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SUMMARY

Kidney transplantation is a major medical improvement for patients with
end-stage renal disease, but organ shortage limits its widespread use. As
a consequence, the proportion of grafts procured from extended criteria
donors (ECD) has increased considerably, but this comes along with
increased rates of delayed graft function (DGF) and a higher incidence
of immune-mediated rejection that limits organ and patient survival.
Furthermore, most grafts are derived from brain dead organ donors, but
the unphysiological state of brain death is associated with significant
metabolic, hemodynamic, and pro-inflammatory changes, which further
compromise patient and graft survival. Thus, donor interventions to
preserve graft quality are fundamental to improve long-term transplanta-
tion outcome, but interventions must not harm other potentially trans-
plantable grafts. Several donor pretreatment strategies have provided
encouraging results in animal models, but evidence from human studies
is sparse, as most clinical evidence is derived from single-center or non-
randomized trials. Furthermore, ethical matters have to be considered
especially concerning consent from donors, donor families, and trans-
plant recipients to research in the field of donor treatment. This review
provides an overview of clinically proven and promising preclinical
strategies of donor treatment to optimize long-term results after kidney
transplantation.
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Introduction

Kidney transplantation is the treatment of choice in

end-stage renal disease, being superior to dialysis

regarding life expectation and treatment cost [1–3].
Advances in donor management, standardized surgical

techniques and improved immunosuppression have

contributed to enhanced survival rates in the last dec-

ades. Due to the enormous organ shortage, an aug-

mented use of extended criteria donors (ECD) is

needed. ECDs refer to kidney donors aged >60 years

or donors aged 50–59 years with two of the following

three features: history of hypertension, serum crea-

tinine >1.5 mg/dl, or death from cerebrovascular acci-

dent. The majority of organs are retrieved from

donors after brain death (DBD), yet the unphysiologi-

cal state of brain death (BD) with metabolic, hemody-

namic, and pro-inflammatory changes is associated

with impaired graft quality, increased immunogenicity,

and compromised patient and graft survival [4,5].

Therefore, optimized care of DBDs is fundamental to

maximize the quantity, functional quality and viability
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of retrievable organs [6]. Improving care for the

potential donor already on the intensive care unit

(ICU) has the potential to attenuate irreversible harm

to the graft [7]. As organs from ECDs are more prone

to delayed graft function (DGF) and have a higher

incidence of immune-mediated rejection, optimized

donor management is of crucial importance [8]. Speci-

fic strategies solely for graft protection can only be

instituted after death and only with given consent for

donation. In line with the danger hypothesis, this

would attenuate the vicious circle of injury and

increased immunogenicity after transplantation [8].

Experimental studies highlight the benefits of this

approach, but well designed clinical trials studying

donor pretreatment are sparse [9]. Trials should ide-

ally assess the results of kidney transplantation by

hard outcome data such as patient and graft survival,

but can also consider early parameters such as DGF,

biopsy-proven acute rejection (BPAR), and evolution

of graft function. Here, we discuss current evidence of

specific donor management and organ preservation

strategies to improve these outcome parameters after

kidney transplantation.

Ethical issues of donor research

The potential of improving donor management is com-

plicated by a myriad of logistical and ethical challenges.

First, consent to donor research is unique, as interven-

tion trials include donors, donor families, and organ

recipients, but official guidelines for consent in donor-

based research are missing [10]. Donor research cannot

truly harm the deceased and donor0s consent is not leg-
ally required, but some ethic guidelines propose the

family to give informed consent [11] while others

demand a surrogate informed consent for participation

in clinical trials [12]. Others consider the consent from

the donor family as standard to minimize the family’s

emotional distress and to maintain public trust in the

medical profession [13]. In general, it can be assumed

that donors and donor families consent to any reason-

able scientific effort to improve the outcome of donated

organs. Second, if donor research could pose a risk to

the recipient, recipient consent depends on the inter-

vention-related risks, ranging from absent to high par-

ticularly when investigational drugs or devices are used.

If required, consent for donor research should ideally

start when patients join the waiting list within the con-

text of an institutionally approved protocol for any clin-

ical trial. Due to the numerous potential interventions

and transplant centers involved in different countries,

this approach is almost unfeasible. Furthermore, trans-

plantations are unpredictable and some recipients

remain unknown even after organ procurement. The

logistical obstacles are further underlined by the need to

proceed quickly with the transplant procedure and the

fact that donor treatment should not affect allocation

[13].

