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Summary

Hypothermic machine perfusion (HMP) of kidneys is a long-established alterna-

tive to static cold storage and has been suggested to be a better preservation

method. Today, as our deceased donor profile continues to change towards

higher-risk kidneys of lower quality, we are confronted with the limits of cold

storage. Interest in HMP as a preservation technique is on the rise. Furthermore,

HMP also creates a window of opportunity during which to assess the viability

and quality of the graft before transplantation. The technology might also provide

a platform during which the graft could be actively repaired, making it particu-

larly attractive for higher-risk kidneys. We review the current evidence on HMP

in kidney transplantation and provide an outlook for the use of the technology in

the years to come.

Introduction

Decades before deceased donor kidney transplantation

reached clinical practice, the concept of machine perfusion

was already coined. In 1935, Charles Lindberg described a

device designed to maintain a sterile, pulsating circulation

of oxygenated fluid through organs [1]. However, a true

clinically applicable device was not developed until Belzer

became interested in hypothermic machine perfusion

(HMP) in the 1960s. His preclinical work, showing that

cryoprecipitated plasma could be used to perfuse canine

kidneys [2–4], led to the first successful human HMP

kidney transplant in 1968 [5]. With technological progress

came portable, although still rather large, machines [6],

and HMP was commonly used, predominantly in the USA

during the 1970s. However, two events led to the apparent

demise of HMP. Firstly, simple and cheap static cold stor-

age (CS) solutions became available [7,8]. Secondly, the

definition of brain death radically changed the deceased

donor profile. Kidneys were no longer donated after circu-

latory death (DCD) but were retrieved from brain-dead

donors (DBD) [9,10]. These pristine DBD kidneys tolerated

cold ischaemia in the available preservation solutions rela-

tively well. It appeared that the use of rather cumbersome
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HMP units was no longer necessary. Nevertheless, Belzer

continued his work on HMP and developed a synthetic

HMP solution replacing his previous human albumin-con-

taining solution. This solution could preserve canine kid-

neys for up to 5 days [11,12] and it still is the standard

HMP solution today. Furthermore, it is the concept of this

solution and its particular components that, with a few

modifications, gave rise to the University of Wisconsin

solution, the gold standard for abdominal organ preserva-

tion [13].

Technological advances have made it possible to con-

struct user-friendly, portable machine perfusion devices

that are now commercially available (Fig. 1).

Over the past decade, our deceased donor profile has sig-

nificantly changed again and continues to change. The use

of (older) DCD and expanded criteria donor (ECD) kid-

neys is increasing exponentially and with it so is the use of

HMP (Fig. 2). These higher-risk kidneys are particularly

susceptible to preservation-induced injury, delayed graft

function (DGF), and primary nonfunction (PNF) and can

experience reduced long-term graft survival. CS of higher-

risk kidneys has reached its limits, and HMP is thought to

preserve them better. Furthermore, HMP creates a window

of opportunity during which to assess the viability and

quality of the graft before transplantation. The technology

might also provide a platform during which the ‘grafts-to-

be’ might be actively repaired.

We review the current evidence regarding HMP in kid-

ney transplantation and provide an outlook for the use of

the technology in the years to come.

Does HMP provide better preservation?

Even though HMP has been used for over 40 years, there

are relatively few well-conducted randomized controlled

trials (RCT) comparing HMP to CS.

Data from the 20th century

A meta-analysis of all 16 studies [14–32] prospectively

comparing HMP with CS between 1971 and 2001 showed

that HMP is associated with a relative risk of DGF of 0.80

(0.67–0.96) compared with CS [33,34]. No effect of HMP

on 1-year graft survival was detected; however, all studies

were severely underpowered with respect to the likely

impact on graft survival [33]. Furthermore, the evidence

spreads out over decades during which CS solutions, donor

profile, outcome measures, etc. have changed considerably.

The report concludes that a definite study establishing the

effect of HMP on DGF and long-term graft survival,

together with an economic evaluation, would be of great

value. To provide these data, a few RCTs were set up in

Europe and these are reviewed below.

