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SUMMARY

Vaccine immunoprotection for Streptococcus pneumoniae is mediated by
opsonizing antibodies targeting serotype-specific capsular polysaccharides.
Quantitative antibody levels enzyme-linked immunosorbent assay (ELISA)
and antibody-mediated opsonophagocytic assays (OPA) measure vaccine-
induced protection; correlation of these assays in transplantation requires
investigation. This study examines the laboratory assessment of antibody
titers in vaccinated renal recipients. Streptococcus pneumoniae 19A is com-
mon in immunocompromised hosts and is represented in protein-conju-
gate vaccines (PCV) and polysaccharide vaccines (PSV). Antibodies to 19A
in serial sera from 30 vaccinated renal transplant recipients were compared
using ELISA and OPA assays. Subject titers were classified as protected or
not by ELISA (>0.35 lg/ml) and OPA titer (>1:8).
Antibody titers analyzed using McNemar’s test indicate that protection
measured by the two assays are not the same (P = 0.0078); simple linear
regression of within-subject geometric means of 19A enzyme-linked
immunosorbent assay (ELISA) antibody levels versus 19A opsonophago-
cytic assays (OPA) titers demonstrates significant correlation between the
two assays (P < 0.001).
Vaccination is increasingly important given increasing antimicrobial resis-
tance worldwide. OPA and ELISA antibody assays do not correlate well
using current values for protective immunity against the Pneumococcus in
immunosuppressed transplant recipients. Future studies of vaccination in
transplant recipients should evaluate protective antibody levels using both
functional antibody assays and standard ELISA antibody titers. (Clini-
calTrials.gov: NCT00307125).
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Introduction

Streptococcus pneumoniae is a major cause of commu-

nity-acquired pulmonary infection with invasive disease

occurring in up to 25% of immunologically normal

individuals. Immunosuppressive medications and organ

transplantation increase the risk for invasive pneumo-

coccal disease (IPD) by up to 2.7-fold [1–6]. Increasing
antimicrobial resistance among isolates of S. pneumo-

niae associated with invasive disease and pneumonia
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emphasizes the importance of vaccine immunoprotec-

tion, particularly for immunocompromised hosts [7–9].
Immunoprotection is largely mediated by opsonizing

antibodies targeting bacterial serotype-specific capsular

polysaccharides [10,11]. Quantitative antibody assays

may detect both functional and nonfunctional antibod-

ies; based on animal studies, nonopsonizing antibodies

may have some role in seroprotection [12,13].

Discussions regarding the efficacy of pneumococcal vac-

cination focus largely on the relative merits of protein-

conjugate vaccines (PCV) and polysaccharide vaccines

(PSV) [2,14–19]. Despite widespread vaccination, recent

studies detected vaccine strains in up to 11% of indi-

viduals with community-acquired invasive pneumococ-

cal pneumonia, of which serotype 19A was most

prevalent despite representation of this epitope in both

PCV13 and PSV23 [20]. The incidence of invasive

pneumococcal disease in immunocompromised individ-

uals is up to 20-fold greater than in other adults with

50–64% of the isolates found among serotypes in

PCV13; an additional 21% are caused by serotypes con-

tained only in PSV23; some serotypes are in neither

vaccine [1,21,22].

Data on vaccine efficacy from randomized trials in

both normal and immunocompromised adults are

inconsistent; comparisons between trials are hindered

by variability in the techniques used to assess protective

responses [23–32]. Bonten found that vaccine efficacy in

normal adults in the Netherlands was 45% for vaccine

strain nonbacteremic, noninvasive pneumococcal infec-

tions, and 75% for vaccine strain invasive disease

[14,33]. Efficacy was lower in immunocompromised

hosts (30% and 66.7%, respectively) [14]. Protection

against strain 19A infections was not significantly differ-

ent between placebo and vaccine groups. In renal trans-

plant recipients, durability of antibody levels following

either PCV7 or PPV23 was short-lived (often less than

2 months) and that neither vaccine type provided a sig-

nificant advantage in the level or durability of response

[34,35]. In liver transplant recipients, there were no dif-

ferences in IgG levels or OPA titers between recipients

of PPV23 or PCV7 [36]. Response in cardiac recipients

was similarly muted [37]. In allogeneic stem cell trans-

plant recipients, immunogenicity is poor with either

vaccine [38].

