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SUMMARY

Liver machine perfusion (MP) at normothermic temperature (NMP) is a
promising way to preserve and evaluate extended criteria donor livers. Cur-
rently, no consensus exists in methodology and perfusion protocols. Here, the
authors performed a systematic literature search to identify human and porcine
studies reporting on liver NMP with red blood cells. A qualitative synthesis was
performed concerning technical aspects of MP, fluid composition, gas supply,
and liver positioning. Thirty-seven publications including 11 human and 26
porcine studies were considered for qualitative synthesis. Control mode, pres-
sure, flow, perfusate additives, and targeted blood gas parameters varied across
human as well as porcine studies. For future analyses, it is advisable to report
flow adjusted to liver weight and exact pressure parameters including mean,
systolic, and diastolic pressure. Parenteral nutrition and insulin addition was
common. Parenteral nutrition included amino acids and/or glucose without
lipids. Taurocholic acid derivatives were used as bile flow promoters. However,
short-term human NMP without taurocholic acid derivatives seems to be
possible. This finding is relevant due to the lack of clinical grade bile salts. Near
physiological oxygen tension in the perfusate is doable by adjusting gas flows,
while blood gas parameters regulation needs more detailed description.
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Introduction

The increasing shortage of liver grafts forced the trans-

plant community to use marginal grafts. Given the

higher vulnerability of these grafts to cold storage, inter-

est in machine perfusion (MP) was reconsidered [1–3].
A major drawback in the field is the differences in

reporting [4]. The optimal perfusion protocol is also a

matter of debate [3,5–8]. Consequently, the publications

on MP have exhibited great discrepancies and the need

for a standardized reporting appeared as already

observed in other fields of surgery [9]. Recently, a stan-

dardized nomenclature and reporting guidelines for MP

were proposed. Temperature ranges were defined;

hypothermic MP (HMP) 0–12 °C, midthermic MP

(MMP) 13–24 °C, subnormothermic MP (SMP) 25–
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34 °C and normothermic MP (NMP) 35–38 °C. Tech-
nical aspects of MP, perfusion fluid composition, and

oxygenation modes are among the checklist parameters

for reporting [4].

Currently, many different variants of MP exist, rang-

ing from HMP to NMP. HMP is a simple and effective

method to rescue extended criteria grafts [10–13]. How-

ever, a lack of functional assessment possibility was

acknowledged [6,14]. NMP is an alternative for graft

function evaluation. Some recent case series reported

the possible evaluation of discarded human liver grafts

and successful subsequent transplantation [15,16].

Another possible application of NMP could be the res-

cue of steatotic livers [17–19]. There is no doubt that

NMP requires oxygen carriers to satisfy the oxygen

demand. Red blood cells (RBC) as oxygen carrier for

NMP are common. The growing number of publica-

tions gives enough support to systematically analyze

NMP protocols with RBC.

The aim of this review was to perform a systematic

search for existing RBC-based NMP protocols. Review

questions included technical aspects of MP, perfusion

fluid composition, and oxygenation modes as proposed

by international experts group [4]. In addition, liver

positioning was reported. Although there are some

reviews on the topic [8,20,21], a systematic one is miss-

ing.

Methods

This systematic review was conducted according to the

PRISMA statement [22–24]. A systematic literature

search of the databases Cochrane, Embase, Medline,

PubMed, and Scopus was conducted on 23rd of May,

2017, including only publications in English. The elec-

tronic search strategy was reported in the Table S1. Lim-

ited manual search was performed in January 2018.

Nonquantitative findings were systematically interpreted,

and qualitative synthesis was used to draw conclusions.

All human and porcine studies with liver NMP using

RBC were included. We excluded studies using artificial

oxygen carriers. Results of studies with synthetic hemo-

globin-based oxygen carriers (HBOC) were disappoint-

ing, even with stopping of the ongoing clinical trials by

FDA due to safety reasons [25]. Furthermore, HBOC

causes vasoconstriction, contributes to reactive oxygen

species release, and interferes with laboratory measure-

ments [25]. Their production price or viral safety is

another unsolved issue [25]. We excluded also another

artificial oxygen carrier perfluorocarbon. Perfluorocar-

bon is excreted through the lungs without metabolism

[26]. Thus, keeping the constant perfusate concentration

in a system with oxygenator could be a dilemma. In

addition, perfluorocarbon causes macrophage activation

[26]. HMP, MMP, and SNP protocols [4] were also

excluded to ascertain a consistent population and keep

the fluency of data interpretation. Furthermore, we did

not expect relevant variances, and some review articles

are available on the topic [8,10,11,13,27].

