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SUMMARY

Treatment of acute rejection (AR) following kidney transplantation has
improved in recent years, but there are still limitations to successful out-
comes. This review article covers literature in regard to recipient and
donor genetics of AR kidney and secondarily of liver allografts. Many can-
didate gene and some genome-wide association studies (GWASs) have
been conducted for AR in kidney transplantation. Genetic associations with
AR in kidney and liver are mostly weak, and in most cases, the associations
have not been reproducible. A limitation in the study of AR is the lack of
sufficiently large populations that account for population stratification to
study the AR phenotype which in this era occurs in <10% of transplants.
Furthermore, the AR phenotype has been difficult to define and the defini-
tions of classifications have evolved over time. Literature related to the
pharmacogenomics of tacrolimus is robust and has been validated in many
studies. Associations between gene expression and AR are emerging as
markers of outcomes and AR classification. In the future, combinations of
pretransplant genotype for AR risk prediction, genotype-based immune
suppressant dosing, and pharmacogenomic markers to select AR mainte-
nance or treatment and expression markers from biopsies may provide
valuable clinical tools for guiding treatment.
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Introduction

This article is a review of literature pertaining to the

genetics of acute rejection (AR) in kidney, and to

some extent liver, allograft recipients. There are three

primary types of allograft rejection: hyperacute rejec-

tion that occurs minutes after the transplant, AR,

which occurs days to months after transplant, and

chronic rejection that occurs long after transplant. AR

has further been classified as antibody-mediated

rejection (ABMR), T cell-mediated rejection (TCMR),

C4d-negative ABMR, and mixed; in this review, we

focused on all forms of AR. The definition of the AR

phenotype has changed over time as it is further

understood. Mechanistically, these types of AR are

quite different but have a similar endpoint of the allo-

graft being rejected. Thus, the heterogeneity of the AR

phenotype has made genetic association studies diffi-

cult to determine and validate. As there is continual

updating of the classification and definition of AR,

such as the Banff classifications [1,2], this review arti-

cle does not restrict manuscripts reviewed to a single
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AR definition, but leaves the definition to the authors

of the reviewed literature.

As with the definition of AR, methods used to study

the genetics associated with AR have also changed over

time. DNA and/or RNA is extracted from the blood or

the biopsy and then genetically assessed for association

with AR. These association tests have evolved from test-

ing candidate single nucleotide polymorphisms (SNPs),

to testing multiple candidate SNPs, then panels of SNPs

on gene chips, to genome-wide SNP chips, and we are

now identifying known and novel SNPs using whole-

genome and targeted next-generation sequencing. The

majority of these AR studies were case controls investi-

gating recipients with or without AR. Although some of

these studies account for population stratification, such

as a recent GWAS [3], many of them did not. This arti-

cle also reviews literature on the pharmacogenomics

and transcriptomics of AR.

Single nucleotide polymorphisms associated
with acute rejection

Although outcome after solid organ transplants has

improved in recent years, success is still limited by AR,

chronic rejection (chronic allograft nephropathy), and

graft failure. AR has been repeatedly shown to be one

of the strongest predictors of allograft survival, and

therefore, there is great interest in finding genetic mark-

ers associated with AR and AR risk [4]. Throughout the

last few decades, there have been multiple reports in

which investigators have attempted to associate genetic

variation with AR risk. The strongest association

between genetic variants and transplant outcome has

been with the major histocompatibility complex (MHC)

antigens, also called human leukocyte antigens (HLA)

[5]. Because of this strong association, transplant cen-

ters try to match as many HLA alleles between the

donor and the recipient to lower the immunogenicity of

the allograft and reduce the risk of AR. There have also

been additional reports showing an association with AR

of genetic variants in other genes. Most genetic associa-

tion studies aim to find interesting genes and then

attempt to understand the biological relevance for those

genes to AR. It is difficult to use the genetic association

studies to predict susceptibility for AR because of small

effect size of individual SNPs and the heterogeneous

nature of AR. These genes would include those in

immune pathways, both innate and adaptive immune

systems, stimulatory molecules, tissue repair pathways,

and genes involved in systemic hypertension among

others.

