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SUMMARY

Immortal time bias is a problem arising from methodologically wrong
analyses of time-dependent events in survival analyses. We illustrate the
problem by analysis of a kidney transplantation study. Following patients
from transplantation to death, groups defined by the occurrence or nonoc-
currence of graft failure during follow-up seemingly had equal overall mor-
tality. Such naive analysis assumes that patients were assigned to the two
groups at time of transplantation, which actually are a consequence of
occurrence of a time-dependent event later during follow-up. We intro-
duce landmark analysis as the method of choice to avoid immortal time
bias. Landmark analysis splits the follow-up time at a common, prespeci-
fied time point, the so-called landmark. Groups are then defined by time-
dependent events having occurred before the landmark, and outcome
events are only considered if occurring after the landmark. Landmark anal-
ysis can be easily implemented with common statistical software. In our
kidney transplantation example, landmark analyses with landmarks set at
30 and 60 months clearly identified graft failure as a risk factor for overall
mortality. We give further typical examples from transplantation research
and discuss strengths and limitations of landmark analysis and other meth-
ods to address immortal time bias such as Cox regression with time-
dependent covariables.
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Immortal time bias

Already in 1972, a discussion on the life-prolonging effect

of cardiac transplantation was supplemented by a “re-

assessment” which claimed that two prominent transplan-

tation studies were subject to a “probable selection bias”

[1]. The author criticized that in these observational stud-

ies, all patients were “assigned to the nontransplant group

by default” during the waiting time for transplantation.

While the “sickest subjects” tend to die before a suitable

donor becomes available, a large portion of

“comparatively healthier patients” ends up in the trans-

plant group. The author notes that this fact gives an “arti-

ficial boost” to the survival curve of the transplanted

patients. In later decades, the “grace period” [1], which is

experienced by patients in the transplant group due to

having survived at least to the time of transplantation, was

termed “immortal time.” The aim of the present review is

to bring this topic to the attention of transplant research-

ers again and to sensitize them to such study designs.

For demonstration, we consider a cohort of 633 patients

with end-stage renal disease who were followed from renal
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transplantation to death from any cause or end of observa-

tion (overall survival). The data were taken from a larger

cohort of renal transplant patients [2]. Of the 633 patients,

two-thirds were male (424 patients), 550 (86.9%) had a

deceased donor, and nearly all of them (614 patients) were

diabetic. Mean age at transplantation was 44.7 years (stan-

dard deviation, SD 14.2); mean donor age was 44.2 years

(SD 15.2). Median overall survival amounts to

274 months (lower quartile 168); and 167 deaths were

observed during a median follow-up time of 126.1 months

(quartiles 63–190).
Here, we are interested in the influence of graft fail-

ure on overall survival since transplantation. A na€ıve

Kaplan–Meier plot is shown in Fig. 1, treating patients

experiencing functional graft failure during their indi-

vidual observation period as “graft failure patients” and

all others as “control patients.” The two survival curves

hardly differ. Applying a log-rank test, we would arrive

at the conclusion that graft failure has no influence on

overall survival (P = 0.533). This could be supported by

a Cox regression analysis comparing these putative

“groups” which results in a hazard ratio of 1.10 (95%

confidence interval 0.81–1.50, P = 0.534). Adjusting this

effect for donor type and donor age hardly changes this

result (hazard ratio 1.08, P = 0.636), see first row of

Table 1.

This analysis, however, might be severely biased as

we compare those patients for whom a graft failure was

observed at any time within their observation period

versus patients observed without failure. In general, im-

mortal time bias is a special kind of selection bias in

observational studies of longitudinal data which occurs

if information on the occurrence of a time-dependent

event (such as graft failure) is falsely assumed to be

known at baseline. In our example, some patients expe-

rienced graft failure after transplantation, but at the

time point of transplantation, it was not yet known

whether those patients would have graft failure at all

and if yes, at which time point after transplantation. As

this time dependence of the failure status is ignored, the

resulting bias is also called time-dependent bias [3];

another term used in the literature is survival bias [4].

Let us consider five hypothetical patients from our

study represented in Fig. 2. The first two patients

remained free of graft failure during their observation

period: Patient 1 died after 48 months, while patient 2

was censored after 108 months (e.g., lost to follow-up

or due to study termination). Patients 3 and 4 had a

graft failure after 48 and 12 months, respectively, and

patient 5 died at month 24 before a (hypothesized) graft

failure could be detected. A biased analysis ignoring the

time dependence of graft failure would treat patients 3

and 4 as “patients with graft failure” and collect the

remaining three patients in the “control” group (i.e.,

without failure).