Data extraction and collection

Three reviewers (D.E., M.S., and F.L.) independently

screened all available abstracts. Full-text articles of

selected abstracts were obtained and eligible studies

included in the qualitative synthesis. The endpoints of

the qualitative synthesis were portal and arterial perfu-

sion parameters, perfusion fluid additives, provided gas

supply protocols, and liver positioning.

Results

Literature search

The systematic search identified 1358 abstracts. Of those,

636 were duplicates and excluded during electronic

search. Nine studies were added by manual search.

Totally 731 abstracts were screened, and 177 articles were

found to be eligible for full-text screening. After full-text

screening, 140 articles were excluded from further analy-

sis, leaving 37 publications to be included in the qualita-

tive synthesis (Fig. 1). Of those, 11 were human studies

and 26 were porcine. Most groups applied almost the

same perfusion protocol in different studies with varying

perfusion duration and graft characteristics. Perfusion

protocols were not changed from pig to human studies in

groups with experience in both. Thus, the articles with

the most detailed description were chosen, while the

remaining papers were excluded as a repetition. This was

also the reason to exclude some studies using RBC in

SNP [28,29].

Liver blood circulation: control mode, pressure, and

flow

Human studies

Perfusion was controlled by setting a pressure limit in

both HA and PV in the majority of the studies, while

two studies used a flow limit. In one study, the reservoir

was kept at a fixed height to maintain the hydrostatic

pressure for PV flow without applying any control,
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which lead to mean portal pressure of 17.9 mmHg [30].

Applied pressure in HA varied considerably from 40 to

100 mmHg. Nonpulsatile and pulsatile flow patterns in

HA were used in five and three studies, respectively, with

centrifugal pump. Two studies used a roller pump, and

one study did not specify flow and pump type in HA. In

studies with pulsatile flow, only mean pressure was

reported while systolic and diastolic ones were missing.

Data on HA flow were reported in two manners, either

in ml/g liver tissue/min or in ml/min in whole liver. In

those studies, where flow was reported in ml/min for the

whole liver, flow ranged from 100 to 450 ml/min. The

weight of the organ was lacking in most studies. In a

study by Mergental with a pressure control, a liver with

a weight of 1382 g showed a HA flow of 623 ml/min,

higher than the HA flow in the liver weighting 2400 g

(491 ml/min) [15]. Portal vein (PV) perfusion was per-

formed by either gravity derived pressure or a pump.

The reported PV pressure was higher than physiologic

one in some studies. In eight studies, where flow was

reported in ml/min for the whole liver, flow ranged from

660 to 1500 ml/min. Again, the liver weight was not

reported. In a study by Banan et al. [6], the authors

reported a liver weight range between 1750 and 5000 g

and flow in PV 1400 � 200. In the study by Mergental,

the liver with 1382 g had a PV flow of 1500 ml/min and

was higher than the flow in the liver weighting 2400 g

(700 ml/min) [15]. VC was kept open in six studies.

Three studies placed a cannula to drain VC. Of those,

one study reported the VC pressure of 1.3 mmHg, which

was controlled by pump head rotational speed [30].

Porcine studies

Perfusion of HA and PV was controlled by setting either

a pressure limit in 10 studies or a flow limit in eight

studies. In four studies, the control mode was different

between HA and PV. Applied pressure in HA varied

considerably from 40 to 120 mmHg. Both nonpulsatile

and pulsatile flow patterns in HA were used. HA flow

in six studies, reporting the data in ml/g liver tissue/

min, ranged from 0.14 to 0.38. In seven studies where

flow was reported in ml/min for the whole liver, flow in

the HA ranged from 90 to 400 ml/min and the weight

of the organ was again mostly lacking. The targeted

portal pressure was mostly in physiologic range except

4, where pressure higher than 12 mmHg was reported.

PV flow varied considerably across studies as observed

in HA flow. Details on the VC outflow were poorly

reported and only available in 13 studies. Of those,

eight kept the VC open. Studies using a closed system

with cannulation of the VC, targeted the VC pressure

less than 2 mmHg. However, technical aspects VC pres-

sure control were poorly reported (Table 1).

Figure 1 PRISMA flow diagram.
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Bolus and continuous perfusate components

Human studies

Bolus infusions prior to perfusion start can be retrieved

in eight studies and grouped into two groups: elec-

trolytes and antibiotics. Bicarbonates were used to cor-

rect pH prior to perfusion start in all studies except one

by Liu et al. [31], where bicarbonates were infused after

perfusion start. Another common electrolyte was cal-

cium, being used in six of eight studies. The most used

prophylactic antibiotics were substances of the cephalos-

porin group. Anaerobic and gram-positive bacterial

infection prophylaxis with metronidazole and van-

comycin, respectively, were used in two studies. Only

one study used broad spectrum antibiotic meropenem

and antifungal fluconazole (Table 2).

