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SUMMARY

Donation after circulatory death (DCD) donors provides an invaluable
source for kidneys for transplantation. Over the last decade, we have
observed a substantial increase in the number of DCD kidneys, particularly
within Europe. We provide an overview of risk factors associated with
DCD kidney function and survival and formulate recommendations from
the sixth international conference on organ donation in Paris, for best-
practice guidelines. A systematic review of the literature was performed
using Ovid Medline, Embase and Cochrane databases. Topics are dis-
cussed, including donor selection, organ procurement, organ preservation,
recipient selection and transplant management.
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Introduction

Donation after circulatory death (DCD) has shown to

provide a valuable expansion of the number of donor

organs available for transplantation. In some countries

such as the Netherlands and the United Kingdom,

DCD transplantation has almost doubled the number

of deceased organ donors (NHSBT data 2014). How-

ever, DCD organs sustain an inevitable period of warm

ischemia after circulatory arrest, which may have seri-

ous implications for early and late graft function after

transplantation. There are many comparative studies

between DCD kidney transplantation and transplanta-

tion of kidneys from donors after brain death (DBD)

with, depending on the number of included patients

and the selection of DCD donors, variable results [1–
3]. The general opinion is that DCD transplantation is

associated with a higher risk of primary nonfunction

(PNF) and delayed graft function (DGF). The higher

incidence of DGF after DCD transplantation, however,

is not associated with graft survival as in DBD grafts

[4,5].
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Despite the higher incidence of PNF and DGF after

DCD transplantation, little is known about the specific

risk factors for kidney function after transplantation

and selection of DCD grafts. Very strict organ selection

may reduce the risk of poor initial function after trans-

plantation, but it also carries the risk that viable organs

are discarded, which may result in the death of patients

on the waiting list who otherwise could have been

transplanted [6].

To extend the number of DCD kidneys, more knowl-

edge about risk factors associated with poor kidney

function and graft survival is required. Most risk factors

for the outcome of kidney transplantation have been

identified in DBD only, or in cohorts, which include

both DBD and DCD grafts [7,8] It is inappropriate to

extrapolate the results of DBD kidney viability studies

to DCD kidneys because of the influence of the prior

warm ischemia. Therefore, we looked for specific risk

factors for DCD kidney function and graft survival after

transplantation, graded the level of evidence of the

available literature and formulated recommendations of

best-practice guidelines, when possible.

The guidelines are divided into sections including on

donor selection, ischemia times, kidney procurement,

kidney preservation and recipient selection. A number of

issues surrounding the management of patients, includ-

ing paediatric kidney transplantation, are discussed. A

recommendation table is provided as a summary at the

end with the corresponding level of evidence.

Methods

Potentially relevant studies were identified with a struc-

tured computerised search of the English literature of

Ovid Medline, Embase and Cochrane databases. Key-

words included ‘donation after cardiac death’, ‘donation

after circulatory death’, ‘nonheart beating donor’, ‘kidney

transplantation’ ‘viability’, ‘extracorporeal membrane

oxygenation’, ‘cold storage’, ‘hypothermic machine per-

fusion (HMP)’, ‘hypertension’, ‘diabetes’, ‘obesity’, ‘or-

gan preservation’, ‘tissue and organ procurement’

‘transplantation’, ‘warm ischemia time’ and ‘outcome’

combined with free text searching. The level of scientific

evidence of the relevant studies was assessed, and accord-

ingly, recommendations were made and graded by an

expert panel. These recommendations were presented at

6th International Conference on Organ Donation after

Circulatory Death in Paris of the European Society of

Organ Transplantation, where the concept recommenda-

tions were presented, discussed with the various expert

panels and congress participants.

Donor selection

Age

In comparative studies including data from national

and large centre databases with multivariate risk analy-

ses for DCD kidney transplantation, donor age is an

independent risk factor for PNF, DGF, creatinine clear-

ance 1 year after transplantation and graft survival

[9,10–18]. The hazard ratio for graft failure is higher

and may be more than doubled for DCD kidney trans-

plantation from donors aged 60 or older compared with

donors aged 40 years or younger [10,12,14,19].

Paediatric DCD kidney transplantation is rarely done

[20]. In general, paediatric donor kidneys are at increased

risk for graft thrombosis due to low flow and relatively

small vessels [21,22]. This risk is aggravated by warm

ischemic damage with an inflammatory response and

oedema of the kidney [23]. In a relatively large compara-

tive study of paediatric DBD and DCD kidneys, DCD

kidneys had a higher risk of both PNF (OR: 5.3) and

DGF and were associated with a higher risk of graft fail-

ure with a hazard ratio of 2.5. In the same group, also

kidneys from donors younger than 10 years of age had

an increased risk of graft failure [24].