Patient 3 would also have been counted in the “con-

trol group” if she had died during the first 4 years post-

transplantation. A similar argument holds for the first

year of patient 4 such that these two patients were effec-

tively considered as “immortal” before graft failure; had

they died during this period they would have been

counted in the “control group” (just as patient 5 was).

In addition, a biased analysis would attribute these

5 years of “immortal time” to the survival time of the

“graft failure group” and add these years to the survival

time after graft failure. On the other hand, patient 5 is

classified as a “control patient” and his short survival

time is credited to the “control” group since his early

death prevented him from graft failure detection. In

sum, these misclassifications produce an underestima-

tion of a potentially harmful effect of graft failure on

survival.

Landmark analysis

An easy way to prevent misinterpretation of patients

and survival times and to correctly represent and model

our survival data is a landmark analysis. First, we

choose a clinically relevant landmark, that is, a point on

the time axis at which we classify patients into those

who had already experienced graft failure and those

who were still free of graft failure up to that time. For

the patients in Fig. 2, we set a landmark at 30 months

and thus compare patient 4, the only patient with a

graft failure before that time point, with those who were
Figure 1 Na€ıve Kaplan–Meier estimates (numbers at risk per group

indicated below time axis).
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still without failure at the landmark (patients 1–3). It is
important to see that patient 3 has not had her graft

failure at this time point. Furthermore, patient 5 is not

at risk any more as he died 2 years after transplantation.

Therefore, this patient is not included in the landmark

analysis at 30 months.

The landmark analysis at 30 months applied to all

633 patients is shown in the upper panel of Fig. 3. The

curves were produced using standard Kaplan–Meier

estimates applied to the survival time starting from the

landmark for the 600 patients still at risk at 30 months.

Twenty-seven of these had a graft failure before the

landmark time, that is, during their first 30 months

after transplantation. Obviously, these patients exhibit a

clear survival disadvantage compared to those who

stayed free of graft failure between transplantation and

the landmark. Our landmark analysis is performed from

the perspective of the landmark time; that is, patients in

the latter “group” may still experience graft failures after

the landmark time. Our analysis ignores this possibility

by intention, because we would like to express whether

there is a difference in survival given the information at

the landmark time without anticipating future events.

We can use a standard Cox proportional hazards regres-

sion model to estimate the effect of graft failure up to

month 30 on survival based on the 600 patients who

lived up to this time point. This analysis is based on sur-

vival times starting from 30 months after transplantation

and gives an adjusted hazard ratio equal to 1.90 (95%

confidence interval 1.00–3.61, P = 0.049) demonstrating a

significantly higher instantaneous risk of death (i.e., haz-

ard) by 90% on average for the 27 patients who have

had a graft failure during their first 30 months after

transplantation compared to those 573 who were free of

Table 1. Estimates from various Cox regression models.

Model Patients at risk

Unadjusted Adjusted

HR (CI) P HR (CI) P

Na€ıve model* (biased) 633 1.10 (0.81–1.50) 0.534 1.07 (0.79–1.47) 0.636
Landmark set at 30 months 600 1.66 (0.87–3.15) 0.124 1.90 (1.00–3.61) 0.049
Landmark set at 60 months 554 1.84 (1.19–2.86) 0.006 1.92 (1.23–2.99) 0.004

HR, hazard ratio; CI, 95% confidence interval; P, P-value; adjusted, for donor type and donor age.

*Comparing patients with observed graft failure with patients free of graft failure.

Figure 2 Hypothetical data of five patients (C = censored, D = died,

F = graft failure).

(a)

(b)

Figure 3 Kaplan–Meier type estimates for landmarks at 30 (upper

panel) and 60 months (lower panel). Numbers at risk per group indi-

cated below time axis.
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graft failure up to that time. Repeating the analysis for

the 554 patients (58 vs. 496) still at risk at the landmark

set at 60 months gives a similar adjusted hazard ratio, see

Table 1 and lower panel of Fig. 3.

The main advantage of the landmark method is its

easy applicability: After carefully performing the neces-

sary data operations for establishing the groups at the

landmark and subtracting the landmark time from all

survival and censoring times, standard statistical soft-

ware can be used for graphical representation (using

Kaplan–Meier procedures and re-shifting the time axis)

and Cox regression modeling.