Parenteral nutrition, insulin, and taurocholic acid

derivatives (TA) were provided as continuous additives.

Parenteral nutrition contained glucose and/or amino

acids while avoiding lipids and was continuously infused

at a rate ranging from 3.5 to 20 ml/h. Insulin dose also

varied considerably from 0 to 200 U/h. Some studies

adjusted insulin depending on the perfusate glucose level.

TA was used in three studies, while five, including also

the transplant studies by Mergental and Watson, did not

include TA in the protocol [15,32]. All included studies

except one administered prostaglandins continuously,

although the type of administered prostaglandins varied.

Porcine studies

Similar to human studies, cephalosporin group was

common for bacterial infection prophylaxis. In contrast

to human studies, bicarbonates and calcium supple-

ments were less common (Table 3). Parenteral nutrition

infusion rate varied and included amino acids and/or

glucose without lipids. Inclusion of insulin and TA in

perfusion protocols was inconsistent. If insulin was part

of the protocol, the applied dose varied from 1 to

125 U/h. In opposite to human studies, prostaglandins

were less common and some other vasodilators were

explored [33,34].

Regulation of blood gas parameters

Human studies

The provided gas supply to the oxygenator was adjusted

depending on the PaO2 value. PaCO2 was adjusted

depending on targeted pH value. The targeted PaO2 was

higher than the physiologic level in almost all human

studies. In one human study, the authors compared the

post-transplant course between PaO2 of 621–971 mmHg

and PaO2 153–187 mmHg and reported that avoidance

of hyperoxia could prevent vasoplegia and postreperfu-

sion syndrome [32]. The provided gas to the oxygenator

either was a fixed mixture of 95% O2 and 5% CO2 or

regulated separately by the supply of air, O2 and CO2

(Table 4).

Porcine studies

Most studies targeted the supraphysiologic PaO2 similar

to human studies. The provided gas to the oxygenator

varied and some studies regulated gas flow separately to

adjust pH and PaO2. In four studies, blood in PV was

partially oxygenated. Partial oxygenation was created by

adding a bypass from the oxygenator to the reservoir

[35,36] or the direct mixture of arterial and venous

blood in the PV line [37,38].

Liver positioning during MP

Human studies

Most included human studies used a commercially

available perfusion machines. In three, authors own

developed liver container was described. In these stud-

ies, the livers were floating in fluid to avoid compres-

sion areas (Table 5).

Porcine studies

In the porcine studies, the authors mostly used a self-

made liver container. The preferred type of positioning

was to let the liver float in the perfusate or in a physio-

logic saline solution. In some studies, authors put the

liver in a pressure chamber to test the effect of applying

an oscillating external pressure on perfusion parameters

(Table 5).

Discussion

Ex vivo liver MP is already being used in clinical trials

but many relevant aspects are still poorly defined.

Considering perfusion regulation, the question

remains unanswered if HA and PV perfusion should be

controlled with pressure or flow. Probably, both strate-

gies are applicable, as an increase in flow causes a rise

in pressure, and vice versa. However, the optimal pres-

sure and flow in HA and PV to maintain the perfusion
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remains open in this review. Pressure in HA varied con-

siderably between 40 and 120 mmHg and none of

included studies provided the reason for applied pres-

sure. To define portal hypertension, hepatic venous

pressure gradient (HVPG) is used in clinical practice.

HVPG higher than 5 mmHg is defined as portal

hypertension and higher than 10 mmHg is termed as

clinically significant portal hypertension with increased

patient mortality [39]. Pressure target higher than

15 mmHg in PV in some included studies is therefore

unusual. No explanations were provided by the authors

on the potential reasons. VC target pressure of

Table 1. Perfusion control mode, pressure, and flow during NMP.

Author

Perfusion
control

Pressure
mmHG

Flow
ml/min

CommentFlow Pressure HA PV HA PV

Human studies
Banan [6] HA/PV 85 9 450 � 150 1400 � 200
Bellomo [74] HA/PV 40–60 5–15 100–300 700–1000
Darin [38] HA/PV – – – – PV control by reservoir height
He [19] HA/PV – – 250–300 800–900
Karimian [69] HA/PV 70 11 256 � 16 748 � 34
Liu [31] HA/PV 60–100 7–10 0.25 0.75 Flow reported as ml/g/min
Mergental [15] HA/PV – – 360–654 700–1500 One liver with different machine
Reiling [61] HA/PV 70 5–15 300–375 550–750
Vekemans [75] PV HA 80 9 – 1.2 Flow reported as ml/g/min
Vogel [30] HA 73.6 � 1.7 17.9 � 0.7 330 � 30 986 � 30 HA and VC control by pump

speed. PV without control under
gravitational pressure

Watson [32] HA/PV 60 9 208–349 660–1130
Porcine studies
Abouna [76] HA/PV – – – – VC control with gate clamp
Adham [64] HA PV – – 0.25 0.75 Flow reported as ml/g/min