Both serotype specific antibody levels (ELISA) and

functional, serotype-specific antibody-mediated OPA are

used to measure vaccine-induced protection [31,39,40].

In normal hosts, data from clinical trials demonstrate

correspondence between capsular antipolysaccharide

IgG and antibacterial OPA responses [39,41]. Antibody

concentrations measured by the standardized World

Health Organization (WHO) ELISA assays in the range

0.20–0.35 mg/l correlated with OPA titers of 1:8, which

appeared to predict protective efficacy [31]. The OPA

assay is designed to assess the ability of functional anti-

body (from heat-inactivated human serum) to bind

pneumococcal bacteria in the presence of a functional

complement source (baby rabbit serum) facilitating bac-

terial engulfment and death by phagocytic human cell

line (differentiated HL-60 cells). The OPA assay is com-

plex, and quantitative response values cannot be com-

pared between serotypes. In adults, the correlation of

ELISA IgG assays with the production of functional

antibodies has not been investigated [32]. Studies of

OPA titers in solid organ transplant recipients are com-

plicated by prophylactic antimicrobial agents including

trimethoprim-sulfamethoxazole (TMP-SMZ) targeting

Pneumocystis jirovecii but with broad antibacterial activ-

ity including many strains of S. pneumoniae [42].

The Clinical Trials in Organ Transplantation (CTOT)

and pediatric CTOT (CTOT-C) are research consortia

sponsored by the National Institute of Allergy and

Infectious Diseases (NIAID) to conduct clinical trials

and associated mechanistic studies to improve out-

comes in organ transplantation. Given increasing rates

of antimicrobial resistance and variable strategies for

antibacterial prophylaxis after transplantation, this study

was designed to assess approaches to laboratory assess-

ment of antibody testing in previously vaccinated

immunocompromised hosts. We hypothesized that

OPA titers provide a distinct assessment of functional

antipneumococcal antibodies in immunocompromised

transplant recipients when compared with ELISA titers

for the same subjects and might provide valuable data

in future studies of vaccination in solid organ

recipients.

Materials and methods

Study design

Patient samples were derived from 30 adult transplant

recipients of renal allografts from living or deceased

donors transplanted within 3 and 36 months of study

entry. Each provided at least three blood samples at

various times from 6 to 48 months following trans-

plantation. Sera were derived from Clinical Trials of

Organ Transplantation CTOT02 observational study

that were frozen and shipped to our site (ClinicalTri-

als.gov Identifier: NCT00307125). All participants were

known to have been vaccinated within 5 years prior to
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study entry, but the specific vaccine received and the

timing of vaccination were not recorded. The study

protocol was approved by the Human Studies

Committee of Massachusetts General Hospital.

Informed consent was obtained from study partici-

pants. Immunosuppression was based on site-specific

protocols.

Enzyme-linked immunosorbent assay

The ELISA was developed in the WHO Pneumococcal

Serology Reference Laboratories by Drs. Moon H.

Nahm and David Goldblatt and is available on line

(http://www.vaccine.uab.edu/ELISAProtocol(007sp).pdf).

Antibody concentrations measured by the standardized

ELISA assays above 0.35 lg/ml were considered “protec-

tive.” [43,44] Pneumococcal cell wall polysaccharides

and serotype 19A pneumococcal polysaccharide and

goat anti-human IgG-AP conjugated antibody were gen-

erously provided by Robert L. Burton and Moon H.

Nahm of the University of Alabama, Birmingham.