Hence, the establishment of institutional review

boards and ethic committees with specialist transplanta-

tion expertise is advisable to determine the consent pro-

cess subject to the risk of intervention and to decide

whether the recipient needs to give informed consent

[9]. Additionally, a safety monitoring board is reason-

able, as it can guard each study subject enrolled within

the clinical trial [14].

Management strategies prior to organ retrieval

Antioxidant agents

Use of recombinant human superoxide dismutase (rh-SOD)

Throughout the transplantation course, kidneys are

prone to oxidative stress by multiple pre- and post-

transplant conditions, that is organ procurement, cold

preservation, and ischemia reperfusion [15]. Via acti-

vation of signaling molecules, such as nuclear factor-

kappa B, oxidative stress promotes inflammation

through the release of reactive oxygen species [16–18].
Rh-SOD is capable of scavenging free oxygen radicals

thereby minimizing oxidative stress. About 200 mg rh-

SOD given at reperfusion did not affect DGF or

recovery of graft function, but significantly reduced

the total number of acute rejection episodes (32/33.3%

of 96 controls vs. 15/18.5% of 81 rh-SOD; P < 0.027)

and severe acute rejections resulting in graft loss (12/

12.5% of controls vs. 3/3.7% of rh-SOD; P < 0.038).

Treatment with rh-SOD also improved 4-year graft

survival to 74% compared with 52% in controls. The

authors hypothesized that protection of endothelial

cells from early reperfusion injury would mitigate the

process of “chronic obliterative rejection arteriosclero-

sis” translating in improved long-term graft survival

[19,20].

Donor pretreatment with N-acetylcysteine

Antioxidant molecules are proposed to limit renal ische-

mia-reperfusion injury, but so far clinical studies con-

sidering donor treatment with these agents are rare.

Recently, an open-label monocentre trial with 160
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DBDs failed to show a beneficial effect of N-acetylcys-

teine pretreatment. N-acetylcysteine neither affected

incidence or duration of DGF nor one-year graft sur-

vival [21].

Hormonal resuscitation to antagonize unphysiological

effects after BD

BD is associated with severe hormonal alterations

resulting from failure of the pituitary gland [22]. Conse-

quently, the levels of adrenocorticotropic hormone, cor-

tisol, vasopressin, insulin, and triiodothyronine

suddenly drop after the occurrence of BD. Different

studies have replaced these hormonal deficits.

Blood sugar control and insulin

Today most organ donors have received insulin therapy

already before BD, because monitoring of blood glucose

and insulin therapy is well established in ICUs [23,24].

Current guidelines recommend target glucose levels of

180 mg/dl (9.9 mmol/l) in the critically ill [25], which

were shown to be safer than lower targets [26,27]. A

prospective study from the USA indicated that glucose

levels above 180 mg/dl are associated with lower organ

transplantation rates per donor and worsened graft out-

comes. Therefore, targeting glucose levels of ≤180 mg/dl

should be included as a management goal in potential

organ donors [28].

Administration of thyroid hormones

Retrospective studies suggest that hormonal resuscita-

tion including triiodothyronine/L-thyroxine could be

advantageous due to improvements of cardiocirculatory

function with less inotropic requirements [29–31]. Nev-
ertheless, controlled clinical data and pooled analyses on

thyroid hormone administration did not confirm a

reduced requirement of vasoactive agents, a gain in car-

diac output or an increase in the number of organs pro-

cured [32,33]. In addition, post-transplant kidney

function was not improved [34,35]. Presumably, low

triiodothyronine levels after BD reflect severe injury

rather than a hypothyroid state [32].

Administration of methylprednisolone

As endogenous cortisol levels decrease early during BD,

their supplementation is advocated because their anti-

inflammatory properties might reduce the immunologic

activation after BD [36]. In experimental transplanta-

tion, steroid use decreased immune-mediated attack

and improved graft function [37,38]. However, these

findings could not be confirmed in humans, as early

studies failed to show an advantageous effect of donor

treatment with methylprednisolone [39–43]. Few smal-

ler studies on combined use of cyclophosphamide and

methylprednisolone also suggested improved 5-year

graft survival [40,41], but could not be confirmed by

others [42,43].