Recent randomized controlled trials of HMP versus CS

HMP in deceased donor kidneys

In 2009, the report of an international RCT in Eurotrans-

plant comparing HMP to CS of kidneys from all deceased

donor types (standard criteria donors (SCD), ECD, con-

trolled DCD) was published [35]. This MP-Trial analysed

336 kidney pairs. DGF occurred in 20.8% of HMP kidneys

versus 26.5% in CS kidneys. Logistic regression showed that

HMP reduced the risk of DGF (adjusted odds ratio (AOR)

0.57 (0.36–0.88)). If DGF developed, its duration was

3 days shorter after HMP (10 days vs. 13 days, P = 0.04).

Functional DGF [36] developed in 22.9% HMP kidneys

and in 30.1% of CS kidneys (P = 0.03). PNF occurred in

2.1% of HMP kidneys and in 4.8% of CS kidneys

(P = 0.08). Graft survival was also improved by HMP

(94% vs. 90%, P = 0.04) (Fig. 3). Cox regression analysis

showed that HMP reduced the risk of graft failure in the

first year after transplantation (adjusted hazard ratio

(a) (b) (c)

Figure 1 Currently available hypothermic machine perfusion devices for clinical kidney preservation. Panel (a): RM3 (Waters Medical systems, Bir-

mingham, AL, USA), www.wtrs.com; panel (b): LifePort Kidney Transporter (Organ Recovery Systems, Itasca, IL, USA), www.organ-recovery.com;

panel (c): Kidney Assist (Organ Assist, Groningen, the Netherlands); www.organ-assist.nl.
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(AHR) 0.52 (0.29–0.93)). The 3-year follow-up data of this

trial confirmed the improved graft survival of HMP kidneys

(91% vs. 87%; AHR 0.60 (0.37–0.97)) [37] (Fig. 3).

HMP of expanded criteria donor kidneys

The beneficial effect of HMP might be more pronounced in

ECD kidneys [38,39]. Multivariate regression of the 91 ran-

domized ECD kidney pairs of the MP-Trial showed that

HMP reduced the risk of DGF compared with CS (AOR

0.46 (0.21–0.99)). PNF was also lower in HMP compared

with CS kidneys (3% vs. 12%, P = 0.04) [40]. One-year

graft survival was higher after HMP (92.3% vs. 80.2%,

P = 0.02) with an AHR of 0.35 (0.15–0.86). The 3-year

graft survival advantage after HMP was maintained for

ECD kidneys (86% vs. 76%, AHR 0.38 (0.18–0.80)
[37].The presence or absence of DGF seems to have an

impressive effect on graft survival, especially in CS ECD

kidneys. Although there was a difference of nearly 10% for

1-year HMP kidney graft survival if DGF occurred com-

pared with kidneys with immediate function, this difference

was not significant (94% vs. 85%, P = 0.16). However, in

CS kidneys that developed DGF, graft survival was signifi-

cantly worse compared to when the graft functioned imme-

diately (41% vs. 97%, P < 0.0001) (Fig. 3). If only

recipients of grafts that developed DGF were analysed,

there was a significant difference in 1-year graft survival

between HMP and CS kidneys (85% vs. 41%, P = 0.003).

Additional data will become available from an ongoing

RCT comparing HMP with CS of ECD kidneys in France

(NCT01170910).

HMP of kidneys donated after circulatory death

Previous studies have suggested that HMP of DCD kidneys

results in better early function and improved graft survival

compared with CS. However, other studies do not support

this conclusion [14,41–44]. A comprehensive meta-analysis

failed to show a significant risk reduction of DGF in HMP

DCD kidneys [33,34]. Although the MP-Trial included

DCD donors, 87.5% of inclusions were DBD kidneys. In a

separate randomized extension of the MP-Trial, data from

82 Maastricht III DCD kidney pairs were analysed [45].

HMP reduced the risk of DGF (AOR 0.43 (0.20–0.89)). Of
HMP DCD kidneys, 53.7% developed DGF compared with

69.5% of CS DCD kidneys (P = 0.007). Functional DGF

was even more reduced by HMP (19.5% vs. 51.2%;

P < 0.0001). PNF occurred in only two cases in each study

arm. HMP did not result in an increased 1-year or 3-year

Figure 2 Percentage of deceased donor kidneys preserved by hypo-

thermic machine perfusion in the United States of America each year.

Graph constructed using OPTN data [117].