Total hepatic flow control with
PV pressure adjustment

Bell [63] HA/PV 70 5.1 0.2 0.9 Flow reported as ml/g/min
Borie [77] HA/PV 100–120 15–20 0.11–0.38 0.34–1.15 Flow reported as ml/g/min
Chung [78] HA/PV 80–100 <10 – –
Cimeno [79] HA/PV 60–80 5–10 – –
Echeverri [33] HA/PV 60 2–4 400 900–1200
Fondevila [80] HA/PV 40–60 8 163 745 Flow at perfusion start
He [81] HA/PV 80–100 8–10 110–240 310–590
Hickman [68] HA/PV – – 0.14 0.8 Flow reported as ml/g/min
Hoyer [82] PV HA 80 – – 0.8 Flow reported as ml/g/min
Ikeda [83] HA/PV – – 0.33 0.67 PV control by reservoir height

Flow reported as ml/g/min
Jablonksi [34] HA PV – 16.2 150–200 –
Janssen [36] HA/PV 100 11 – – Total flow 1–2 ml/g/min
Mets [60] HA/PV <100 <18 95 425 PV/VC control by reservoir height
Nagel [41] HA/PV 80 8 18 42 Flow reported as ml/100 g/min
Satoh [84] HA/PV – – 0.15 0.75 Flow reported as ml/g/min

VC control with pressure gradient
Schoening [48] HA/PV 58–91 12–23 – – PV reservoir 20 cm above the liver
Sch€on [50] PV HA 50–75 3.7–11 150–250 800–1000
Steffen [73] HA/PV 80 2–3 – – PV control with bubble trap height

VC control with reservoir height
Xu [85] HA/PV 70–80 5–8 300–400 1200–1500
Zhang [86] HA/PV – – – – –

Water column converted to mmHg, for pulsatile flow mean arterial pressure was reported.

HA hepatic artery, PV portal vein, VC vena cava.
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<2 mmHg could be explained with prevention of liver

congestion. The next perfusion parameter assessed was

flow. It is reported that in vivo liver flow is 100 ml/min

per 100 g liver wet weight [40]. Indeed, some authors

applied this reference during perfusion, while others

not. The porcine study by Nagel et al. [41] controlled

the perfusion with pressure in HA and PV and reported

total liver flow rate of 60 ml/min per 100 g liver wet

weight, which is far below than reference. The human

study by Liu et al. [31] targeted the reference flow and

reported pressure of 60–100 mmHg in HA and 5–
10 mmHg in PV. The reasons for such variations were

not discussed. The further results in this review also

challenge the applicability of the reported in vivo refer-

ence in ex vivo setting. According to this rule, the liver

weighting 5 kg in the study by Banan et al. [6] should

have received 5 l/min blood during NMP. Looking at a

flow rate of 450 � 150 in HA and 1400 � 200 in PV in

this study, the total flow was most probably not 5 l/

min. In the human study by Mergental et al. [15], the

total flow rate in the liver weighing 1382 g was higher

than the flow rate in the liver weighting 2400 g. Of

most, uneventful transplant outcome in both cases cre-

ates a dilemma in interpretation of clinical relevance of

flow rate. Interestingly, flow and pressure questions

could not definitively be solved also with the upcoming

of cardiopulmonary bypass (CPB) [42]. Applied pres-

sure and flow during CPB varies substantially by insti-

tution and is influenced by developed practice

paradigms [42,43]. While many institutions maintain

the mean arterial pressure higher than 50–60, other data
support pressure >70 mmHg. The value 50 mmHg is

most probably based on the lower pressure limit of ade-

quate cerebral perfusion autoregulation [42]. In the

Table 2. Baseline perfusate additives prior NMP start.