For many variants, the initial report for a given SNP

presents with a statistically significant association with

AR; however, validation for most of these SNPs has

remained elusive [6–9]. We identified 76 variants in the

literature which were associated with AR (Table 1). This

list was compiled from an extensive literature search of

numerous genetic variants that have been associated

with AR in kidney and some liver transplant studies.

Nearly all the reports in Table 1 are from candidate

gene analysis of recipient genomic DNA. Few studies

have been conducted that investigate the genetic inter-

actions between donor and recipient beyond HLA

matching. Given the small cohort size of most trans-

plant studies, donor and recipient genetics have not

been thoroughly studied in combination. Note that

there are several limitations of the reports in the litera-

ture. As stated in the Introduction, there are variations

in the definition of AR between studies and that defini-

tion has changed over time. Additionally, population

stratification was not done in the analysis for many of

the reviewed studies. In most of these reports, the statis-

tical power to detect a true association was low. It is

common for small cohorts to be used in the analysis

(N < 300) or to not take into account the testing of

multiple SNPs. Additionally, validation cohorts are typi-

cally absent in the studies, or subsequent studies failed

to validate the initial positive reports. Validation could

fail because of the heterogeneity of the AR phenotype.

Each type of AR has different mechanisms, so each type

would likely have different genetics and thus be difficult

to validate unless large sample sizes of each type of AR

are obtained. However, some of these SNPs in Table 1

have been associated with AR by multiple studies, such

as ACE (rs4340), CCR2 (rs1799864), CCR5 (rs1799987),

CD28C (rs3116496), CTLA4 (rs5742909, rs231775), F5

(rs6025) and IL10 (rs1800896, rs1800872). Most of these

studies have focused on recipient SNPs, but there have

been a few studies analyzing donor-related SNPs. At

present, there are no candidate SNPs that have been

unambiguously shown to be associated with AR,

through the use of large (1000+) discovery and valida-

tion cohorts.

The choice of candidate SNPs for investigation is typ-

ically limited to those that have come to the attention

of the investigator, either through previous reports, or

were hypothesized to be important variants which func-

tionally impact a protein in a biological pathway

thought to impact the occurrence of AR. A GWAS

allows for multiple variants spanning the entire genome

to be investigated. Therefore, the GWAS provides a

more robust platform for discovery than single SNP
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analysis. A limitation to GWAS analysis is the high

expectation of statistical significance (typically a P-value

threshold of 10�8) due to multiple testing of up to

1 000 000 individual SNPs or more. Statistical power

can also be limited by the typically small influence of an

individual SNP on the outcome. Large cohorts are

required to overcome these obstacles to identifying a

statistically significant variant. At this time, very few

GWASs for AR have been attempted.

In a candidate SNP analysis of 2724 SNPs and 990

kidney allograft recipients, no statistically significant

SNPs were found to be associated with AR [10]. Multi-

variate models also failed to identify with any statisti-

cally significant SNPs, after accounting for a false

discovery rate (FDR) of 10%, although many of the

SNPs with the lowest P-values play a role in signaling

pathways involved in T-cell activation. Additionally,

some SNPs were associated with the severity of AR

based on the i (inflammation) and t (tubulitis) scores on

kidney allograft biopsy.

A larger-scale GWAS of 1528 European American

renal allograft recipients and 450 130 SNPs again did

not identify any statistically significant SNPs associated

with AR [11]. SNPs with smallest P-values were

rs146480420, within the epithelial cell adhesion molecule

(EPCAM) gene, and rs59677415, near LOC102467213,

both with a P value of 9e�7. The top 83 SNPs with

smallest P-values were in the canonical pathways

thought to impact AR such as NFkB activation, IL-8 sig-

naling, and leukocyte extravasation signaling.

