death-censored graft survival rates at 1 and

3 years were 95% and 93%, respectively. All-cause mortal-

ity was 6.3% [19 patients died at a median interval from

transplantation of 144 days (IQR: 55–364 days)]. The most

common causes of death were infection and cardiovascular

disease (12 and 3 patients, respectively). One- and 3-year

survival rates were 95% and 92%.

Overall, 78 patients (25.6%) had 104 episodes of oppor-

tunistic infection, with no significant difference between

non-ATG and ATG groups (incidence rates: 0.71 and

0.51 episodes per 1000 transplant-days, respectively;

P-value = 0.14). CMV was the most common agent, with

71 episodes diagnosed in 62 patients. Other agents included

HSV (12 episodes), VZV (7 episodes), L. donovani complex

(3 episodes), M. tuberculosis (3 episodes), Nocardia spp.

(2 episodes), Aspergillus fumigatus (2 episodes), PyVAN

(2 episodes), C. albicans, and mucorales (one episode

each). The incidence of each type of opportunistic infection

according to the post-transplant month and the precise

distribution of the clinical syndromes are detailed in Fig. 2

and Table S1. The cumulative incidences of CMV disease at

months 6 and 12 after transplant according to the D/R

CMV serostatus are shown in Table S2.

Predictive role of total lymphocyte and PBLS counts in the

non-ATG group

There were no significant differences in the PBLS counts at

baseline between patients with or without opportunistic

infection during the early period (data not shown). On the

opposite, total lymphocyte, CD3+, CD4+ and CD8+ T cells,

and NK-cell counts at month 1 were significantly decreased

in those patients who subsequently developed an opportu-

nistic infection during the intermediate period (Fig. 3a).

At month 6, we also found significant differences in CD8+

T-cell counts between patients with and without late

infection (Fig. 3b).

When performing auROC analyses, the CD8+ T-cell

count at month 1 was found to be the most predictive

parameter for the subsequent occurrence of overall oppor-

tunistic infection (auROC: 0.739; P-value <0.001) and

CMV disease (auROC: 0.685; P-value = 0.004) during the

intermediate period. At month 6, CD8+ T-cell count was

also the most predictive parameter for both late overall

opportunistic infection (auROC: 0.738; P-value = 0.03)

and late CMV disease (auROC: 0.756; P-value = 0.05)

(Table S3). There was a statistically significant negative cor-

relation between recipient age and the CD8+ T-cell count at

month 1 after transplantation (r: �0.326; P-value <0.0001),
but not at month 6.

As shown in Table 2, patients with a CD8+ T-cell count

<0.100 9 103 cells/ll at month 1 had higher cumulative

incidences of overall opportunistic infection (P-value

<0.001), CMV disease (P-value = 0.007) and CMV end-

organ disease (P-value = 0.02) at the end of the intermedi-

ate period. The incidence rates of overall opportunistic

infection and, specifically, CMV disease throughout such

period were also significantly higher (P-values <0.001 for

both comparisons). These associations remained essentially

unchanged in sensitivity analyses stratified by the use of ba-

siliximab induction or the receipt of antirejection therapy

during the early post-transplant period (Tables S4 and S5).

The sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) of this cut-off value

for predicting subsequent infection are detailed in Table 3.

With regards to the late period, patients with a CD8+

T-cell count <0.600 9 103 cells/ll at month 6 had higher

cumulative incidences of overall opportunistic infection

(P-value = 0.003) and CMV disease (P-value = 0.03), as

well as significantly higher incidence rates of both events

(Table 2). The performance of this cut-off value for pre-

dicting late infection is shown in Table 3.
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Table 1. Clinical characteristics and post-transplant outcome in the study cohort.

Variable Overall (n = 304) Non-ATG group (n = 164) ATG group (n = 140) P-value*

Age of recipient, years (mean � SD) 55.0 � 14.9 59.4 � 15.3 49.9 � 12.7 <0.001

Gender (male) [n (%)] 191 (62.8) 110 (67.1) 81 (57.9) 0.097

Pretransplant chronic comorbidities [n (%)]

Diabetes mellitus 76 (25.0) 43 (26.2) 33 (23.6) 0.595

Heart disease 72 (23.7) 39 (23.8) 33 (23.6) 0.966

Chronic lung disease 41 (13.5) 28 (17.1) 13 (9.3) 0.048

Peripheral arterial disease 28 (9.2) 18 (11.0) 10 (7.1) 0.249

Chronic liver disease 16 (5.3) 12 (7.3) 4 (2.9) 0.083

Pretransplant immunosuppressive therapy [n (%)] 38 (12.5) 18 (11.0) 20 (14.3) 0.395