Author Antibiotics Electrolyte Others

Human studies
He [19] Cefoperazone 1.5 g Bi 30 ml, Ca 10 ml Amino acids 250 ml

Metronidazol 0.5 g Ma 3 ml Extracellular fluid: Succinylated gelatin
Karimian [69] Metronidazol 0.2 g Bi 31 Albumin 100 ml, multivitamins insulin 2000 IU, nutrition

Cefazolin 0.2 g Ca 40 ml Extracellular fluid: Fresh frozen plasma
Liu [31] Vancomycin 0.5 g – Methyl prednisolone 0.5 g

Cefotoxime 1 g Extracellular fluid: Fresh frozen plasma
Mergental [15] Vancomycin500 mg Bi 30 ml, Ca 10 ml Extracellular fluid: Albumin

Gentamicin 60 mg
Reiling [61] – Bi, Ca Extracellular fluid: Albumin
Vekemans [75] – Bi Extracellular fluid: Aqix-RS-I enriched with albumin
Vogel [30] Cefuroxime 750 mg Bi, Ca 10 ml Extracellular fluid: Crystalloid solution, the same group

reported also with succinylated gelatin solution
Watson [32] Meronem/fluconazole Bi30 ml, Ca, Ma Amino acids

Extracellular fluid:succinylated gelatin or Steen solution
Porcine studies
Abouna [76] – – Glucose
Borie [77] Cefamandole 750 mg –
Chung [87] Cefuroxime 750 mg Bi 40 ml, Ca10 ml Epoprostenol 40 lg
Echeverri [33] Cefazolin 1 g Bi, Ca Albumin, Amino acids, Vasodilator (BQ-123) and Verapamil

in study groupsMetronidazole 0.5 g
Gong [88] – Ca
He [81] Cefuroxime 1.5 g Glutathione 600 mg

Alprostadil10 lg
Hoyer [89] – Bi, Ca D4%W – 40 ml
Satoh [84] Ampicillin 500 mg – Hydroxycortisone 100 mg
Schoening [48] Tobramycin 40 mg – Iloprost
Sch€on [50] – Bi Fructose, oleat, amino acids, and free radical scavengers
Steffen [73] – Bi Albumin
Xu [85] Penicillin 40 000 U/l – Insulin (2 U/l), Hydrocortisone (10 mg/l)

Streptomycin 40 mg/l
Zhang [86] Cefuroxime 1.5 g P-E1 10 lg, Glutathione 600 mg

Bi, Bicarbonates, Ca, Calcium, Ma, Magnesium.
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same context, a flow rate of 2.2–2.5 l/min/m2 is more

common in use [42]. The targeted pressure in HA dur-

ing NMP seems to be at least 50 mmHg, keeping the

upper limit unsolved. The physiologic PV pressure

ranges seem to be reasonable. The optimal liver weight

adjusted flow is, however, not easy to define. With

growing number of publication in the field, this ques-

tion could be addressed in the future studies. To make

future comparisons among studies possible, it is advis-

able to report flow rates adjusted to liver weight. Fur-

thermore, we probably need to redefine the flow

reference. The reported in vivo reference of 100 ml/min

per 100 g liver has its origin from early 1970s [40].

Recently reported in vivo liver weight adjusted flow

rates, measured by modern flow measurement devices

in pigs, were far beyond the reference [44].

Another parameter that could have influenced such

variation in flow and pressure in ex vivo setting is the

missing complex in vivo regulation mechanisms of

intrahepatic blood circulation. In the absence of those

physiological control mechanisms in an ex vivo setting,

resistance in the vascular bed could be substantially

Table 3. Continuous perfusate additives during NMP.

Author Nutrition Insulin Bile acid Prostaglandins Electrolyte Other

Human studies
Banan [6] PN rate 7 ml/h 20 U/h 7 ml/h Prostacyclin 10 lg/h – L-carnitine/exendin-4

in steatotic liversA 4.25%, G 5%
Bellomo [74] PN rate 5 ml/h 10 U/h – Epoprostenol once –

A 3.3%, G 9.7%,
L: 3.9%

Karimian [69] – – – – –
Liu [31] PN rate 3.5 ml/h

A 5%, G 15%
4 U/h – Epoprostenol 6–60 lg/h Bi o.d. Multivitamins/trace

elements, G
Mergental [15] – – – Epoprostenol 8 lg/h –
Reiling [61] PN rate 20 ml/h 50–200 U/h 7 ml/h Prostacyclin 8 lg/h –
Vogel [30] PN rate 15 ml/h Yes 140 mg/h Epoprostenol 8 lg/h – PN/insulin control
Watson [32] – Yes – Epoprostenol 2 lg/h Bi o.d.