Recently, a large randomized double-blind trial (269

DBDs) was conducted to investigate the effects of

methylprednisolone pretreatment in kidney transplanta-

tion. About 1000 mg methylprednisolone 3 h before

organ retrieval significantly ameliorated gene expression

profiles of inflammatory and apoptotic transcripts but

had no effect on incidence and duration of DGF, or

decline of serum creatinine during the first week.

Hence, high-dose methylprednosolone before organ

retrieval is not recommended at least in kidney trans-

plantation [36]. It was argued that the negative result of

the study was due to the very short time window

between study intervention and initiation of cold

preservation. Nevertheless, preliminary data suggest that

donor treatment with steroids might be beneficial in

liver and lung transplantation [44–46]. As retrospective

registry-based data indicate that hormonal resuscitation

including methylprednisolone increases the yield of

transplantable organs per donor, the routine use of ster-

oids as part of a combined hormonal resuscitation has

to be discussed.

Administration of low-dose dopamine

As a consequence of BD, sympathetic outflow is inter-

rupted and vasodilatation occurs, leading to hemody-

namic instability, so that 80–90% of all DBDs need

vasoactive support to maintain adequate organ perfu-

sion. Expert opinions differ, which adrenergic agent

should be administered first-line, as clinical studies on

use of adrenergic agents focusing on graft outcome are

sparse and produced conflicting results [47].

Dopamine has traditionally been first choice for

donors with hemodynamic instability [48], but one ret-

rospective study linked the use of dopamine to an

increased incidence of DGF. Yet, in-depth analysis

revealed that this association was presumably con-

founded by severe hypotension periods in these donors

[49]. Another retrospective study concluded that use of

vasopressors reduced the likelihood of immediate allo-

graft function [50]. This was confirmed by a prospective

cohort study indicating that donor inotropic support is
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associated with less immediate graft function and

poorer renal graft survival [51]. In contrast, a Canadian

study identified no dopamine use as a determinant of

initial nonfunction in a multivariate analysis and rec-

ommended low-dose therapy for all donors [52]. An

intriguing finding from our center was, that donor

dopamine and to a lesser extent norepinephrine were

associated with less acute rejection after kidney trans-

plantation and translated in improved graft survival

[53]. A benefit was also shown in a large multicenter

cohort study of 2415 kidney transplants from 1993 indi-

cating that adrenergic agents improved 4-year graft sur-

vival in an apparently dose-dependent manner [54].

Like in the Canadian study, donor dopamine was also

associated with reduced dialysis requirements after

transplantation, whereas norepinephrine was not [55].

Based on these data, a multicenter randomized con-

trolled trial was initiated in 2004, which confirmed that

treatment of DBDs with low-dose dopamine (4 lg/kg/
min) improves immediate graft function after kidney

transplantation. The beneficial effect was enhanced for

kidney grafts with prolonged cold ischemic time (CIT)

exceeding 17 h and translated in improved graft survival

in this subgroup. Donor dopamine only infrequently

induced adverse events, namely tachycardia (10.0%) and

hypertension (3.3%), that were reversible after dose

reduction or premature termination of the dopamine

infusion [56].

Molecular mechanism of dopamine

The advantageous effects of dopamine were not medi-

ated through hemodynamic stabilization, because all

donors were similar with respect to blood pressure and

urine production. Protection is believed to result from

the antioxidant properties of the dopamine molecule

[57]. Cellular damage following prolonged CIT is in part

ascribed to oxidative stress. Under cold storage condi-

tions, accumulation of reactive oxygen species (ROS)

leads to an increased release of calcium ions [58]. A

vicious circle is activated, as intracellular calcium home-

ostasis depends on high energy phosphates which main-

tain the mitochondrial membrane potential. While

synthesis of ATP is decreased under hypothermia, the

influx of calcium further exhausts ATP. Abundant intra-

cellular calcium aggravates mitochondrial damage, with

the consequence that the mitochondrial membrane

potential ultimately breaks down [59]. We have demon-

strated that dopamine decelerates the deleterious ampli-

fication loop of intracellular calcium accumulation and

subsequent ATP consumption by scavenging of ROS

[60,61]. In addition, it was shown that dopamine also

increases H2S-production by stimulating endogenous

cystathionine-b-synthase, which protects cells from

ROS-formation and apoptosis after cold storage upon

rewarming [62].