The landmark method needs some care in the interpre-

tation of its results which are restricted to those patients

who are still at risk at the landmark. Therefore, the land-

mark time needs to be chosen carefully, and the choice

should be guided by clinical relevance. For a discussion of

the choice of the landmark times, see [5]. Additional

landmarks can be considered, for example, for sensitivity

analysis. Furthermore, it is possible to build supermodels

based on a sequence of landmark times to investigate

how the hazard ratio changes with increasing landmark

time (see [6]; for an application, see [2]). This idea can

also be extended to recurrent events such as infections

after kidney transplantation as exemplified by [7].

A limitation of the landmark approach is that

patients are ignored who have died or been censored

before the landmark. In this way we lose patients for

the analysis and restrict our results to the remaining

patients. This loss of study information implies a loss of

statistical efficiency [4], the amount of which depends

on size of risk sets at the specified landmark. Further-

more, it was noted that landmark analyses produce

average results that are conditional on the set of “wait-

ing times” (i.e., individual times until the time-depen-

dent event) observed in the sample at hand. This

precludes a “counterfactual interpretation” [8] which

would be necessary for causal inference about the effect

of the time-dependent event on survival. The results are

more of a descriptive or predictive type, explaining how

an occurred time-dependent event changes prognosis. If

the time-dependent event is defined by the onset of a

specific treatment, then usually causal inference is

desired, but needs to be addressed by other methods

such as marginal structural models [9].

Discussion

Immortal time bias is a phenomenon often encountered

in leading clinical journals [10]. It has been identified in

various medical subdisciplines such as pharmaco-

epidemiology [11], kidney transplantation [12], or post-

operative radiotherapy [13]. Furthermore, various letters

published in medical journals draw attention to this

kind of bias [14,15]. In extreme cases, the bias is visually

identifiable in plots of survival curves when the group of

patients who experienced the considered time-dependent

event shows a close to horizontal curve at the beginning

while the “control group” has an immediate and dra-

matic drop. In general, there is a risk for immortal time

bias in studies of survival outcomes (or more general,

time-to-event outcomes) where interest focuses on the

effect of a time-dependent event on survival. The bias

arises if the analysis uses statistical methods which were

developed for comparing groups defined at baseline

when in fact the group membership may change over

time. It can be circumvented by choosing analysis meth-

ods which can deal with dynamic group definitions.

In the example data used for demonstrating immortal

time bias, the outcome was overall survival after trans-

plantation and the time-dependent event was graft fail-

ure. However, there are many other questions in

transplantation research where this type of bias could

arise. Some examples are listed in Table 2. Furthermore,

immortal time bias is an issue in studies where patients

are allocated to a particular intervention or start utiliz-

ing a therapy after they enter the study, for example, in

oncologic studies of add-on therapies [16] or in phar-

maco-epidemiology [11], or when treatment is defined

as at least one prescription dispensed after hospital dis-

charge or diagnosis [17]. For an overview of more gen-

eral examples of immortal time bias, see [18].

It can be mathematically proven that analyses subject

to immortal time bias result in biased effect estimates

[3]: If the time-dependent event has a beneficial effect

on survival (such as a treatment, e.g., ICD therapy in

Table 2), a biased analysis will over-estimate this effect;

if it has a harmful effect (such as graft failure, rejection

or infection), then this effect will be underestimated; if

it is unrelated to survival, then a biased analysis will

pretend a beneficial effect. Several conditions in a study

determine the magnitude of the bias. First, a longer

time between inclusion of a patient and the time-depen-

dent event will lead to more bias. For example, in the

renal transplantation settings listed in Table 2, the time

from transplantation to graft loss will usually be longer

than the time to rejection. Second, the magnitude of

bias can also depend on the evolution of mortality risk

before and after the time-dependent event [4] which

again depends on the severity of the considered time-

dependent event for the patient’s survival outcome. For

example, consider dialysis as the inclusion criterion, and
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kidney transplantation as the time-dependent event.

The mortality risk immediately after transplantation can

be higher than under dialysis, but prognosis usually

improves a few months thereafter. The impact of these

conditions on the risk of bias has to be rated on a case-

by-case basis, considering also aspects of study design

like length of follow-up and inclusion criteria.