Previous solid organ transplantation [n (%)] 66 (21.7) 27 (16.5) 39 (27.9) 0.016

≥2 previous transplants 16 (5.3) 2 (1.2) 14 (10.0) 0.001

Etiology of underlying ESRD [n (%)]

Glomerulonephritis 68 (22.4) 36 (22.0) 32 (22.9) 0.550

Diabetic nephropathy 54 (17.8) 29 (17.7) 25 (17.9)

Nephroangiosclerosis 42 (13.8) 25 (15.2) 17 (12.1)

Policystosis 36 (11.8) 18 (11.0) 18 (12.9)

Chronic interstitial nephropathy 25 (8.2) 15 (9.1) 10 (7.1)

Reflux nephropathy 13 (4.3) 6 (3.7) 7 (5.0)

Unknown 23 (7.6) 13 (7.9) 10 (7.1)

Other 43 (14.1) 22 (13.4) 21 (15.0)

Baseline serostatus [n (%)]

Hepatitis C virus 31 (10.2) 15 (9.1) 16 (11.4) 0.512

Hepatitis B virus 4 (1.3) 3 (1.8) 1 (0.7) 0.373

CMV status D+/R� 23 (7.6) 11 (6.7) 12 (8.6) 0.540

CMV status D�/R� 4 (1.3) 2 (1.2) 2 (1.4) 0.627

Pretransplant renal replacement therapy [n (%)]

Hemodialysis 248 (81.6) 130 (79.3) 118 (84.3) 0.299

Continuous ambulatory peritoneal dialysis 35 (11.5) 15 (9.1) 20 (14.3) 0.207

Age of donor, years (mean � SD) 53.3 � 16.8 59.7 � 17.1 45.8 � 12.8 <0.001

Type of donor [n (%)]

DBD donor 204 (67.1) 146 (89.0) 58 (41.4) <0.001

DCD donor 87 (28.6) 5 (3.0) 82 (58.6)

Living donor 13 (4.3) 13 (7.9) 0 (0.0)

Number of HLA mismatches [median (IQR)] 4.0 (4.0–5.0) 4.0 (3.0–5.0) 4.5 (4.0–5.0) 0.031

Cold ischemia time, hours (mean � SD) 16.7 � 6.8 18.5 � 7.1 14.7 � 5.7 <0.001

Induction therapy [n (%)]

None 53 (17.4) 53 (32.3) – –

Basiliximab 111 (36.5) 111 (67.7) –

ATG 140 (46.1) – 140 (100.0)

Primary immunosuppression scheme [n (%)]

Tacrolimus, mycophenolate mofetil, and steroids 268 (88.9) 147 (89.6) 125 (89.3) 0.767

Tacrolimus, azathioprine, and steroids 31 (10.2) 16 (9.8) 15 (10.7) 0.783

Post-transplant complications [n (%)]

Delayed graft function 182 (59.9) 79 (48.2) 103 (73.6) <0.001

Requirement of surgical reintervention† 40 (13.2) 18 (11.0) 22 (15.7) 0.223

Renal artery stenosis 56 (18.4) 31 (18.9) 25 (17.9) 0.815

De novo post-transplant diabetes mellitus 42 (13.8) 22 (13.4) 20 (14.3) 0.766

≥1 episode of acute graft rejection 67 (22.0) 40 (24.4) 27 (19.3) 0.285

2 episodes 7 (2.3) 5 (3.0) 2 (1.4) 0.294

Overall patient mortality [n (%)] 19 (6.3) 12 (7.3) 7 (5.0) 0.405

Infection-related mortality 12/19 (63.1) 8/12 (66.7) 4/7 (57.1) 0.367

Graft loss [n (%)] 18 (5.9) 8 (4.9) 10 (7.1) 0.404

ATG, antithymocyte globulin; CMV, cytomegalovirus; D, donor; DBD, donation after brain death; DCD, donation after circulatory death; ESRD, end-

stage renal disease; HLA, human leukocyte antigen; IQR, interquartile range; KT, kidney transplant; R, recipient; SD, standard deviation.

*Comparison between non-ATG and ATG groups.