In a GWAS of European renal allograft recipients, the

investigators used a pooled DNA approach consisting of

275 cases, 503 controls, and 1109 SNPs that were ana-

lyzed using a 50-kb sliding window to identify at least

five contiguous SNPs for association with AR [12]. The

pooled DNA approach reduces the number of tests

needed which reduces cost. This method involves mix-

ing equimolar amounts of DNA from each individual in

the case or control groups and hybridizing the pools on

a DNA-Bead Chip array [12], assaying, and then using

statistical association tests for the genotypes between the

case and control pools. DNA pooling approaches for

association studies have been described elsewhere [13–
15]. For validation, 313 cases and 531 controls were

used to validate 14 SNPs. Two SNPs were identified as

significantly associated with AR, one in PTPRO, coding

for a receptor-type tyrosine kinase essential for B-cell

receptor signaling and the second in the ciliary gene

CCDC67 [12]. Validation studies in other cohorts will

be needed to confirm these two SNPs association with

AR of kidney allografts.T
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For the aforementioned studies, only two SNPs were

identified that were significantly associated with AR

although there were also several SNPs just below the

threshold of significance and were within pathways

thought to impact AR. Reasons for these limited results

are most likely due to the heterogeneity of AR where

multiple pathways (and variants) may be associated

with inducing or maintaining AR. This results in

decreased statistical power and the ability to detect sta-

tistical significance. Additionally, it was shown that

transplant center effects can greatly impact results and

this may impact statistical associations when recipients

from different transplant centers are combined into a

single cohort [10]. This transplant center effect may also

impact validation studies of candidate SNPs where

independent cohorts are used to validate an initially

reported variant. Furthermore, other clinical factors and

genetic differences between populations can effect asso-

ciations of genetics and AR, but are not always con-

trolled for in studies. Thus, larger-scale, multicenter

studies accounting for population stratification and

clinical factors may lead to better identification of SNPs

with significant association with AR.

At present, efforts are under way to expand the size

of cohorts to be studied. The International Genetics &

Translational Research in Transplantation Network

(iGeneTRAiN) consortium [16,17] includes investigators

from multiple studies to create a large cohort of differ-

ent types of allograft recipients to overcome both the

problem of multiple testing and the small impact of

these SNPs. This group is currently conducting meta-

analyses of AR from multiple cohorts where a GWAS

has been performed. The primary advantage of meta-

analysis is that studies can be combined to increase

sample sizes and increase statistical power [17]. A disad-

vantage of combining GWAS across many clinical sites

for such meta-analysis requires the centers to agree on

specific endpoints and a common definition of AR.

Additionally, the genetic data should be collected by

similar methods and use of similar gene chips. If differ-

ent GWAS chips are used by participating centers, geno-

types can be imputed to a common variant set,

although this requires additional bioinformatics steps

prior to analysis. The iGeneTRAiN consortium has used

imputed genotypes and common definitions of AR to

conduct a robust meta-analysis of specific types of

transplant and AR such as kidney.

More recent investigations are using DNA sequencing

to identify rare SNPs which will be necessary to identify

the genetic variances associated with AR which has not

being identified through the analysis of common high

allele frequency (AF) SNPs. These methods may lead to

better understanding of the genetics of AR and possibly

better therapy for the patients with AR.

Pharmacogenomics and acute rejection

To reduce the risk of AR, research has focused on

optimizing immune suppression drugs following trans-

plantation. Tacrolimus (TAC) is the primary immune

suppressant used in >90% of kidney transplants to

prevent AR and has differing efficacy in different pop-

ulations, in large part due to the diverse rates of TAC

metabolism, and has been the predominate focus of

pharmacogenomics research in transplantation [18].