Administration of desmopressin (1-deamino-8-D-arginine-

vasopressin [DDAVP])

About 80–90% of all DBDs develop central diabetes

insipidus with profuse polyuria and potentially severe

dehydration. DDAVP promotes fluid re-absorption in

the collecting duct and decreases the need for large vol-

ume infusions to hemodynamically stabilize the DBD

[63]. Early studies with DDAVP did not show any

favorable effect on recipients’ outcome after transplanta-

tion [64,65]. However, in a more recent study, renal

transplant recipients from DDAVP treated donors

showed less rejections episodes and lower serum crea-

tinine values 1 and 3 years after transplantation [66].

The retrospective analysis of the dopamine multicenter

trial confirmed this observation. While DDAVP pre-

treatment had no effect on short-term outcome such as

DGF, BPAR, or decline of serum creatinine during the

first week post-transplant, it was significantly associated

with improved 2-year graft survival (85.4% vs. 73.6%,

log-rank P = 0.003). Subgroup analyses indicated that

DDAVP was only beneficial if cold storage was short

(below 14 h) or the donor was assigned to dopamine

pretreatment. Exposure to hypoxia during cold preser-

vation and shear stress during reperfusion induces exo-

cytosis of Weibel-Palade bodies (WPB) releasing various

pro-inflammatory cytokines. Both a shorter CIT and

dopamine protect the graft’s endothelium from cold

storage injury. It was hypothesized that DDAVP treat-

ment deprives WPB from the intact endothelium of the

graft before its exposure to ischemia/reperfusion injury.

Reduced release of pro-inflammatory cytokines during

transplantation may attenuate inflammation and trans-

plant vasculopathy.

Combined hormonal resuscitation

In a retrospective analysis of the UNOS database, com-

bined therapy with methylprednisolone, vasopressin,

and triiodothyronine/L-thyroxine as “hormonal resusci-

tation” raised organ yield per donor, especially kidneys

by 7.3% [67] and was associated with improved kidney

graft survival after 1 year [68]. As it is impossible to

define the role of any single agent, optimal hormonal

replacement therapy in DBDs yet remains to be estab-
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lished. Table 1 gives an overview of clinically proven

therapies from hormonal resuscitation trials.

Fluid replacement therapy

Hypovolemia with circulatory collapse is a frequent

complication in DBDs due to central diabetes insipidus,

and loss of sympathetic tone [63]. Hence, adequate fluid

replacement is essential to prevent acute renal failure.

Crystalloid solutions such as 0.9% saline or Ringer’s lac-

tate are considered first choice because they have no

specific side effects, but may rarely increase edema forma-

tion. Balanced crystalloid solutions are preferable particu-

larly if resuscitation of larger fluid volumes is required,

because administration of 0.9% saline may cause hyper-

chloremic metabolic acidosis [7]. Crystalloid fluid load-

ing to a CVP of 8–10 mmHg may be deleterious to lung

function and should be avoided in potential lung donors

[70]. Colloid solutions could be an alternative to avoid

interstitial fluid overload, but they are associated with a

significant risk of anaphylactic reactions. Furthermore,

HES (hydroxyl ethyl starch) should be avoided in kidney

donors, because osmotic nephrosis-like lesions were

detected in transplanted kidneys after HES treatment

[71], which were associated with elevated creatinine levels

in the recipients [72]. However, these findings were not

confirmed by others [73]. Due to competing interests

regarding optimal treatment of multi-organ donors, lung

surgeons would perhaps prefer colloid solutions to stabi-

lize circulation, as gas exchange might be improved by

attenuation of neurogenic pulmonary edema. Neverthe-

less, evidence so far has linked HES to an increased risk of

death and renal-replacement therapy in ICUs; therefore,

use of HES is discouraged [74,75] (Table 2).