(a)

(b)

Figure 3 Three-year graft survival of deceased donor kidneys included

in the Machine Preservation Trial. Panel (a) shows graft survival in 672

kidney recipients, with a hazard ratio for graft failure in the machine

perfusion group of 0.60 (95% confidence interval, 0.37–0.97;

P = 0.04). Panel (b) shows the post hoc analysis of a subgroup of 588

recipients of kidneys donated after brain death, with data split accord-

ing to whether delayed graft function developed in the recipient.

Delayed graft function was defined as the need for dialysis in the first

week after transplantation. From [37] Copyright © 2012 Massachusetts

Medical Society. Reprinted with permission.
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graft survival (93.9% for HMP kidneys vs. 95.1% for CS

kidneys). Although equal outcome might seem contradic-

tory, this finding is in line with an increasing number of

reports showing similar medium-term graft survival for

DCD and DBD kidneys despite higher rates of DGF in

DCD kidneys [46–48].
A parallel-run RCT, analysing outcome of 45 Maastricht

III DCD kidney pairs in the United Kingdom, showed no

difference in DGF between HMP and CS (58% vs. 56%;

P = 0.99; AOR 1.14 (0.38—3.49)) [49]. One kidney in the

HMP group suffered from PNF. One-year graft survival

was similar in both groups (93.3% in the HMP group and

97.8% in the CS group, P = 0.3).

The contradicting results between the two trials, cur-

rently the largest RCTs performed and the best available

evidence, might be related to the setting in which HMP is

used. In the MP-Trial, kidneys were placed on the HMP

device at the donor centre, immediately after retrieval,

whereas in the United Kingdom trials, those kidneys

removed away from the transplant centre were cold stored

during transfer after which HMP was started. As such, it

could be that HMP needs to be used in a continuous setting

to achieve a benefit.

An ongoing RCT in the United Kingdom is duplicating

the set-up of the MP-Trial with continuous HMP being

compared with CS (ISRCTN 50082383).

Meta-analyses

A number of meta-analyses have recently been published

reviewing the evidence of HMP and CS in kidney trans-

plantation. Two meta-analysis analysed data from all donor

types and reported a decreased risk for DGF with HMP

(AORs of 0.83 (0.72–0.96) [50] and 0.81 (0.71–0.98) [51]).
Two meta-analyses analysed data from DCD kidneys and

found a protective effect of HMP on DGF (AORs of 0.56

(0.36–0.86) [52] and 0.64 (0.43–0.95) [53]). There is one

meta-analysis that combined the data of HMP in ECD kid-

neys which also showed a protective effect of HMP on DGF

(AOR 0.59 (0.54–0.66) [54]). Overall, even with the meta-

analysis of prospective data, numbers have not been large

enough to identify a benefit of HMP on outcomes that are

relatively rare, such as PNF and 1-year graft loss. In studies

that have individually identified a difference, this has lar-

gely been in ECDs.

Is machine perfusion cost-effective?

Meta-analysis assessing the cost-effectiveness of HMP could

not draw any conclusions because of a lack of properly

powered studies. Published economic evidence at the time

was of poor quality and not based on randomized studies

[33,55]. An economic evaluation of the MP-Trial data

combined the 1-year results based on the empirical data

from the study with a Markov model with a 10-year time

horizon [56]. Short-term evaluation showed that HMP

results in lower average costs in the first year post-trans-

plant when compared to CS and across all deceased donor

types but mostly apparent in the ECD group, related to the

increased 1-year graft survival of pumped ECD kidneys.

The costs of dialysis and readmission were mainly responsi-

ble. The long-term analyses showed a similar benefit; the

Markov model revealed cost savings of $ 86 750 per

life-year gained in favour of HMP. The corresponding

incremental cost–utility ratio was minus $ 496 223 per

quality-adjusted life-year gained.

Does timing or duration of HMP matter?

It is well known that renal vascular resistance (RR) falls

during HMP, whilst perfusate flow increases [57,58]. This

has prompted the question of whether or not there is a

required minimum duration of perfusion for any potential

benefit of HMP to be evident. Recently published experi-

mental studies have found that between 1 and 4 h of HMP

before reperfusion with blood could reduce RR and

improve creatinine clearance compared with kidneys pre-

served by CS alone [59,60]. Then again, other studies have

shown that despite reaching mean perfusate flows after two

hours of perfusion, RR values continue to improve at 6 h

[57]. As it is frequently necessary to transport organs many

miles between donor and recipient, a beneficial effect of a

short period of end-ischaemic HMP sounds attractive and

avoids the logistics of transporting machines. Nevertheless,

there is some suggestion that when following long periods

of CS, relatively short periods of HMP (<4 h) have reduced

or no benefit compared to continuous HMP throughout

the preservation period [61]. Clinical trials that have shown

significant benefits with HMP have used continuous HMP

with the kidney being pumped for many hours, on average

the majority of the total cold ischaemic time (median 11–
15 h) [35,40,45,62]. Recent large registry analyses (over