†Within the first post-transplant month.
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In the multivariate Cox regression models, a CD8+ T-cell

count <0.100 9 103 cells/ll at month 1 was identified as

an independent risk factor for overall opportunistic infec-

tion (HR: 3.55; 95% CI: 1.56–8.06; P-value = 0.002) and,

separately, for CMV disease (HR: 4.19; 95% CI: 1.79–9.77;
P-value = 0.001) during the intermediate period (Table

S6). The low number of events beyond the month 6 pre-

vented us from performing a multivariate Cox model for

the late period.
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Predictive role of total lymphocyte and PBLS counts

in the ATG group

We found no significant differences in the PBLS counts at

baseline between patients with or without opportunistic

infection during the early period (data not shown). Total

lymphocyte, CD3+, CD4+ and CD8+ T-cell counts at

month 1 were significantly lower in those patients with sub-

sequent opportunistic infection during the intermediate

period (Fig. 4a). At month 6, total lymphocyte, CD3+ and

CD4+ T cells, and B cells and NK-cell counts were also sig-

nificantly lower in patients with opportunistic infection

during the late period (Fig. 4b).

The CD4+ T-cell count at month 1 was the most predic-

tive parameter for the subsequent occurrence of overall

opportunistic infection (auROC: 0.668; P-value = 0.02)

and, specifically, CMV disease (auROC: 0.634; P-value =
0.08). Again, there was a statistically significant negative

correlation between recipient age and the CD8+ T-cell

count at month 1 after transplantation (r: �0.361; P-value

<0.0001). At month 6, total lymphocyte count emerged as

the most predictive parameter for overall opportunistic

infection (auROC: 0.820; P-value = 0.005) and CMV

disease (auROC: 0.837; P-value = 0.006) during the late

period (Table S3).

Patients in the ATG group with a CD4+ T-cell count

<0.050 9 103 cells/ll at month 1 had higher cumulative

incidences of overall opportunistic infection

(P-value = 0.003), CMV disease (P-value = 0.03), and

nonviral opportunistic infection (P-value = 0.05) at the

end of the intermediate period (Table 4). The pattern of

these associations remained similar in a sensitivity analy-

sis stratified by the receipt of antirejection therapy during

the early period (Table S7). The sensitivity, specificity,

PPV, and NPV of this cut-off value are shown in

Table 5.

Table 2. Overall opportunistic infection and CMV disease in the non-ATG group during the intermediate (months 1–6) and late periods (>6 months)

according to CD8+ T-cell counts (unless otherwise specified, cumulative incidence rates are shown).

Infection in the intermediate period (months 1–6)

CD8+ T-cell count at month 1

<0.100 9 103 cells/ll (n = 16) ≥0.100 9 103 cells/ll (n = 125) P-value

Overall opportunistic infection* 10 (62.5) 21 (16.8) <0.001

Incidence rate (episodes per 1000 transplant-days) 6.77 1.55 <0.001

CMV disease 8 (50.0) 17 (13.6) 0.007

Incidence rate (episodes per 1000 transplant-days) 4.96 1.05 <0.001

CMV end-organ disease 3 (18.8) 3 (2.4) 0.02

Nonviral opportunistic infection 2 (12.5) 2 (1.6) 0.06

Infection in the late period (>6 months)

CD8+ T-cell count at month 6

<0.600 9 103 cells/ll (n = 58) ≥0.600 9 103 cells/ll (n = 57) P-value

Overall opportunistic infection† 8 (13.8) 0 (0.0) 0.003

Incidence rate (episodes per 1000 transplant-days) 0.95 0.00 <0.001

CMV disease 5 (8.6) 0 (0.0) 0.03

Incidence rate (episodes per 1000 transplant-days) 0.59 0.00 0.02

CMV end-organ disease 2 (3.4) 0 (0.0) 0.3

Nonviral opportunistic infection 2 (3.4) 0 (0.0) 0.3

ATG, antithymocyte globulin; CMV, cytomegalovirus.

*Data on the CD8+ T-cell count at month 1 were absent in 5 patients.

†Data on the CD8+ T-cell count at month 6 were absent in 4 patients.

Table 3. Performance of CD8+ T-cell counts at months 1 and 6 for predicting the occurrence of overall opportunistic infection and, specifically, CMV

disease in the non-ATG group.