General donor management goals (DMG)

International procurement organizations have adopted

critical care endpoints as management goals for donor

treatment after confirmation of BD. This resulted in an

increased organ yield as shown by various retrospective

analyses [77,78]. Recently, a prospective evaluation by

UNOS revealed that a limited number of donors only

achieve target criteria, but efforts to meet DMG are

associated with significantly higher rates of trans-

plantable organs per donor [79] (Table 3). In addition,

DGF after kidney transplantation was less common

when DMG were met (17% vs. 30%; P = 0.007) [80]

indicating that optimized care for DBDs will not only

extend the pool of organs but also improve clinical out-

come after transplantation.

Therapeutic hypothermia in deceased organ donors

Therapeutic hypothermia has been shown to be a bene-

ficial intervention to protect neurologic function of

patients with specific types of cardiac arrest or stroke

[81–83]. Recently, a large prospective trial in deceased

organ donors (n = 370) showed that mild hypothermia

(34–35 °C) significantly reduced the rate of DGF among

recipients (28% vs. 39%, odds ratio 0.62; P = 0.02)

[84]. Subgroup analysis showed that high-risk donors,

such as ECDs, particularly benefited from hypothermia

(odds ratio 0.31; 95% CI 0.15–0.68; P = 0.003).

Organ storage: Static cold storage or
hypothermic machine perfusion (MP)

Transplants from ECDs are more susceptible to cold

storage inflicted injury, which causes higher rates of

DGF and increases the risk for graft failure [85,86].

Therefore, optimizing organ preservation to maintain

organ quality is a crucial factor for transplantation suc-

cess. Although static cold preservation is used for the

majority of organs transplanted [87,88], MP might be

more appropriate to maintain graft viability, especially

Table 1. Overview of hormonal replacement and
vasopressor use in organ donors.

Hormone/Treatment Recommendation for administration

Insulin for blood
sugar control

Achieve glucose levels of ≤180 mg/dl
[28]

Thyroid hormones Not recommended as a single agent
Increases number of transplantable
organs per donor within general
“hormonal resuscitation” [67]

Methylprednisolone General consideration
Potential benefit in liver and lung
transplantation [44–46]
Increases number of transplantable
organs per donor within general
“hormonal resuscitation” [67]

DDAVP Brain death induced diabetes insipidus
(diuresis >5 ml/kg/hr with specific
gravity <1005 mg/ml)
Might improve kidney graft survival
[69]
Potentially fewer acute rejections
and improved creatinine [66]

Vasopressors Kidney donors: Low-dose dopamine
(4 lg/kg/min)
Reduction of DGF [56]
Improved survival if CIT >17 h [56]

978 Transplant International 2016; 29: 974–984

ª 2015 Steunstichting ESOT

Mundt et al.



if organs are retrieved from ECDs or donors after car-

diac death (DCD) [89]. Early retrospective data indicate

that MP may reduce DGF and result in a mild benefit

on death-censored graft survival [90,91]. Another retro-

spective study including 912 renal allografts revealed

similar results considering DGF, albeit graft survival

remained unaffected [92].

These initial studies were followed by a large prospec-

tive multicenter trial assessing the influence of MP on

DGF [93]. In this study, one kidney of each donor was

randomly assigned to MP or to static cold preservation.

MP significantly reduced the rate of DGF (20.8% vs.