90 000 kidneys) have shown that in the case of SCD kid-

neys, HMP reduces the risk of DGF compared with CS

regardless of a very short or very long cold ischaemic time

[63]. In the same study, the risk of DGF was reduced for

ECD kidneys only if the total cold ischaemic time was

>6 h, and in the case of DCD only if 6–24 h [63]. These

discrepancies may be a function of the numbers available

for power but if not, have important consequences. Fur-

thermore, as total cold ischaemic time is a well-established

predictor of DGF, a balance between minimizing cold is-

chaemic time and any potential benefits of HMP is required

[64]. It seems that just a few hours of HMP, as long as the

total cold ischaemic time is not extended, can have a posi-

tive impact on early graft function compared with CS

668 © 2015 Steunstichting ESOT 28 (2015) 665–676

HMP for deceased donor kidneys Jochmans et al.



alone. However, there is currently no good evidence to sug-

gest that HMP allows lengthening cold ischaemic times.

Currently, an RCT comparing end-ischaemic HMP with

CS in DBD kidneys is ongoing (ISRCTN 35082773). How-

ever, to the best of our knowledge, there are no clinical tri-

als comparing continuous with end-ischaemic HMP.

Does machine perfusion predict graft viability and
quality?

Kidney graft viability and quality cannot be assessed when

kidneys are cold stored on melting ice. On the contrary,

HMP allows the study of perfusion characteristics such as

RR and perfusate biomarkers.

The value of renal vascular resistance

Retrospective evidence suggests that RR and flow rate dur-

ing HMP correlate with kidney graft function [33]. How-

ever, in most of these studies, a selection bias was

introduced because kidneys were systematically discarded

based on arbitrarily defined parameter thresholds. Today,

‘poor’ perfusion dynamics are still frequently used to dis-

card kidneys even though their true prognostic value on

graft outcome had never been studied until recently.

Indeed, more than 15% of HMP kidneys are discarded

annually in the USA, partly based on elevated RR [65]. In

the MP-Trial, the preservation method was not revealed at

the time of organ offer and in case of HMP clinicians had

no knowledge of the RR value. The decision to accept a

given kidney was based solely on traditional donor data,

making it possible to elucidate the real prognostic value of

RR on PNF, DGF and 1-year graft survival [58]. Analysis

showed that RR at the end of HMP was an independent

risk factor for the development of DGF, independent of

donor type (AOR 38.1 (1.56–934)). However, the predic-

tive power of RR was low (AUC of the ROC curve 0.58).

This means that, despite the association of RR and DGF,

RR has a limited value in the prediction of DGF for a spe-

cific donor–recipient pair. RR was also a risk factor for 1-

year graft failure but again with low predictive power

(AHR 12.3 (1.11–136.9)). A retrospective study on RR in

DCD kidneys showed that RR at the start of HMP is a risk

factor for both DGF (AOR 2.34 (1.11–4.96)) and PNF

(AOR 2.04 (1.36–3.06)) but again the predictive power was

only moderate at best (0.61). Available evidence indicates

that kidneys should not be discarded based on RR criteria

alone.