Donor BMI, hypertension, diabetes, serum creatinine,

and cause of death

High donor BMI as a risk factor for DGF and graft fail-

ure was found to have a hazard ratio of up to 1.84 for

DCD kidneys from donors with BMI > 45 kg/m²
[12,16,25,26].

Hypertension, diabetes, high donor creatinine and

donor cause of death are DCD donor variables which

affect transplant outcome in large retrospective cohort

studies. Donor hypertension, diabetes, high donor crea-

tinine and death from cerebro-vascular accident may

increase the risk of DGF and graft loss [12,16,26,27].

These findings are largely influenced by the large UNOS

database and are generally consistent with the findings in

other, smaller, cohorts of DCD transplants, which fail to

reach statistical significance. The reported additional risk

of graft loss is usually relatively limited. However, data

may be biased by donor selection prior to transplantation

and exact measurements are usually not present.

Pre-implantation renal biopsy

In kidneys from DBD donors, pre-implantation histology

is a predictor of outcome and can improve transplant out-
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come if those kidneys are not transplanted that are identi-

fied as probable failures [28–30]. In DCD kidneys, two

groups showed that baseline donor kidney disease assessed

with histology scores influenced graft survival and that

pre-implantation histology assessment might improve the

selection of old donors after cardiac death [31,32]. Histo-

logical assessment of pretransplant kidneys with small nee-

dle biopsies is reproducible and representative [33].

Ischaemia time

Agonal time

Agonal time, defined as the period of time between

withdrawal of life support and circulatory arrest, is in

most protocols limited to 2 h to maximize the period

of relatively poor tissue oxygenation due to respiratory

failure and decreasing tissue perfusion after life support

has been withdrawn. It has been shown to be possible

to extend this period to longer than 4 h without adverse

effects with an equivalent renal function of DCD kid-

neys procured after a prolonged agonal time and kid-

neys with a shorter agonal time [34,35].

Warm ischaemia time

A period of warm ischemia, the time between circula-

tory arrest to the start of organ perfusion, had, in a ser-

ies of 2562 DCD kidneys in the UNOS database, no

detrimental effect on transplant outcome other than a

higher incidence of DGF, if this period was limited to

30 min [16]. This finding was confirmed by an analysis

of 845 Maastricht III DCD kidneys transplanted in the

UK. A subgroup of 173 kidneys with a primary warm

ischaemia time greater than 20 min had no increased

graft failure rates in comparison with kidneys with

shorter ischaemia times.

Others showed that a warm ischaemia period of

greater than 40 min was an independent risk factor for

kidney failure and was particularly significant if present

with another risk factor such as cold ischemic time

above 18 h or donor age greater than 55 years [36].

Cold ischaemia time

Cold ischaemia has a negative impact on transplant out-

come. Evidence from animal experiments suggests that

organs derived from DCDs are more sensitive to cold

ischaemia than those from DBDs [37,38]. Large clinical

series show that a long period of cold ischaemia in DCD

kidneys is associated with a higher incidence of PNF,

DGF and poor graft survival [10,16,39]. Individual

centres reviewing paired kidneys found that the second

of a pair of DCD kidneys with longer cold ischaemia had

a higher incidence of DGF [40]. The limits of acceptable

cold ischaemia time are not known, but the negative

influence of cold ischaemia on transplant outcome is

likely to be additional to the other donor risk factors, for

example donor age or prolonged warm ischaemia.

Procurement of DCD kidneys

Warm ischemic damage in DCD can be reduced by

lowering the temperature as quickly as possible or by

perfusing the organs at body temperature to partly cor-

rect warm ischaemic injury, before the organs are

cooled down [41–43].
Three perfusion techniques are commonly used to

preserve kidneys before procurement including rapid

laparotomy with direct aorta cannulation, in situ perfu-

sion (ISP), and extracorporeal regional perfusion (RP).

Rapid laparotomy and direct aorta cannulation can

only be performed in Maastricht category III donors, if

consent for donation is obtained before withdrawal of life

support. It allows introduction of large cannulas enabling

high flow cold perfusion [44]. As a laparotomy is done,

topical cooling (TC) of the organs can be performed.

In situ perfusion with insertion of the cannulas into the

femoral vessels can be used in both Maastricht category I

or II (uncontrolled) donors and in controlled donors, often

before consent for donation has been obtained [44]. The

cannula with a double balloon and a triple lumen has a rel-

atively small diameter providing a lower flow than cannu-

las used for direct aorta cannulation [45].