26.5%; P = 0.05) and numerically halved primary non-

function (PNF) (2.1% vs. 4.8%; P = 0.08). Duration of

hospital stay and BPAR were unaffected, but MP signifi-

cantly improved 1-year graft survival (94% vs. 90%,

P = 0.04). The beneficial effect of MP was similar for

standard criteria and for ECDs. Recently, 3-year follow-

up data indicated superior long-term graft survival

(91% vs. 87%; P = 0.04) with MP. Interestingly, the

benefit of MP could be detected in the subgroup of

DBDs only (91% vs. 86%; P = 0.02), being pronounced

in the subgroup of ECDs (86% vs. 76%; P = 0.01) but

not in DCDs [94]. The suggested beneficial effect for

ECDs could also be shown in 85 ECD kidneys allocated

in the Eurotransplant Senior Program. MP reduced the

rate of PNF and improved 1-year graft survival of kid-

neys suffering from DGF, however, no benefit on the

incidence of DGF was found, possibly due to the short

CIT of 11 h [95]. However, the above study [93,94] has

been criticized, as MP reduced DGF only slightly from

89/336 to 70/336, that is, a prevention of 19 episodes in

336 transplantations (= 5.7%) and may thus not explain

a 4% difference in graft survival. Furthermore, in 25

donors assigned to MP in whom vascular anatomy was

considered unsuitable the contralateral kidneys was used

instead. These kidney pairs were not excluded but ana-

lyzed according to the actual preservation technique

and not “intention to treat”. This ambiguous assign-

ment resulted in a higher number of kidneys with vas-

cular abnormalities in controls. Also, MP failed in seven

instances. These kidney pairs were excluded from analy-

sis, although they were transplanted. Failure of the

pump could have increased DGF risk and exclusion of

these kidneys might bias results in favor of MP. There-

fore, the value of MP in kidney transplantation is still a

matter of debate, also because other studies could not

confirm these findings.

The UK multicenter trial which randomly assigned

DCD kidneys either to MP or static cold storage failed to

show any effect on DGF (58% vs. 56%; P = 0.99). Sur-

prisingly, MP was associated with an increased rate of

BPAR in the first 3 months (22% vs. 7%; P = 0.06), but

this did not influence graft or patient survival after

12 months [96]. Also, MP was associated with lower graft

survival in a large registry-based study (n = 2202), even

when the analyses were stratified for duration of CIT [87].

Finally, several meta-analyses have been performed to

summarize the available evidence on MP in different

donor types. A meta-analysis including all donor types

revealed that MP reduced DGF rates, but had no influence

on PNF, acute rejections, and graft or patient survival

[97]. Subsequent meta-analyses were restricted to DCDs

and found that MP reduced DGF, but the incidence of

PNF and 1-year graft or patient survival was unaffected

[98,99]. Another meta-analysis considering ECDs only

(2374 MP vs. 8716 CS) concluded that MP was superior in

preventing DGF, and increased 1-year graft survival, how-

ever did not affect PNF or patient survival [100]. Meta-

analysis is limited due to study heterogeneity in terms of

Table 2. Overview of reported risks and disadvantages of
crystalloid and colloid solutions in potential multi-organ

donors.

Crystalloid solutions Colloid solutions

Increase of neurogenic
pulmonary edema in
potential lung donors
[70,76]

Risk of anaphylactic reactions

Edema formation Induction of osmotic nephrosis-like
lesions [71]

Increased risk of death and
renal-replacement therapy
in ICUs [74,75]

Table 3. Recommended donor management goals to

raise organ yield per donor, adapted from [79].

United Network for Organ Sharing (UNOS) region 5 donor
management goals

Central venous pressure 4–10 mmHg
Ejection fraction >50%
Vasopressors ≤1 and low dose*
Arterial blood gas pH 7.3–7.45
PaO2:FiO2 >300
Serum sodium 135–155 mmol/l
Blood glucose <150 mg/dl
Urine output 0.5–3 ml/kg/h over 4 h
Mean arterial pressure 60–100 mmHg

*Dopamine ≤10 lg/kg/min, phenylephrine ≤60 lg/kg/min,
and norepinephrine ≤10 lg/kg/min.
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the pump systems, perfusion pressures, and cold storage

solutions examined [100]. In summary, the available evi-

dence about the use of MP is controversial [101]. The use

of MP may prove to be beneficial in high-risk grafts from

ECDs or after prolonged CIT [85].

Preclinical and experimental donor treatment
strategies

Ischemic preconditioning (IPC)

Remote IPC is one potential approach to protect kid-

neys from ischemia-reperfusion injury. Although the

underlying mechanism needs to be fully defined [102],

the concept of IPC was shown to be beneficial in rodent

models of kidney transplantation [103–106], but large

animal models failed to confirm these results [107,108].

Furthermore, remote IPC by occluding the thigh (three

times for 5 min, either in donors or recipients) failed to

improve renal function within 72 h after human living

donor transplantation [109]. Nonetheless, patients are

currently recruited into an interventional randomized

trial to investigate the effect of remote IPC on immedi-

ate and 1-year graft function (NCT01395719) [9].