Serum concentrations of anti-19A IgG were determined

by validated assay and expressed as micrograms per

milliliter (lg/ml). ELISA absorbance data were recorded

using a Bio-Tek uQuant ELISA reader. Pneumococcal

quantifying reference serum 007sp was kindly provided

by Dr. Mustafa Akkoyunlu at the CBER, U.S. Food and

Drug Administration. ELISA analysis software was

developed at the CDC [45]; custom pneumococcal

ELISA Excel templates were kindly provided by Robert

L. Burton. All assays were performed in duplicate for

each time point and were averaged for statistical

analysis.

Opsonophagocytic assay

The single serotype pneumococcal OPA was developed by

Moon H. Nahm and Robert L. Burton in the WHO Bac-

terial Respiratory Pathogen and Pneumococcal Serology

Reference Laboratories, Departments of Pathology and

Microbiology at the University of Alabama at Birming-

ham (http://www.vaccine.uab.edu/UAB-MOPA.pdf). The

target strain of Pneumococcus was kindly provided by Ste-

phen I. Pelton (http://www.vaccine.uab.edu/UAB-

MOPA.pdf) and Amy Silverio of the Pediatric Infectious

Disease Division of the Boston University Medical Cen-

ter. Functional serum antibacterial OPA titers were mea-

sured using a 19A-specific validated assay. Titers were

defined as the interpolated reciprocal serum dilution that

resulted in complement-mediated killing of 50% of assay

bacteria.

Preliminary studies demonstrated wide variation in

pneumococcal killing in vitro between samples derived

from single patients attributable to TMP-SMZ prophy-

laxis during the first 6–12 months after transplantation.

As a result, all data are reported from studies performed

using a TMP-SMZ-resistant 19A pneumococcal strain.

A S. pneumoniae serotype 19A isolate resistant to TMP-

SMZ was selected as the target strain based on clinical

data indicating that multiple patients received anti-

Pneumocystis prophylaxis at various times during the

trial. These patients’ sera killed target organisms on

solid media in the absence of antibiotic, complement or

target cells. Concentrations measured by the OPA assays

above 0.35 lg/ml were considered “protective.” All

assays were performed in duplicate for each time point

and were averaged for statistical analysis.

Statistical analysis

Antibody titers were classified as protective for each

assay if two or more of their respective values were pro-

tective, and the classifications were compared by McNe-

mar’s test. Quantitative comparisons of the two assays

were performed by simple linear regression and correla-

tion on the within-subject geometric means of the

respective assay values (n = 30). Two-tailed P-values

less than 0.05 were considered statistically significant.

All statistical analyzes were performed in JMP PRO Ver-

sion 12 (SAS Institute, Cary, NC, USA).

Results

Opsonophagocytic assays and antibody levels for indi-

viduals were generally stable over times up to 4 years

after transplantation based on multiple determinations

using both techniques. All 30 patients were considered

protected against invasive pneumococcal infection based

on WHO criteria for ELISA antibody levels in at least

two of three determinations with antibody concentra-

tions greater than 0.35 lg/ml (mean 19A antibody

3.5862 � 0.512 SEM) [31,32]. By contrast, only 22

patients achieved OPA levels considered to be protective

(mean opsonic index 189.155 � 73.642 SE). Classifica-

tions of titers as protective versus not protective by each

assay are shown in Table 1. McNemar’s test

(P = 0.0078) indicates that the two classifications are

distinct. The simple linear regression of the within-sub-

ject geometric means of 19A antibody versus 19A OPA

is shown in Fig. 1. The Pearson correlation between the

two assays of r = 0.58 is significant (P = 0.0008), as is

the Spearman correlation of r = 0.52 (P = 0.003),
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indicating that the correlation is robust to the influence

of any of the more extreme observations. Thus, while

the respective assay values are correlated, the current

classification of antibody titers as protective or not by

the two assays is not the same.