The value of perfusate injury biomarkers

Retrospective data – systematically reviewed in [66] – also

suggest that biomarker concentrations in the perfusate of

HMP kidneys correlate with graft outcome. The groups of

Newcastle and Maastricht have previously determined the

perfusate concentration of total glutathione-S-transferase

(GST), heart-type fatty acid-binding protein (H-FABP), and

alanine aminopeptidase and found higher concentrations in

perfusate of discarded kidneys [67–69]. Furthermore, lactate

dehydrogenase (LDH) and GST concentrations correlated

with warm ischaemia time, and GST and H-FABP were

higher in Maastricht II compared with Maastricht III DCD

kidneys. However, these data are confronted with the same

methodological design and selection bias as the RR data,

and none of the previous studies investigated whether per-

fusate biomarkers were independently associated with graft

outcome. In prospectively collected perfusate of the MP-

Trial, GST, N-acetyl-b-D-glucosaminidase and H-FABP

were found to be independent predictors of DGF, but not of

PNF or graft survival [70]. The predictive power of these

three biomarkers was also moderate at best (0.67, 0.64 and

0.64, respectively). A retrospective study in DCD kidneys

showed that LDH and IL-18 perfusate concentrations were

associated with PNF (AOR 1.001 (1.000–1.002) for both

markers) but that the predictive power was poor (0.62 and

0.59). Thus, similar to RR, perfusate biomarkers alone

should not lead to kidney discard.

As there are multiple donors, preservation and recipient

factors influencing graft outcome, it is not surprising that

RR and individual perfusate biomarkers are not sufficient

on their own to be used as sole predictors of outcome.

However, given the fact that they do independently corre-

late with DGF (RR, biomarkers) and with graft survival

(RR), they are valuable in assisting clinicians in decision-

making. Perhaps that implementation of these markers in

existing quality scores for DGF and graft survival will

increase their predictive power [71–73]. Emerging technol-

ogies such as proteomics and metabolomics open new

doors to investigate viability and quality assessment during

HMP.

Can HMP be used for active repair of the injured
kidney?

In the past decade, it has been found that cerebral injury

and brain death contribute significantly to the cascade of

injury of donor organs. Cerebral injury will result in a sig-

nificant up-regulation of the innate immune system with a

profound and progressive systemic inflammatory response

leading to damage in the kidney graft-to-be. To reduce or

even repair injury, optimization of donor management is a

must, possibly also requiring more attention towards tar-

geted intervention prior to organ retrieval. However, opti-

mal preservation will always remain of utmost importance

to avoid additional injury and possibly repair injury that

has already taken place.
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The capabilities of HMP to repair damaged organs and

its use as a method to deliver a variety of therapies have

been tested in several ways. The particular strength of this

method is the ability to provide local effects without sys-

temic exposure or uptake of drugs, cells, etc.

Reconditioning

One potential use of HMP is in the reconditioning of

organs prior to transplantation. Any mechanistic effect that

HMP has on the kidney graft is not well understood, other

than the drop in RR that is clearly evident [58]. As a down-

stream effect, there is some evidence from experimental

kidney transplant studies that biomarkers of injury and of

ischaemia reperfusion injury are reduced by HMP [74–76].
Kidneys preserved by HMP in these studies had improved

tubular and renal cell function, and less protein excretion

after reperfusion [74]. There is some evidence that HMP

improves ATP recovery and reduces perforin expression

and pro-apoptotic signals [77]. Potentially, the up-regula-

tion of HIF-1a and altered expression of caspase proteins

may play a protective role [78]. The preserved expression

of flow-dependent genes might also be important [79].

An improved preservation solution

Currently, Belzer’s HMP solution is used to perfuse kid-

neys. It is a gluconate-based perfusate that contains hydro-

xyl-ethyl starch and, contrary to the CS preservation

solution, has a low potassium concentration to avoid vaso-

constriction. The constitution of the perfusion solution is

likely to play an important role in the outcome of the graft

after transplantation. Keeping in mind the mechanisms of

ischaemia reperfusion injury, it is possible that improved

solutions or the addition of specific reagents targeting these

mechanisms to the preservation solution could be devel-

oped. New solutions that resemble cell culture media

(AQIX RS-I, Lifor) show potential [80,81]. They contain

amino acids, metabolic substrates, vitamins, salts and

organic buffers that make them ideal potential new solu-

tions for HMP.

Drug delivery

Hypothermic machine perfusion has proven to be a useful

way to deliver potentially protective therapies to the kidney

during preservation without systemic administration.

Administration in this way permits adequate penetration of

vascular compartments without altering perfusion dynam-

ics and allows assessment of the degree of uptake during

perfusion [82]. So far, experience with this method of

delivery has included heparin conjugates that adhere to vas-

cular endothelium [82]. A water-soluble preparation of the

drug propofol has also been added to HMP with improved

early graft function [83]. These studies demonstrate the

potential to administer therapies in this way; however, clin-

ical results are yet to be reported. An ongoing clinical study

aims to administer the inhibitor of complement, Miroco-

cept, during HMP which would act locally and not affect

systemic complement activation (ISRCTN49958194). There

are several chemical compounds including hydrogen sul-

phide, carbon monoxide and nitrous oxide which have

anti-apoptotic and vasodilatory effects when applied in

experimental conditions [84]. These could be applied dur-

ing HMP. In experimental models of ischaemia reperfusion

injury, hydrogen sulphide administration during ischaemia

results in reduced TNF-alpha and IL-2 levels and neutro-

phil invasion with improved microvascular circulation and

subsequently improved renal function [85–87].