SNPs in the CYP3A5 and CYP3A4 drug metabolism

genes, as well as TAC transporters, can influence the

metabolic rates of TAC. Some of these SNPs, which

impact the pharmacokinetics of TAC, lead to higher or

lower dose requirements to achieve the therapeutic tar-

get. There is also evidence that high metabolic rates of

immune suppressants in the blood, such as TAC [19]

or cyclosporine [20], are associated with higher risk of

AR. TAC and cyclosporine are transported by ABCB1

and metabolized by the CYP3A4 and CYP3A5 enzymes

[21]. SNPs in the genes that express these, and related,

enzymes have been the focus of most investigations of

TAC trough blood concentrations and have been

extensively reviewed elsewhere [22–24]. The CYP3A5*3

SNP (rs776746) is the most commonly studied SNP

and significantly decreases TAC metabolism [3,25] and

the dose needed to reach therapeutic TAC blood con-

centrations. The CYP3A5*3 SNP has inconsistently

been associated with rejection [26,27]. Further studies

have shown that combinations of SNPs affect TAC

metabolism [28]. In a study of mainly Caucasian sub-

jects, the effects of ABCB1 SNPs on TAC concentra-

tions were strongly accentuated by CYP3A4 and

CYP3A5 genotype [29] although this has been incon-

sistently shown. Some studies have shown that the *28

SNP in the cytochrome P450 oxidoreductase gene

(POR) is associated with increased metabolic activity

of CYP3A4 and CYP3A5 [30]. Subjects with rapid

TAC-metabolizing SNPs such as CYP3A5*1 and

POR*28T when compared with slow-metabolizing

CYP3A5*3 and CYP3A4*22 SNPs have dose require-

ments two to three times greater and a significantly

longer time to reach therapeutic trough blood concen-

trations. However, no differences were observed in AR

by SNP genotype [31]. Another study suggested that

SNPs in the POR, ABCB1 and CYP3A5 genes should

all be considered when dosing TAC [32]. Optimal
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dosing of immune suppressants may lead to lower

rates of AR.

The CYP3A5 SNPs important in TAC metabolism

differ significantly by race. SNP frequencies in many

genes have been found to vary between different world

populations [33] and may cause variability in response

to drugs including TAC [34], which is similar to what

was discovered about cyclosporine in the 1990s [20].

The CYP3A5*3 loss-of-function (LoF) SNP causes alter-

native RNA splicing [35,36] resulting in mRNA decay

[37] and loss of TAC metabolic activity [38]. The

CYP3A5 *1 (functional) and *3 (LoF) SNPs have been

validated by in vitro experiments using CRISPR/Cas9

genetic engineering of the CYP3A5 gene in cell lines and

TAC metabolism assays [38]. This *3 LoF SNP has an

AF of >90% in Caucasians but only around 14% in

sub-Saharan Africans [39]. African Americans also carry

the CYP3A5 *6 and *7 SNPs with AFs = 10–22% [40],

which also result in low CYP3A5 enzyme activity but

are extremely rare in Caucasians. Therefore, nearly all

Caucasians will have low capacity for TAC metabolism.

However, TAC metabolism in people of African descent

is highly unpredictable as some will have low, interme-

diate, or high metabolic rates of TAC. A recent GWAS

showed definitively that TAC trough concentrations

were tightly associated with CYP3A5*3, *6 and *7 SNPs

in African Americans [3] and a dosing model for the

prediction of TAC dose using these genotypes has been

developed to facilitate clinical implementation [41]. In

addition, the Clinical Pharmacogenomic Implementa-

tion Consortium (CPIC) has published guidelines for

genotype-guided TAC dosing [42]. Genotype-based dos-

ing of TAC has a potential to improve management of

TAC which could lead to better outcomes and reduc-

tion in AR rates.