Porcine studies
Borie [77] – 4 U/h – – Bi o.d.
Chung [87] – 100 U/h 200 mg/h Epoprostenol 40 lg/h Bi 40 ml/h
Echeverri [33] PN rate 8 ml/h 125 U/h 7 ml/h P–E1 500 lg/3 h – Vasodilator (BQ-123)

and Verapamil
bolus, Epoprostenol
8 lg/h

A 4.25%
G50W 2–5 ml/h

Gong [88] G50W 20 ml/h – – – –
Fondevila [80] – – – – Bi o.d.
He [81] PN rate 10 ml/h 6–10 U/h – – – Famotidine,

1-benzylimidazole
A 5%, G 5% aGPIb

Hoyer [89] PN rate 4 ml/h 1.5 U/h 0.15 mg/h – –
G 12 ml/h

Ikeda [83] – – – – Bi o.d.
Jablonski [34] – – 4 pmol/min – Bi o.d. Vasodilators with no

or only short effect
Kern [90] G 8 g/h 8 U/h – – –
Mets [60] – – – – Bi o.d.
Satoh [84] G50W 1 U/h – P – E1 25 ng/h – G > 150 mg/dl
Schoening [48] – – – Iloprost 2 ng/kg/min –
Steffen [73] – – – – Yes
Zhang [86] PN rate 10 ml/h 6–10 U/h – – Yes G, insulin, pH,

electrolyte controlA 5%
G5W 10 ml/h

Parenteral nutrition (PN) was reported in rate (ml/h) with concentration (%) of amino acids (A), glucose (G) and lipids (L). Bile
acids included taurocholic acid derivatives. Bicarbonates Bi, G50W glucose in water 50%; o.d. on demand.
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Table 4. Gas supply protocols during NMP.

Author

Target

Oxygenator gas mixture CommentSO2 (%)/PO2 mmHg PCO2 (mmHg)

Human studies
Banan [6] 275–578 mmHg – 95% O2 and 5% CO2

Bellomo [74] HA 60–120 mmHg – Air and O2 pO2/pCO2 control with
gas flow ratePV 20–60 mmHg –

Darin [38] – – 95% O2 and 5% CO2 Partial oxygenation in PV
Karimian [69] 450 mmHg – 95% O2 and 5% CO2 4 l/min Separate sources of O2

and CO2 is advisable, to
adjust the pH

– –

Liu [31] – – O2 pH control with O2 flow
rate

Vekemans [75] 300 mmHg –
Vogel [30] – – Air and O2 mixture Automatic control
Watson [32] HA A: 621–671 mmHg – A: O2 and CO2 mixture Two different oxygen

content (A versus B)HA B: 153–187 mmHg
PV B: 65%–85% – B: air and CO2 mixture pH control with pCO2

flow rate
Porcine studies
Adham [64] – – A: 76% N2, 19% O2, 5% CO2 High partial oxygen

pressure was deleterious
to mitochondria

– – B: 95% O2 and 5% CO2

Bell [63] – – O2 and CO2 pH control with CO2 flow
rate

Borie [77] 200–300 mmHg – 95% O2 and 5% CO2 1–3 l/min
Chung [78] – – 95% O2 and 5% CO2 2 l/min
Cimine [91] – – – Partial oxygenation in PV
Echeverri [33] – – 95% O2 and 5% CO2

Gong [88] – – O2 pH, PaCO2 adjusted at start
Ikeda [83] – – O2 1 l/min and CO2 pH control with CO2 flow

rate
Jablonski [34] – – 95% O2 and 5% CO2

Janssen [36] HA 105–150 mmHg 22–45 mmHg 95% O2 and 5% CO2 Partial oxygenation in PV
PV 37–75 mmHg 22–75 mmHg CDI 500, TERUMO for

blood gas parameter
monitoring

He [81] 250–500 mmHg 30–50 mmHg O2 0.2 l/min
Hickman [68] HA 100% – –

PV 60–70%
Hoyer [82] 150–200 mmHg 30–50 mmHg Air, O2 and CO2 pH control with pCO2

level. Control with gas
flow rate

Kern [90] – – O2, and CO2

Mets [60] 200–250 mmHg 35–40 mmHg O2, CO2 and air Control with gas flow rate
Nagel [41] 100% – 97.5% O2 and 2.5% CO2

Neuhaus [37] – – – Partial oxygenation in PV
Satoh [84] HA 100–150 mmHg – 30% O2

PV 45–60 mmHg –
Schoening [48] 350–550 mmHg – 95% O2 and 5% CO2 Partial oxygenation in PV
Zhang [86] 80–100 mmHg 30–50 mmHg – Control with gas flow rate
Abouna [76],
Sch€on [50],
Steffen [73], Xu [85]

– – 95% O2 and 5% CO2
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altered [29,34]. Prostaglandins were the most commonly

used vasodilator as this review shows. They have been

shown to increase total blood flow through the liver

and oxygen transport capacity in a porcine studies

[45,46]. Interestingly, the positive effects of prostaglan-

dins were more prominent in DCD livers [7]. The posi-

tive effect of prostaglandins in DCD livers was

explained by improved microcirculation and protection

of endothelial cells [47], as well as their anti-inflamma-

tory effect [7,48]. The present review could, however,

not identify a clear recommendation for the dosage of

prostaglandins. Furthermore, the optimal vasodilator for

ex vivo liver perfusion is yet to be defined [33]. In this

context, the interesting study addressing different

vasodilators was published recently by Echeverri et al.