Gene therapy

The transfection of genes targeted at inhibiting harmful

pathways or stimulating protective ones is also a potential

adjunct to HMP. Delivering gene therapy during perfusion

would mean that the vector (usually a virus) does not have

to be administered systemically to the patient. Several gene-

therapy targets have been identified which may improve

ischaemia reperfusion injury in transplanted kidneys [88].

Potential targets to reduce acute rejection include genes

which up-regulate IL-4, IL-10, IL-13, Fas-ligand or block-

ades of costimulatory molecules [88]. Tolerogenic strategies

and stimulation of regeneration are also potential avenues

for gene therapy that are now being explored [88]. This

technique is in the very early stages of investigation, and so

far, there is limited evidence that renal cells can be trans-

fected in the cold [89] and during normothermic perfusion

[90].

Stem cells

Hypothermic machine perfusion may allow the direct

administration of mesenchymal stem cells (MSC) to the

kidney during preservation [91]. In a murine model of

acute kidney failure, the administration of MSC improved

recovery from ischaemia reperfusion injury and subsequent

early kidney function [92]. In a ground-breaking clinical

study of living-related kidney transplants, the administra-

tion of MSC at reperfusion, and 2 weeks later, resulted in

lower rates of acute rejection, less infection and improved

graft function at 1 year compared to IL-2 receptor antago-

nists [93]. Subsequent studies have assessed the potential

role of donor-derived MSC in a regimen to reduce immune

suppression, administered to the recipient [94]. Pretrans-

plant administration of autologous MSC has also been

tested in very small series, with some advantages over
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post-transplant administration [95]. Further research is

required to assess HMP as a potential method to deliver

MSC directly to the organ, bypassing the difficulty of traf-

ficking cells to desired site. So far, these studies have

administered MSC under normothermic conditions only.

How can HMP be improved?

Effect of temperature

Traditionally, both static cold storage and machine perfu-

sion of kidney grafts have been done at ice-cold tempera-

tures (0–5 °C) to slow down metabolism as much as

possible. Machine preservation at temperatures below nor-

mothermia, but above ice-cold temperatures has been

investigated (subnormothermia), but the mechanism of

action is not fully understood, and the results so far in kid-

ney transplantation are experimental only. A recent animal

study in a DCD model found that kidneys stored by

machine perfusion at 20 °C had improved creatinine clear-

ance compared with both CS and oxygenated HMP [96].

Given the higher metabolic demands at higher tempera-

tures, it seems that provision for oxygenation and higher

perfusate flow needs to be made [96]. Another experimen-

tal model of kidney preservation used ‘room temperature’

perfusion with the preservation solution Lifor. This type of

preservation was associated with improved perfusate flow

and reduced renal resistance during perfusion [81]. Preser-

vation at temperatures just below normal (30 °C) with the

preservation fluid AQIX RS-I has been tested for short

periods (2 h) [97]. The same fluid was also tested as a

potential subnormothermic flush before CS in experimen-

tal studies [80]. More work has been carried out with liver

models of subnormothermic preservation at temperatures

as diverse as 7–21 °C; however, the information available is

still limited in its scope and applicability to clinical practice

[98]. Maintaining a kidney graft at temperatures closer to

normothermia comes with ongoing metabolism at a faster

pace that must be supported with oxygen, nutrients and

clearance of metabolites, making it a much more complex

technique compared with HMP [99]. The use of normo-

thermic machine perfusion has also been extensively inves-

tigated over the past decade and has recently been

introduced in the clinics [99–105]. However, an in-depth

review on normothermic machine perfusion of kidneys is

beyond the scope of this article.