Cut-off value Predicted event Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

CD8+ T-cell count at month

1 <0.100 9 103 cells/ll

Opportunistic infection

in months 1–6

0.32 (0.16–0.49) 0.95 (0.90–0.99) 0.63 (0.39–0.86) 0.83 (0.77–0.90)

CMV disease in months 1–6 0.32 (0.14–0.50) 0.93 (0.88–0.98) 0.50 (0.26–0.75) 0.86 (0.80–0.90)

CD8+ T-cell count at month

6 <0.600 9 103 cells/ll

Opportunistic infection

beyond month 6

1.00 (1.00–1.00) 0.53 (0.44–0.63) 0.14 (0.05–0.23) 1.00 (1.00–1.00)

CMV disease beyond month 6 1.00 (1.00–1.00) 0.52 (0.42–0.61) 0.09 (0.01–0.16) 1.00 (1.00–1.00)

ATG, antithymocyte globulin; CI, confidence interval; CMV, cytomegalovirus; NPV, negative predictive value; PPV, positive predictive value.
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Throughout the late period, patients with a total lym-

phocyte count <0.750 9 103 cells/ll at month 6 had higher

cumulative incidences of overall opportunistic infection

and CMV disease (P-values = 0.02 for both). The incidence

rates of overall opportunistic infection (P-value = 0.004)

and CMV disease (P-value = 0.02) were also significantly

increased (Table 4). The performance of this cut-off value

for predicting late infection is shown in Table 5.

In the final multivariate Cox regression model for overall

opportunistic infection during the intermediate period, the

CD4+ T-cell count <0.050 9 103 cells/ll at month 1 was

retained without reaching statistical significance (HR: 2.53;

95% CI: 0.88–7.26; P-value = 0.08) (Table S8). The low

number of late events precluded multivariate analysis for

the late post-transplant period.

Discussion

In the present study, we demonstrate that an affordable

approach to the post-transplant CMI status based on the

scheduled monitoring of total lymphocytes and selected

PBLSs may have a role in predicting opportunistic infection

in KT recipients. We also found that stratifying by the use

of ATG induction permits to separate two different sub-

groups with respect to the most predictive parameter. In

patients not receiving ATG, a low CD8+ T-cell count at

month 1 was associated with a 3.5-fold increase in the risk

of opportunistic infection and, specifically, a 4.2-fold

increase in the risk of CMV disease. In the group receiving

ATG induction, a low CD4+ T-cell count at month 1 was

associated with a nearly significant 2.5-fold increase in the

risk of overall opportunistic infection. Interestingly, the

selected cut-offs at each time point exhibited excellent

NPVs for the subsequent occurrence of infection. Through

the identification of those patients at a very low risk of

infection in which prophylaxis and/or viral monitoring

could be safely discontinued, this strategy provides an

opportunity for individualizing and optimizing post-trans-

plant practices.

There are few studies on the usefulness of monitoring of

lymphocyte counts to predict immunosuppression-related

adverse events after KT [11–13,27–29]. Nonetheless, the

increased risk of infection carried by patients receiving

T-cell-depleting antibodies (ATG, OKT3 or alemtuzumab)

has been extensively documented for CMV [30,31] and

other agents [32–35]. Various studies have reported that

KT recipients with P. jiroveci pneumonia have significantly

lower lymphocyte counts than controls [36–40], and it has

been proposed that the kinetics of the CD4+ T-cell subset

may help to determine the duration of certain prophylaxis

regimens [37,41].

In the ATG group, we found that a cut-off value in CD4+

T-cell count at month 1 of 0.050 9 103 cells/ll had good

sensitivity (76%) and excellent NPV (92%) for the occur-

rence of infection during the intermediate period. At month

6, a total lymphocyte count of 0.750 9 103 cells/ll exhib-
ited even better sensitivity (83%) and NPV (97%) for late

infection. Thus, these surrogate markers of CMI accurately

stratified the risk of infection within a subgroup of KT

recipients at high risk per se for infectious complications.

Notably, we were able to reproduce these findings in the

absence of previous induction with ATG. As these patients

are not subject to an obvious cause of T-cell depletion,

most clinicians would not have probably considered post-

transplant lymphocytopenia as a predictable complication.