The authors compared BQ123, epoprostenol, and

verapamil. The control group had no vasodilators and

demonstrated the worst results. Flow in HA during

NMP was higher in BQ123 compared with verapamil,

epoprostenol, and no vasodilator-treated livers. The

positive effect of BQ123 was also expressed with lower

peak aspartate aminotransferase levels after transplanta-

tion compared to verapamil and epoprostenol. Total

bilirubin normalized international ratio and alkaline

phosphatase level were lower in the BQ123 and vera-

pamil groups compared to epoprostenol group [33].

Having an approval for human use verapamil could be

also an option to test in human studies.

One of the main bolus additive used was antibiotics.

Antibiotics were added empirically without microbio-

logic sampling. Other bolus additives, bicarbonates, and

calcium were used in human studies more common

Table 5. Liver positioning during NMP in self made sets.

Author Liver position Comment

Human studies
Banan [6] Liver suspended in perfusate
Bellomo [74] Liver suspended in net and placed in water bath
Liu [31] Liver suspended in perfusate

Porcine studies
Adham [64] Liver suspended in plastic bag
Abouna [76] Liver suspended on plastic sling to mimic the diaphragm and subjected to

intermittent oscillations by ventilator to stimulate respiratory movement
Borie [77] Liver in sterile plastic bag floating in normal saline
Echeverri [33] Liver suspended in water bath
Hoyer [89] Liver placed in moist and heated chamber
Jablonski [34] Liver placed on stainless steel grid, either on the visceral or diaphragm side. No differences during

perfusion between visceral
and diaphragm positioning

Jamieson [45] Liver in intestinal bag and placed onto water-filled balloons
within stainless steel bowl

Janssen [36] Liver in sterile plastic bags immersed in dialysate. Sealed chamber
subjected to intermittent pressure variations by an external air pump
(from 0 to 25 cm H2O).

Kern [90] Liver suspended in gauze sling
Nagel [41] Liver wrapped in sterile plastic bag and placed on shell to mimic the

surface of the diaphragm. Water bath underneath.
Neuhaus [37] Liver suspended in perfusate, within organ chamber undergoing

external pressure variations
Variation in organ chamber
pressure modulated the
blood flow in portal vein and
vena cava but not in the
hepatic artery.

Satoh [84] Liver floated in a colloid solution
Schoening [48] Liver fixed to portal line and floated freely in perfusate
Steffen [73] Liver placed in transparent heated organ chamber undergoing

external pressure variations
Simulating respiratory
movement lead to pressure
variation of 25 cm H2O in
the organ chamber

St. Peter [92] Liver in intestinal bag and suspended in saline solution
Xu [85] Liver suspended in perfusate
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compared to porcine studies. RBCs for human studies

are usually preserved in a citrate-based preservation

solution without calcium and have a low pH due to lac-

tate and hence require regular pH and calcium adjust-

ments. Extracellular fluid is also required due to nature

of available human RBS for NMP. Fresh-frozen plasma,

albumin, gelatins even a crystalloid solution were used

in included studies. Of those, albumin is a natural col-

loid with less side effects compared to synthetic colloids.

It possess also antioxidant effect and is a principal bind-

ing protein of endogenous and exogenous substances

[49]. The price and availability albumin could be con-

sidered as disadvantage. In opposite, gelatins are cost-

effective and have been used also in clinical setting.

However, superiority of one fluid compared to other is

yet to be defined. In porcine studies, the blood is usu-

ally harvested shortly before perfusion start and all

blood parameters are therefore in physiologic range. It

could explain why most porcine studies did not include

electrolyte correction during perfusion or prior to per-

fusion start.

Continuous addition of parenteral nutrition was

included in most studies. In historical porcine studies,

addition of glucose to the perfusate was necessary to

achieve optimal bile flow and a low arterial resistance

[34]. A positive effect of parenteral nutrition was also

observed in a later porcine study by a group from Ber-

lin, Germany [50]. The authors tested short time perfu-

sion with and without adding metabolic support.