The association between AR and intrapatient vari-

ability in TAC concentration has been the subject of

many recent papers. Causes of intrapatient TAC vari-

ability in trough concentrations are multifactorial

including genetics, diarrhea, drug–drug interactions,

nonadherence, or generic TAC substitution [43]. High

intrapatient variability in TAC blood concentrations

was associated with increased risk of AR [44]. TAC

intrapatient variability was significantly associated with

kidney AR, but the TAC intrapatient variability was

not explained by the CYP3A5*3 genotype alone [45],

suggesting that other genetic variants and clinical fac-

tors may be important. Other studies have shown that

high TAC intrapatient variability in blood concentra-

tions is associated with poorer short- and long-term

outcomes and biopsy histology post-transplant [46–49].

Studies have shown that high TAC intrapatient trough

variability led to increased rates of late rejection and

graft loss in pediatric kidney allografts [50,51]. Also,

the once-daily TAC formulation, despite potential of

improving adherence, did not reduce the high TAC

intrapatient trough variability compared with the

twice-daily dosing [52]. As many of the immune sup-

pressants used in transplantation are impacted by

metabolic and transport genes, and also target similar

immunological and pharmacogenetic pathways, proper

dosing is important. Dosing that reduces intrapatient

variability in immune suppressant blood concentrations

may lead to improved outcomes. Currently, there are

no trials of genotype-based dosing to reduce intrapa-

tient trough TAC variability. Genotype-based TAC dos-

ing trials are needed, especially for the African

Americans who are prone to under-dosing, in large

part due to higher frequencies of SNPs associated with

higher rates of TAC metabolism.

In the future, we envision implementing genotype-

based dosing models for TAC that account for genetic

and clinical factors. The goal of dosing models would

be to reach therapeutic TAC concentration early and to

maintain the optimal troughs following transplantation.

One such dosing equation determined that the

CYP3A5*1 genotype and four clinical factors were

important for TAC clearance [53]. Another study devel-

oped a TAC dosing model for African American kidney

transplant recipients [41]. These studies were limited to

common genotypes and future dosing models will need

to include low-frequency variants identified from

next-generation sequencing studies and possibly include

epigenetics and more clinical factors. We foresee

genetic-based TAC dosing as a method that can

improve transplant outcomes and possibly reduce rates

of AR through optimized immune suppression.

Future directions in transcriptomics

Beyond genotype-based dosing and SNPs that have been

associated with AR, variation in gene expression has

also been evaluated to predict the risk of AR. Gene

expression can also be used as a method to better define

subtypes of AR. Global gene expression, known as tran-

scriptomics, can be used to investigate the total RNA

expressed in a tissue at a given time by microarray or

RNA sequencing (RNAseq). These studies use markers

in the blood of transplant patients or in the biopsy with

the objective of understanding whether gene expression

profiles can be used to predict transplant outcomes or

how to better treat episodes of AR. Studies conducted
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primarily by the laboratories of Drs. Philip Halloran

[54–77] and Minnie Sarwal [78–83] report differences

in gene expression profiles in cells taken from of an

extra kidney biopsy core, or blood, can predict the risk

of TCMR and ABMR. Studies show improvement in

TCMR and better risk stratification for allograft loss

among recipients with ABMR [77]. Unfortunately,

obtaining this extra biopsy core is not always feasible in

the clinical setting, limiting clinical implementation.

Most transcriptomic studies in transplantation have

used microarray chips that detect only known gene seg-

ments that are customized on a chip. In contrast, newer

technology such as RNAseq can determine the presence

of RNA expression from the entire gene, partial gene

segments, and some isoforms of genes and also can

quantify the level of gene expression. RNAseq is becom-

ing the preferred method to detect global gene expres-

sion and could be useful in AR association studies to

determine AR pathology, classification, risk, and possi-

bly AR therapy.

Transcriptomic studies in the blood of renal allo-

graft patients have been used to predict risk for AR.