The addition of oxygen

As can be made up from the construction of the Lindbergh

apparatus that included a gas mixture of carbon dioxide,

nitrogen and oxygen, the latter was considered to be a vital

part of kidney preservation from the start of preservation

technology [1]. Although the rational of using oxygen to

sustain metabolic cell processes makes perfect sense, it is

quite paradoxical that the majority of clinically applied

preservation methods nowadays do not use oxygen. How-

ever, with the availability of high-tech perfusion platforms,

the deteriorating quality of donor kidneys and the need to

‘repair’ these higher-risk kidneys prior to transplantation,

oxygenation is finding its way into transplant research.

Increasing evidence suggests that kidneys preserved by

HMP will consume oxygen and that the level of oxygen

consumption is correlated with postpreservation glomeru-

lar filtration rate [106]. In that sense, adding oxygen to the

preservation solution would be beneficial, especially when

it comes to restoring cellular levels of ATP after the kidney

has been exposed to ischaemia [107]. On the other hand,

the presence of oxygen could potentially increase the pro-

duction of radical oxygen species and thereby cause

increased injury [108]. The delicate balance between active

oxygenation and antioxidant properties of the preservation

solution will no doubt need to be taken into account.

Oxygen can be delivered in a number of ways: by simple

retrograde persufflation of oxygen directly through the

renal vein (without necessarily using machine perfusion);

during machine perfusion where oxygen can be dissolved

into the perfusate; or by adding artificial oxygen carriers

(e.g. acellular solution based of perfluorocarbons by Brasile

et al. [109–111], Hemo2Life [112]). The most recent stud-

ies have used newer technology in which a membrane oxy-

genator complements a more typical HMP device. There

are animal auto-transplant studies published which have

found indications for some benefit of oxygen provision,

particularly if following a prolonged warm ischaemic time

[113]. The major benefit seen so far is in early kidney func-

tion; the study was unfortunately too small to comment on

graft survival. A similar study, however, did not find such a

stark difference in renal function when following a DBD

model, with no first warm ischaemic time [114]. Other

recent studies have compared oxygenated HMP against CS,

rather than HMP, again showing some improvement in

early graft function [115,116]. The use of oxygen during

kidney preservation has recently been reviewed by Hosgood

et al. [107].

As there is no clear clinical evidence to support wide-

spread use of HMP with supplemental oxygenation, clinical

trials with this new technology are required. Ongoing trials

of oxygenated HMP are investigating the benefit of end-

ischaemic oxygenated HMP versus CS in ECD kidneys

(ISRCTN63852508) and continuous oxygenated HMP

versus HMP in DCD kidneys (ISRCTN32967929).

Conclusions

Hypothermic machine perfusion is a long-established tech-

nique to preserve kidney grafts before transplantation.
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There is now good evidence showing a reduction in DGF

and survival benefit in ECD when kidneys are preserved

by HMP compared with CS. Numbers have not been large

enough to identify a clear benefit of HMP on outcomes

that are relatively rare, such as PNF and 1-year graft loss,

despite meta-analysis of available data. Furthermore, more

consistent good data are needed focusing on the benefit of

HMP on graft function, including 6 and 12 months glo-

merular filtration rate. It appears that there is a minimum

time the kidney needs to be pumped to benefit from

HMP, but we do not know the exact number of hours

required. Other remaining questions are whether pumping

should be continuous or whether a short period of oxy-

genated HMP before transplantation (end-ischaemic

HMP) is enough, and evidence has to be gained that

HMP can be used to prolong cold ischaemia. Increasing

evidence suggests a benefit of oxygenated HMP; however,

this remains to be confirmed in clinical trials. It is also still

unclear whether (sub)normothermic temperatures could

improve outcome.

Hypothermic machine perfusion provides additional

insight on viability and quality of the kidney; however,

none of these data should be used as stand-alone tools to

decide whether to accept or discard kidneys. Contrary to

CS, HMP offers the opportunity to repair the kidney by

reconditioning, adding several drugs acting against ischae-

mia reperfusion injury, or stems cells, and this is an impor-

tant challenge to be explored in preclinical and clinical

trials.

To date, we see a number of emerging novel techniques

allowing in vivo and ex vivo normothermic perfusion of

organs showing good initial outcome after transplantation.

In the coming years, we will have to unravel which type of

donor kidney will benefit most from what kind of combi-

nation of CS, hypothermic and/or normothermic reperfu-

sion technique – with or without active repair – to result in

both optimal kidney function and longer graft survival.
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