Regional perfusion uses extracorporeal machine oxy-

genation circuit to selectively perfuse the abdominal

organs after cannulation of the femoral vessels. This tech-

nique has been originally used to cool organs down in

DBD donors and later in uncontrolled DCD donors [hy-

pothermic regional perfusion (HRP)] [46–48]. In a second

phase, it has been used to reperfuse the organs at body

temperature (normothermic RP, NRP). The concept relies

on experimental studies, mostly performed in liver or kid-

ney transplantation models in pigs [41–43,49].
The choice for which method is preferable depends

on the Maastricht category (controlled versus uncon-

trolled) and the environment.

Kidney procurement in Maastricht category I and II
donors

In uncontrolled donors, both ISP and NR can be used to

procure kidneys. There is some evidence that NRP may
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beneficial to restore energy status; however, the number

of clinical studies is small [41,47,49]. Small retrospective

clinical studies show excellent results of HRP and NRP to

procure uncontrolled DCD kidneys [50–54,55]. NRP in

eight kidneys has a lower incidence of PNF and DGF

than kidneys preserved with ISP (44 kidneys) or total

body cooling by extracorporeal support at 4 °C (eight

kidneys) [50]. In another comparative study in 53

patients, kidneys after NRP had earlier diuresis and better

creatinine clearance 1 month after transplantation [54].

Kidney procurement in Maastricht category III
donors

In a single centre retrospective study of Maastricht cate-

gory III donors, direct aortic cannulation resulted in a

shorter warm ischemia time and a lower discard rate

than ISP [44]. The findings were confirmed after adding

a second cohort from another centre: direct aorta can-

nulation in 63 donors was associated with a lower dis-

card rate (4.8 vs. 28.2%), shorter warm (22 vs. 27 min)

and cold (19 vs. 24 h) ischaemia time and improved

graft survival (86.2% vs. 76.8% at 1 year) compared

with ISP (102 donors) [56]. Others reported PNF in

three grafts after technical difficulties inserting the can-

nulas using ISP [57].

Hypothermic regional perfusion and NRP are also used

in controlled donors with good results [58–65]. In a com-

parative study, HRP at 22 °C (19 kidneys) was associated

with less DGF (21% vs. 55%) and a lower estimated

glomerular filtration rate (e-GFR) at 1 month than direct

aorta cannulation; however, after 1 year, the eGFR was

equivalent [59,60]. NRP in 24 kidneys showed comparable

results as a historical group of 100 DBD kidneys [64,65].

The costs and complexity of NRP are relatively high. As

there is no high level evidence that NRP in controlled

DCD is superior to direct aorta cannulation, it is question-

able whether the potential benefits outweigh the costs and

risks. In addition, NRP done badly (eg blocked lines) pro-

duces irreversible damage to the organ.

Peritoneal cooling

Topical cooling is used to obtain a faster and deeper

cooling of the organs before and during procurement. It

has been used in donors with ISP before laparotomy

using two catheters to flush and drain the peritoneal

cavity [66]. In an animal study, the renal temperature

was significantly lower with TC in addition to normal

cold intravascular flush [67]. Immersing the cooling coil

in subzero fluids gave a faster decrease in the intraperi-

toneal temperature with reduction in DGF [68]. The

disadvantage is that it adds more technical procedures

to be done in ICU, and it is more difficult to present to

the patient’s family.

Streptokinase in kidney procurement

In rats, the addition of streptokinase to a warm preflush

was associated with an improvement of functional capil-

lary density of the kidney and reduced early manifesta-

tion of tubular necrosis [69]. In pigs, the addition of

streptokinase (1.5 MIU/l) gave better cooling, machine

perfusion characteristics and histology scores [70]. In a

randomized controlled study in humans, machine pre-

served DCD kidneys from streptokinase-treated donors

showed superior machine preservation characteristics

with lower perfusate biomarker concentrations as indi-

cators for kidney injury [71].

Preservation of DCD kidneys

HMP versus cold storage

The two different approaches currently in use for the

preservation of transplant kidneys are static cold storage

(CS) and HMP. In CS, the kidneys are stored in melting

ice; in HMP, the kidneys are preserved recirculating

cold preservation solution.

Level 1 evidence comparing HMP with CS includes

one meta-analysis of published articles between 1971

and 2001, including both DBD and DCD kidneys [72].

The meta-analysis suggested that HMP was associated

with a relative risk of DGF of 0.804 [0.672–0.961] and

that the reduction in DGF associated with HMP pre-

dicted a modest improvement in 10-year graft survival

of 3%. However, the quality of the analysed studies was

generally poor.