Landmarking is not the only way to deal with immor-

tal time bias. Other statistical methods that were pro-

posed to handle the bias, however, were shown to not

(fully) eliminate the bias or need specific assumptions to

work. As an alternative to naively calculating a “control”

patient’s survival time from inclusion, some authors

imputed a starting time point (“time zero”) for “control”

patients randomly. This has been criticized as inappropri-

ate by Zhou and co-workers [4]. The same authors pro-

posed to assign a “time zero” for each “control patient”

at random from the set of times observed in patients

experiencing the time-dependent event and showed to

effectively remove immortal time bias in this way. This

method of time-distribution matching only sacrifices the

data of “control” patients with an outcome event before

their assigned “time zero” and usually leads to less infor-

mation loss than the landmarking approach [4].

Bernasconi and colleagues [8] proposed to use the

following strategy to construct survival curves contrast-

ing patients with the time-dependent event and patients

without. For patients with event, the “clock is started”

at the time of the event; thus, the immortal time is

removed from analysis. A survival curve describing the

prognosis for patients remaining free of the event is

constructed using all patients, but censoring those who

experience the event at the time at which the event

occurred. The assumption that this method needs to

provide a fair comparison is that the time-dependent

event must occur independently of a patient’s progno-

sis. As an example where this assumption is

approximately fulfilled, Bernasconi et al. consider a

study of survival in patients with acute lymphoblastic

leukemia, where initially all subjects are treated with

chemotherapy until they receive a bone marrow trans-

plant. This time-dependent event mainly depends on

availability of a donor and not on the patient’s survival

prospects. However, this independence assumption is

very often not fulfilled.

A frequently used alternative to the landmark

approach is to dynamically update the “group defini-

tions” when estimating survival curves or fitting Cox

regression models [21]. Revisiting Fig. 2, there are five

patients without graft failure at risk immediately after

transplantation. After 12 months, these reduce to four

while patient 4 is counted as “after failure.” Thus, unlike

the standard Kaplan–Meier procedure, this approach

allows group sizes to increase over time. After 24 months,

there are three and one patients still at risk with status

“before failure” and “after failure,” respectively, and after

48 months, there are one and two patients.

Unfortunately, even if possible with some software

packages, Kaplan–Meier estimation should not be based

on such dynamically updated risk sets (“extended

Kaplan–Meier estimate” [22]), [23]. However, Cox

regression, which compares hazards rather than survival

probabilities, can be extended to incorporate time-depen-

dent covariables, and corresponding options are available

in the Cox regression procedures of SAS, R, or SPSS. This

way of modeling has been shown to effectively remove

immortal time bias from hazard ratio estimates [4]. The

resulting hazard ratios quantify the immediate effect of

the time-dependent event on the outcome. Returning to

our example and modeling graft failure as a time-depen-

dent covariable, we estimated an unadjusted hazard ratio

of 2.98 (95% confidence interval 2.14–4.15, P < 0.001),

suggesting that graft failure increases the all-cause mor-

tality hazard to the threefold. A disadvantage of this

Table 2. Examples of studies in transplantation research where immortal time bias can arise.

Patient cohort

Survival outcome

Time-dependent event ReferenceFrom To

Renal transplantation Transplantation All-cause death Graft failure Our example
Renal transplantation Transplantation Graft loss Rejection [19]
Hematopoietic malignancies Remission All-cause death BMT [20]
ALL Remission Failure Stem cell transplantation [8]
Heart failure Hospital discharge All-cause death ICD therapy [5]
Heart failure Acceptance as transplant

recipient
All-cause death Heart transplantation [1]

ALL, acute lymphoblastic leukemia; BMT, bone marrow transplantation; ICD, implantable cardioverter-defibrillator.
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method is the abovementioned missing graphical

description by survival curves. Furthermore, the hazard

ratio of a time-dependent covariable can hardly be inter-

preted as its causal effect, because the time-dependent

covariable is usually accompanied by time-dependent

confounding. Sophisticated methods to deal with this

problem were proposed, for example, by [9]. In random-

ized trials, confounding is usually absent. In addition, if

randomization is performed at the time of a patient’s

inclusion into a study, even if it concerns a therapy to

be started later during follow-up, analysis can fully

ignore the time dependency of that therapy, because the

group assignment is known at baseline.

Summarizing, we presented the landmark approach

as a sensible and pragmatic solution to the problem of

time-dependent events in transplantation research. Its

simplicity, however, comes at the cost of a loss of infor-

mation which can be considerable with late landmark

times. Using time-distribution matching or a Cox

model including a time-dependent covariable are alter-

natives, however, with their own limitations (cf. table 4

in [4]). Landmarking might then be used as a sensitivity

analysis to gain a broader view of the impact of the

considered time-dependent event on the outcome.
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