Our team published an RNA profile, over time, using

RNAseq from a cohort of immunosuppressed kidney

allograft recipients that did not undergo AR that can

be used as a baseline transcriptomic RNAseq signature

[84]. Similar studies have been performed with

microarray to develop a signature for renal transplant

tolerance [85,86]. Other studies have used gene profil-

ing from blood [87] using microarray to study gene

expression profiles of AR. Molecular markers in blood

could also be used to detect AR and AR risk such as

specific mRNAs, proteins, free DNA, or metabolites

[2]. It has also been reported that donor-derived cell

free DNA in the blood can be used as a marker for

active AR of kidney allografts [88]. Furthermore, the

kSORT assay has been developed to test expression of

specific genes in blood for AR risk [89,90]. Although

gene expression testing of renal allograft function, and

risk for AR, in blood is minimally invasive, further

studies have been conducted to understand AR in

renal allograft biopsy tissue where rejection actively

occurs.

Gene expression analysis of biopsies can be used,

along with histology and Banff scores, to better define,

classify, and detect the types of AR. A recent publica-

tion following the XIII Banff meeting has begun the

discussion of how to use transcriptomics as a method

to classify AR [2]. To this point, a number of studies

aimed to better understand AR using transcriptomics

in biopsy tissue. One study showed that expression

analysis of dysregulated gene pathways in renal allo-

graft biopsies with interstitial fibrosis and tubular atro-

phy, but no histological evidence of inflammation, has

been shown to be a sensitive method to detect future

graft loss [91]. When histology of biopsies is ambigu-

ous, pathologists do not always agree on the diagnosis;

thus, molecular analysis can be useful. Using microar-

ray results from 403 kidney transplant biopsies, a

microarray probe set was used to determine TCMR

scores [74]. The TCMR scores, in the study, had an

accuracy rate of 89% in concordance with histology

which includes TCMR and mixed; the primary dis-

agreements were when histology was ambiguous (“bor-

derline”) [74]. In a study of 403 biopsies, of the 45

biopsies that were diagnosed as ABMR by gene expres-

sion, 39 were diagnosed as ABMR by histology and

donor-specific antibodies; the ABMR gene expression

score strongly predicted graft loss [75]. These gene

expression diagnostic studies were further validated by

an international prospective study (INTERCOM) inves-

tigating 300 new biopsies from six centers [62,63]. The

INTERCOM study determined that the ABMR scores

agreed with conventional assessment at an accuracy

rate of 85% [62]. The INTERCOM study also deter-

mined that gene expression TCMR diagnosis accuracy

rate was 87% compared with histological diagnosis

that included both TCMR and mixed rejection [63].

However, 77 of the 300 biopsies were further reclassi-

fied with 16 histologically TCMR and molecularly

non-TCMR, 15 histologic non-TCMR were molecularly

TCMR, while all 46 “borderline” biopsies by histology

were reclassified with 8 TCMR or 38 non-TCMR.

Thus, gene expression diagnosis of biopsies can be

used to further classify ambiguous, borderline, and

mixed rejection. Taken together, transcriptomics has

potential to aid in the molecular classification and def-

inition of specific types of AR that could be used in

concordance with standard histological and clinical AR

diagnostics.

In summary, this literature review shows numerous

genetic variants that have been associated with AR in

kidney transplantation. Many of these genetic variants’

associations with AR require larger studies, meta-analy-

sis, and subsequent validation. Furthermore, there are

large amounts of intrapatient variability in TAC con-

centrations in the blood of the kidney recipients that

have been linked to AR. Dosing equations that incor-

porate genetic variants and clinical factors to personal-

ize the TAC dose may be able to reduce the

272 Transplant International 2018; 31: 263–277

ª 2017 Steunstichting ESOT

Dorr et al.



intrapatient variability in blood concentrations and

achieve stable and therapeutic concentrations effec-

tively. Additionally, understanding the RNA expression

signatures in kidney transplant recipients may lead to

better diagnosis, classification, and treatment of AR,

based on gene expression. Thus, we think genetics will

continue to play an important role in the future of

diagnosing, defining, and treating AR in kidney trans-

plant recipients.
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