In DCD transplantation, four randomized controlled

trials (RCTs) containing a total of 351 kidneys com-

pared CS and HMP [18,73–75]. Although the majority

of the available evidence is in favour of HMP, reducing

the incidence of DGF, the recent RCT evidence failed to

reach uniform conclusions. The best evidence from two

recent RCTs is contradictory [18,75]. In a European

trial which perfused kidneys immediately after explanta-

tion, HMP reduced the incidence of DGF; in a random-

ized study in the United Kingdom, kidneys were

machine perfused at a later stage, and in this study,

there was no difference between CS and HMP. There-

fore, the question of whether or not HMP reduces the

incidence of DGF should be considered unanswered.
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Machine preservation intrarenal resistance

Machine preservation characteristics are commonly used

for graft selection of DBD and DCD kidneys; however,

the level of evidence of the benefits of this selection is

usually poor. Results are often biased, as kidneys with

high intrarenal resistance are not transplanted [76–81].
Two studies, in which kidneys were transplanted irre-

spective of intrarenal resistance, one including both DBD

and DCD kidneys and the other DCD kidneys only,

showed that intrarenal resistance was an independent risk

factor for PNF, DGF and 1-year graft survival [82,83].

The predictive value of intrarenal resistance was poor to

moderate, so that it cannot be used as a stand-alone

quality tool to predict outcome with sufficient precision.

Machine perfusate biomarker concentration

The value of machine perfusate biomarker concentra-

tion as predictor for kidney allograft outcome has been

studied extensively [84,85]. Most studies are of relatively

poor quality or include only DBD kidneys [86–88]. The
number of acceptable or good-quality studies including

DCD kidneys is limited [85–92]. From these studies, it

can be concluded that the predictive value of the cur-

rently used perfusate biomarker concentrations is too

low to justify to discard otherwise good donor kidneys.

Recipient selection for DCD kidneys

A meta-analysis in 2005 shows that DCD kidney trans-

plantation carries a 3.6 fold increase in the risk of DGF

compared with DBD kidneys, which is confirmed by

more recent comparative studies [10,16,39,93–99].
There have been no specific recipients characteristics

identified that are associated with DGF in DCD trans-

plantation although there was a trend for more DGF in

male recipients and patients with prolonged dialysis

[39]. The effect of recipient age on graft function and

graft survival remains unclear [16,18,59].

Delayed graft function is generally considered to

impact long-term graft survival, but almost every study

evaluating the consequences of DGF in DCD shows that

DGF has not the same adverse affect on graft survival as

in DBD. An exception is a study of U.S. Renal Data

System database including 708 DCD kidneys where

DGF was an independent predictor of graft loss in a

multivariate analysis [16].

The incidence of PNF is also higher in DCD kidneys

than in DBD kidneys [6,16,96]. There have been no recip-

ient characteristics identified affecting this outcome.

Death censored graft survival of DCD kidneys

depends on the selection of DCD kidneys and is in most

studies slightly higher to equivalent to DBD kidneys.

Particularly in children and in re-transplantation, DCD

kidneys were at higher risk for graft failure [10,16,99].

Paediatric recipients

Theoretically, DCD kidneys need a higher arterial blood

pressure to get an adequate perfusion pressure, as DCD

kidney transplantation is associated with an inflamma-

tory reaction and oedema. There is evidence that DCD

kidney transplantation in children is associated with a

higher rate of DGF and reduced graft survival rate than

paediatric DBD kidneys with a more than doubled hazard

ratio [99]. When allocating a DCD kidney to a child, it is

necessary to weigh the slightly higher risk of graft failure

by accepting a DCD kidney against the risks associated

with staying on the waiting list for a longer period.

Retransplantation

Repeated transplantation is a known risk factor for

worse outcome after kidney transplantation. Two studies

tested the consequence of repeated transplantation for

PNF with inconsistent results. The Maastricht team

reported no effect of retransplantation on the incidence

of PNF in a selected group, in which DCD kidneys were

preferably not allocated for retransplantation, and the

UK database shows that the incidence of PNF was more

than doubled after DCD retransplantation (3% vs. 7%

in first and second graft recipients, respectively [10,98]).

This and the U.S. Renal Data System show a lower graft

survival after DCD retransplantation with a hazard ratios

of 2.74 [1.96–3.82] and 4.59 [2.19–9.64] for second and

third transplants, respectively, in the latter study [10,16].