A cut-off value in CD8+ T-cell count at month 1 of

0.100 9 103 cells/ll showed a very good NPV for predict-

ing subsequent opportunistic infection (83%) during the

intermediate period, whereas a cut-off of 0.600 9 103 cells/ll
at month 6 had a NPV of 100% for late infection. Although

the PPVs at months 1 and 6 were suboptimal (63% and

15%, respectively), the appeal of monitoring CD8+ T-cell

counts lies in the ability to effectively discriminate low-risk
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Figure 4 ATG group: Mean values of total lymphocyte and PBLS

counts at months 1 and 6 according to the occurrence of opportunistic

infection during the intermediate (a) and late (b) post-transplant peri-

ods, respectively. Whiskers indicate 95% confidence interval. *P-value

<0.005 (ATG, antithymocyte globulin; NK, natural killer; TLC, total lym-

phocyte count).
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patients, even by assuming that the actual odds of opportu-

nistic infection in the group below the cut-off value might

turn out to be relatively low. Overall, these findings could

be applied in the clinical practice to reduce the length of

prophylaxis with trimethoprim–sulfamethoxazole or acy-

clovir or the frequency of clinical follow-up in patients with

PBLS counts over the protective threshold.

The administration of ATG exerted a differential impact

on the kinetics of some PBLSs. As shown in the Fig. 1b, the

absolute count of CD4+ T-cell lymphocytes in patients

receiving ATG showed a dramatic drop from baseline

to month 1, with only a slight recovery at month 6.

Conversely, in the non-ATG group, the kinetics experienced

a moderate but steady increase from baseline to month 6.

This notion that there is no “one-size-fits-all” when seeking

the best predictive PBLSs among different induction

therapy groups is further supported by a recent study with

a design similar to ours, in which the prognostic accuracy

of CD4+ and CD8+ T-cell subpopulations were retrospec-

tively analyzed in 48 heart and 42 KT recipients [13]. The

authors found that the CD4+ T-cell counts were associated

with the risk of opportunistic infection only in heart trans-

plant recipients, whereas the CD8+ T-cell subset performed

better in KT recipients. Of note, 90% of patients in the

former group had undergone ATG induction, whereas most

in the latter group had received basiliximab [13]. We also

found a strong negative correlation between recipient age at

transplantation and either CD8+ or CD4+ T-cell counts at

month 1 in the non-ATG and ATG groups, respectively.

As recently demonstrated, reduced thymic output seems to

play a role in the age-related decrease in T-cell numbers

[40].

Table 5. Performances of CD4+ T-cell count at month 1 and total lymphocyte count at month 6 for predicting the occurrence of overall opportunistic

infection and, specifically, CMV disease in the ATG group.

Cut-off value Predicted event Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

CD4+ T-cell count at month

1 <0.050 9 103 cells/ll

Opportunistic infection

in months 1–6

0.76 (0.58–0.94) 0.59 (0.50–0.69) 0.28 (0.16–0.39) 0.92 (0.86–0.99)

CMV disease in months 1–6 0.71 (0.49–0.92) 0.57 (0.48–0.66) 0.21 (0.10–0.31) 0.92 (0.86–0.99)

Total lymphocyte count at month

6 <0.750 9 103 cells/ll

Opportunistic infection

beyond month 6

0.83 (0.62–1.04) 0.51 (0.42–0.60) 0.15 (0.06–0.23) 0.97 (0.92–1.01)

CMV disease beyond

month 6

0.91 (0.74–1.08) 0.51 (0.42–0.60) 0.14 (0.06–0.22) 0.98 (0.95–1.01)

ATG, antithymocyte globulin; CI, confidence interval; CMV, cytomegalovirus; NPV, negative predictive value; PPV, positive predictive value.

Table 4. Overall opportunistic infection and CMV disease in the ATG group during the intermediate (months 1–6) and late periods (>6 months)

according to total lymphocyte and CD4+ T-cell counts (unless otherwise specified, cumulative incidence rates are shown).

Infection in the intermediate period (months 1–6)

CD4+ T-cell count at month 1

<0.050 9 103 cells/ll (n = 58) ≥0.050 9 103 cells/ll (n = 66) P-value

Overall opportunistic infection* 16 (27.6) 5 (7.6) 0.003

Incidence rate (episodes per 1000 transplant-days) 1.91 0.52 0.01

CMV disease 12 (20.7) 5 (7.6) 0.03

Incidence rate (episodes per 1000 transplant-days) 1.43 0.52 0.08

CMV end-organ disease 3 (5.2) 1 (1.5) 0.3

Nonviral opportunistic infection 4 (6.9) 0 (0.0) 0.05

Infection in the late period (>6 months)

Total lymphocyte count at month 6

<0.750 9 103 cells/ll (n = 68) ≥0.750 9 103 cells/ll (n = 63) P-value

Overall opportunistic infection 10 (14.7) 2 (3.2) 0.02

Incidence rate (episodes per 1000 transplant-days) 1.22 0.16 0.004

CMV disease 8 (11.8) 1 (1.6) 0.02

Incidence rate (episodes per 1000 transplant-days) 0.81 0.08 0.02

CMV end-organ disease 1 (1.5) 0 (0.0) 0.5

Nonviral opportunistic infection 3 (4.4) 1 (1.6) 0.3

ATG, antithymocyte globulin; CMV, cytomegalovirus.