Discussion

The rate of pneumococcal antimicrobial resistance is

increased in immunocompromised hosts and with broad

antimicrobial use, increasing the importance of effective

vaccination. Among the risk factors for resistance is pro-

phylactic antimicrobial use including TMP-SMZ. Since

PCV7 was introduced, the seven serotypes included in that

vaccine have largely been replaced in community-acquired

infections by serotypes (e.g., 19A, 15A, 23A, 35B, 6C) car-

rying high and/or increasing levels of antimicrobial non-

susceptibility. Studies with PCV7 in HIV-infected children

showed that immunoglobulin G (IgG) levels measured by

ELISA correlated poorly with functional antibodies mea-

sured by flow cytometric OPA and appeared to vary with

serotype and time points studied [32,46]. Correlations

between antibody concentration and OPA titer in patients

with AIDS and renal transplant recipients have been poor

[34,47,48]. Our preliminary data using OPA indicated that

the routine use of TMP-SMZ in transplant recipients con-

founded interpretation of data in that residual drug was

present in many but not all clinical samples. Thus, the

OPA assay required modification using S. pneumoniae

strains carrying common vaccine epitopes and resistance

in vitro to TMP-SMZ. Serotype 19A is present in both the

PCV13 and PPSV23 vaccines and is among the serotypes

increasingly represented in pneumococcal pneumonia

worldwide and has been associated with septic shock dur-

ing pneumococcal pneumonia [20–22]. Despite uniform

vaccination, this study was limited to examination of

residual antibody levels by the unavailability of data on the

timing of vaccination and the specific vaccine used. We

selected a common target serotype represented in both

vaccines and for which a TMP-SMZ-resistant strain was

available. Other serotypes were not investigated, and there-

fore, the correlation between OPA and ELISA for those

serotypes is not known. For individuals, data became

internally consistent when the 19A strain was used in place

of a series of clinical isolates.

In this study, while assay values are correlated for

individuals, the current classification of transplant recip-

ients’ antibody titers as protective or not by these two

assays should not be considered to be the same. This

suggests that evaluation of protective antibody levels in

transplant recipients utilize functional assays as well as

ELISA measurements. Surprisingly, once vaccinated,

serum antibody levels in renal transplant recipients are

better maintained over time than expected despite data

that acute vaccine-induced responses wane rapidly. Such

observations may be serotype specific and cannot pre-

dict vaccine responses required to provide protection

against the broader range of pneumococcal serotypes.

These data are consistent with vaccination studies in the

elderly who demonstrate reduced vaccine responses. In

such studies, mean IgG concentrations were preserved

up to 10-year postvaccination with 23-valent pneumo-

coccal polysaccharide vaccine, while there was a signifi-

cant reduction in the IgG antibody avidity of

postvaccination measured by OPA [35,49]. Future vac-

cine trials in immunocompromised hosts should include

0.0
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Mean (Log10 19A OPA)

Figure 1 Linear regression of mean log10 19A antibody on mean

log10 19A opsonophagocytic assays (OPA) within each subject. Solid

line is the simple linear regression line and the shaded area repre-

sents the 95% confidence limits about the fitted line. Correla-

tion = 0.58 (P < 0.001).

Table 1. For each subject number of sera protective by
19A OPA vs. number protective by 19A antibody.

Number protective by OPA

Count 0 1 2 3 Total

Number protective
by antibody

0 0 0 0 0 0
1 0 0 0 0 0
2 1 0 1 1 3
3 6 1 4 16 27
Total 7 1 5 17 30

Shaded cells represent subjects with 2 or 3 protective values
out of 3 total by each measure. McNemar’s test comparing
numbers of subjects protective vs. non-protective is signifi-
cant (P = 0.0078).
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measurement of both total and functional antibody

levels and confirmation of protection in patients and

animal models [50]. New vaccines for such populations

may require additional bacterial targets and considera-

tion of the role of nonopsonic antibodies in protection.

Vaccine trials in immunocompromised hosts should be

encouraged to assess antibody assays associated with

clinical protection as well as indirect measures such as

functional and absolute type-specific antibody levels.

New approaches to vaccination in highly susceptible

populations should be considered.
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