It is unknown whether retransplantation with DCD

kidneys provides survival advantage as compared to

remaining longer on the waiting list for a DBD kidney.

DCD kidney transplant management

The incidence of PNF and DGF is increased in DCD

kidney transplantation. Few studies discuss protocols

for improving the outcome of DCD transplant proce-

dures [100–104].

Fluid management

Fluid depletion in kidney transplantation is associated

with decreased initial graft function [105,106]. In DBD
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kidneys, pre-operative and operative fluid loading

reduced the DGF rate [107–110]. In a retrospective

study in recipients of DCD kidneys, low intra-operative

central venous pressure and low blood pressure in

recipients from DCD increased the risk of PNF [103].

It may be beneficial to keep the recipient well

hydrated, avoid immediate post-transplant dialysis with

a negative balance and monitor venous pressure during

and immediately after the surgical procedure.

Post-transplant monitoring

Patients with a nonfunctioning graft should be moni-

tored regularly with echo Doppler, renography or both

to rule out other causes than acute tubular necrosis

for, usually temporary, inadequate function of the

transplanted kidney. Moreover, it is difficult to diag-

nose rejection in patients with a nonfunctioning graft.

Therefore, biopsies should be taken frequently. Many

centres take weekly biopsies until kidney function

improves.

Immunosuppressive therapy protocol

Donation after circulatory death kidneys are susceptible

to calcineurin inhibitor (CNI)-mediated vasoconstriction

and nephrotoxicity. Prompt use of CNI may exacerbate

ischemic injury, delay recovery from DGF and impair

long-term graft function. It is possible to avoid or post-

pone the use of CNI’s or use low doses. Polyclonal anti-

bodies or imTOR inhibitors may be used to postpone or

avoid the use of CNI’s in DCD kidney recipients. In addi-

tion, antithymocyte globulins (ATG) seem to protect

against the damage caused by ischemia–reperfusion [111].

There are few published clinical data on immunosup-

pression in DCD kidney recipients. In the 1990s, treat-

ment with ATG and initiation of cyclosporine 2 days

before the withdrawal of ATG was associated with a low

incidence of rejection, but increased risk of opportunis-

tic infections, which decreased patient and graft survival

[102]. Results were improved by the use of anti-IL-2R

antibodies combined with low doses of tacrolimus and

mycophenolate mofetil [101]. In a randomized trial,

induction with daclizumab and delayed introduction of

tacrolimus reduced the incidence of DGF in DCD kid-

ney recipients [104].

Conclusion

Donation after circulatory death kidney transplantation

has occurred as consequence of the need to address the

Table 1. Recommendation table Donation after
circulatory death (DCD) kidney.

Recommendations Grade References

Donor selection
Transplantation of old aged
donor kidneys to recipients
with a long life expectancy
(e.g. young recipients) should
be avoided

B [10,12,14,19]

DCD kidneys from young children
should be used with caution

C [24]

Donor BMI, hypertension,
diabetes and death from
cerebro-vascular accident
should be considered in
allocation DCD kidneys

C [12,16,25–27]

Pretransplant renal biopsy is
helpful for selection and
thereby improves graft survival
of DCD kidneys from donors
aged 60 years or older

D [28,30–33]

Ischemia times
An agonal time of 2 h or longer
is not an absolute contra-
indication for kidney donation

B [34,35]

The warm ischaemia time in
DCD donors should be
maintained as short as possible.
In category III donors, a limited
period of warm ischemia (up to
20–30 min) increases the DGF
rate but has no or only minimal
detrimental effect on graft
survival, and is not a contra-
indication for transplantation.
DCD kidneys with a longer
warm ischemia time than
40 min should be used with
caution, particularly if there are
more risk factors for primary
nonfunction

C [16,36]

Every effort should be made to
minimize cold ischaemia time
and to transplant DCD kidneys
as soon as possible after
explantation

B [10,16,37–40]

Procurement
The best method to perfuse
uncontrolled DCD kidneys is
normothermic (or
subnormothermic)
extracorporeal support with
oxygenation. However, if done
badly, normothermic perfusion
is very destructive and cold
perfusion scenario is more
forgiving

C [41,47,49–52,54,
55]
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organ deficit. These guidelines provide recommenda-

tions on donor selection, organ and recipient manage-

ment. The paucity of high-quality evidence (grade A or

above) highlights the need for ongoing research into

how to optimize and risk stratify DCD kidneys for

transplantation. The development of new techniques for

organ procurement, ex-situ preservation and recipient

management will result in improvements in outcomes.

A summary of recommendations for clinical guidelines

are provided in Table 1.
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