Vagus nerve stimulation

Electric stimulation of the vagal nerve in a BD rodent

decreased transcription of pro-inflammatory genes,

reduced monocyte infiltration of the graft, and improved

its function after transplantation [110]. The mechanism

of action is presumably related to restoring vagus nerve

activity, resulting in recovery of the anti-inflammatory

reflex. Recently, also a long-term benefit with less chronic

allograft nephropathy (CAN) was shown [111].

Atorvastatin

In an isogeneic transplantation model, atorvastatin pre-

vented ischemia-reperfusion injury and improved renal

function [112]. Atorvastatin may be beneficial by

inhibiting aldose reductase, which plays a major role in

oxidative stress [113–115], but the benefit of statin

treatment could not be shown in animal transplantation

models after BD induction [116].

Erythropoietin

High-dose erythropoietin provides anti-apoptotic and

cytoprotective effects and might enhance the graft’s resis-

tance to ischemic injury after BD. In a rat model, erythropoi-

etin diminished the expression of pro-inflammatory genes,

decreased the infiltration of polymorphonuclear cells and

restored kidney function after BD [117]. In a large animal

model of donor pigs erythropoietin decreased renal injury,

inflammation and improved kidney function after transplan-

tation [118]. Nevertheless, clinical studies using erythropoi-

etin before surgery and/or following transplantation had no

beneficial effect on graft outcome [119,120]. In one trial,

administration of erythropoietin even increased the risk of

thrombotic events 1 year after transplantation [121].

Carbon monoxide (CO)

Upcoming evidence suggests that application of carbon

monoxide in DBDs is another promising approach for

prevention of ischemia-reperfusion injury [122]. Addition-

ally, it was demonstrated in rat transplant models that CO is

capable of diminishing the graft’s immunogenicity, that is

donor-derived dendritic cells already before transplantation

[122–124]. Furthermore, CO was shown to inhibit CAN

and to improve survival even when the treatment is started

after diagnosis of CAN [125]. The promising role of CO in

transplantation is reviewed in detail elsewhere [126,127].

Conclusion

As a consequence of organ shortage, grafts from ECDs

need to be used to supply the demand of transplantable

organs. Grafts from ECDs are more susceptible to vari-

Table 4. Human randomized controlled trials of donor
management showing a beneficial effect after kidney

transplantation.

Specific donor treatment
Effect on outcome after
kidney transplantation

Glucose levels of <180 mg/dl Higher organ transplantation
rate per donor [28]

Meeting donor management
goals

Higher rate of transplantable
organs per donor [79]
Reduction of DGF [80]

Low-dose dopamine
(4 lg/kg/min)

Reduction of DGF [56]

Human superoxide
dismutase (rh-SOD)

Reduced number of acute
rejections, improved 4-year
graft survival [19]

Hypothermic machine
perfusion

Reduced rate of DGF,
Improved 1- and 3-year graft
survival, especially for ECDs
[93,94]

Therapeutic hypothermia Reduction of DGF, especially
for ECDs [84]
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ous deleterious events occurring during the course of

transplantation. To preserve graft viability, optimized

donor management is increasingly important. Several

(pre) clinical donor treatment strategies have revealed

promising results, demonstrating the great potential of

specific interventions in the DBD.

According to the available evidence, donor manage-

ment goals have been elaborated to increase organ yield

per donor. Regarding specific interventions, randomized

controlled trials indicate that donor pretreatment with

low-dose dopamine or the administration of human

superoxide dismutase at time of reperfusion improve

the outcome after kidney transplantation by scavenging

of ROS. Additionally, as recently shown, mild hypother-

mia lowers the rate of DGF among recipients, especially

in high-risk donors like ECDs. While optimal organ

storage is still a matter of debate, current data suggest a

beneficial effect by hypothermic machine perfusion,

especially for ECDs (Table 4).

In general, overall clinical evidence of donor interven-

tions on graft outcome is sparse and mostly lacks long-

term results. Important additional issues comprise com-

peting interests of some organ-specific interventions [on

quality and procurement of other organs from the same

donor] and ethical considerations, that is informed con-

sent from donors and recipients with regard to trials in

donor management. Current donation and allocation sys-

tems should incorporate donor management protocols to

optimize results for transplant recipients and be better

designed to facilitate further research that can improve

the utility of this most precious resource.
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