*Data on the CD4+ T-cell count at month 1 were absent in 3 patients.
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One of the potential contributions of our study may

lie on the utility of monitoring of PBLSs to stratify

the risk of CMV disease. Growing interest has been

focused in the past years to measure individual’s CMV-

specific CMI response by a number of approaches

[5,6,42,43]. Nevertheless, these techniques are not wide-

spread because of the lack of standardized cut-off values,

their labor-intensive nature, and the need of specialized

equipment [6]. The ATG group was formed by recipi-

ents deemed at increased risk of CMV disease regardless

their D/R serostatus and, in accordance to the current

guidelines [31,44], received antiviral prophylaxis for

3 months. Using the aforementioned cut-off values for

CD4+ T-cell and total lymphocyte counts, we obtained

excellent NPVs for predicting subsequent CMV disease.

This approach could identify those recipients that will

not likely benefit from the extended use of anti-CMV

agents beyond the standard prophylaxis regimen of

3 months in view of the very low risk of subsequent

CMV disease. Conversely, it could be reasonable to con-

tinue valganciclovir in those with persistent lymphocyte

depletion. The non-ATG was more heterogeneous in

terms of CMV infection risk, as it comprised high- (D+/
R�), intermediate- (R+), and low-risk patients (D�/R�)

on the basis of their serology status. Notwithstanding

this fact, the selected cut-off values for CD8+ T-cell

count at months 1 and 6 also showed excellent NPVs.

Furthermore, in the Cox regression model, the impact

of CD8+ T-cell count at month 1 remained even after

adjusting for CMV mismatch and use of antiviral pro-

phylaxis.

This study has some limitations. Firstly, and despite the

large sample size, the incidence of late infection was rela-

tively low and prevented us from performing further multi-

variate analyses. The high NPVs obtained for PBLS counts

may be influenced by this circumstance. As previously dis-

cussed, the selected cut-offs exhibited only moderate PPVs

and, in some cases, poor sensitivity values (i.e., CD8+ T-cell

count at month 1 in the non-ATG group). CMV disease

accounted for most of the observed episodes, thus limiting

our capacity to assess the accuracy of the proposed strategy

for predicting non-CMV infection. On the other hand, the

potential feasibility of monitoring of PBLSs to guide CMV

prophylaxis should be taken with caution as different serol-

ogy risk categories were jointly analyzed and remain to be

validated in separate cohorts. Moreover, we did not system-

atically monitor CMV antigenemia in intermediate-risk

patients. Finally, our approach to the CMI status was based

solely on quantitative parameters measured at two post-

transplant time points: We did not perform any functional

assay [4–6], nor break down the CD4+ or CD8+ T-cell

pools into their different subsets. Perhaps, it might be

worth considering the convenience of intensifying this

schedule of testing to get better detail into the dynamics of

immune recovery throughout the post-transplant period.

Nevertheless, we do consider that the strength of our

findings lies on the very affordability of the monitoring

strategy that we propose, thus facilitating its application in

day-to-day practice. Enumeration of PBLSs may be per-

formed in a fully automated way, with reliable and repro-

ducible results [20]. Although previous studies had

analyzed the impact of PBLSs kinetics on the occurrence of

various outcomes after KT [11–13,27,28], ours is unique in
terms of prospective design, large sample size, and detailed

assessment of infectious events.

To conclude, monitoring of PBLS counts may be a useful

tool to predict the occurrence of opportunistic infection in

KT recipients. In particular, patients not receiving ATG

induction with CD8+ T-cell counts above 0.100 9 103 and

0.600 9 103 cells/ll at months 1 and 6, respectively, had a

very low risk of developing subsequent infection. The same

would apply to patients with a CD4+ T cell above

0.050 9 103 cells/ll at month 1 after induction therapy

with ATG. We have previously demonstrated that post-

transplant hypogammaglobulinemia acts as an independent

risk factor for bacterial infection, namely acute pyelone-

phritis and bloodstream infection [18]. Therefore, our

findings overall offer support for tailoring of immunosup-

pressive and prophylactic regimens according to individ-

ual’s risk profile and pave the way for future intervention

studies based on these simple approaches to the infection

risk assessment after KT.
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