During short time perfusion of 6 h, the addition of

metabolic support substantially reduced the release of

cell injury markers and improved the ammonia

metabolism. Electron microscopy also confirmed a posi-

tive effect of metabolic support [50]. A recently com-

pleted randomized controlled trial, comparing the value

of NMP versus cold storage, included insulin and par-

enteral nutrition without lipids [51]. Furthermore, glu-

cose decline and storage as glycogen is considered as a

good sign of liver functionality [6]. In many protocols,

insulin was used to correct glucose level, although the

insulin dose varied across studies. The addition of insu-

lin most probably takes its origin from a study by Starzl

et al. [52–54], where insulin was demonstrated to have

hepatotrophic effects. The lobe provided with pancreatic

hormones from portal blood displayed hypertrophy and

hyperplasia, whereas the other lobe supplied with

intestinal blood lacking pancreatic hormones became

atrophic. In further studies, only insulin was identified

to have hepatotrophic effect [55]. Based on these obser-

vations, one can conclude that for a successful ex vivo

liver perfusion, insulin could be essential.

As stated in the results section, most groups applied

almost the same continuous additives in human and

porcine liver perfusion [30,31,56]. Pig metabolism is

five times higher than the human one [57]. Theoreti-

cally, to the same dose of parenteral nutrition and insu-

lin during porcine and human liver perfusion, a

different response in each is possible. If porcine contin-

uous additives should be adjusted to human setting is

unclear. The authors of this review could not find any

study which stated that one of the perfusion parameters

was changed due to differences between human and pig.

During manuscript screening, many porcine studies

were excluded, where authors used almost similar

Table 6. Up-to-date practical points for NMP with red blood cells.

NMP aspects Practical points

Hepatic artery/portal vein perfusion Target hepatic artery pressure higher than 50 mmHg
Report mean, systolic and diastolic pressure for pulsatile flow
Target portal pressure in physiologic range
Report flow adjusted to liver weight

Bolus and continuous additives Correct electrolytes prior perfusion start
Provide parenteral nutrition with amino acids and glucose
Add hepatotrophic insulin
Use taurocholic acid derivatives to promote bile flow
Short term perfusion without bile salts might be possible
Use vasodilators to modulate arterial resistance

Blood gas parameters Report gas flow protocol in detail
Target physiologic PaO2 level
Target physiologic pH with adjusting PaCO2 level
Use separate gas flow to target PaO2 and PaCO2

Do metabolic acidosis work up prior bicarbonates use
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perfusion protocol to explore ex vivo perfusion of grafts

with steatosis, donated after circulatory death or per-

fused longer than 24 h. If bolus or continuous additives

should be adjusted depending on perfusion duration

and graft characteristics remains also unclear.

A continuous bile production is required for the

elimination of toxic waste products [58]. A reduced bile

secretion leads to intracellular accumulation of those

compounds and subsequent liver function deterioration

and biliary canaliculi damage [58,59]. TA substitution

has been demonstrated to have a positive effect on bile

production [60]. Thus, some human and porcine proto-

cols included TA to maintain an adequate bile salt pool

[30,34,58,61]. The choice of TA seems to be related to

its ideal properties for ex vivo perfusion such as suffi-

cient choleretic function and low hemolytic effect [58].

However, the addition of TA is controversially discussed

as some authors argue that the concentration of bile

salts does not deplete in the first 10 h of NMP [62–64].
Uneventful outcome after transplantation of ex vivo per-

fused human livers without TA in the study by Mergen-

tal et al. [15] supports the statement that short-term

human liver perfusion without TA is possible. These

results become even more relevant due to lack of clini-

cal grade bile salts [16].

Blood gas supply and the targeted oxygen values varied

considerably. A recent clinical trial published by Watson

et al. provided some insight into the value of controlling

the oxygen supply. The authors transplanted 12 initially

discarded human livers after ex vivo NMP. Half of the liv-

ers were perfused at supra-physiological PaO2, and the

other half was perfused at near-physiologic PaO2. The

authors could show a trend toward more severe

postreperfusion syndrome and vasoplegia in the patients

receiving a liver perfused at supra-physiological PaO2

[32]. While the grafts and recipients were very heteroge-

neous in the study by Watson et al., the same deleterious

effect of high PaO2 has already been shown by others,

where hyperoxia caused severe hepatic reperfusion injury

[65]. The negative effect of high oxygen contents during

NMP is also supported by evidence during CPB or during

resuscitation after cardiac arrest [66,67]. Of note, most of

human and porcine studies provided arterialized blood

through the PV, while only few provided partially oxy-

genated blood [32,48,68]. No studies are available explor-

ing advantages, disadvantages, or technical challenges of

partial oxygenation compared to arterialized oxygenation

in portal blood. A further target of the blood gas supply

was PaCO2. CO2 removal by increasing the gas flow rate

leads to alkalosis making possible to use it in controlling

pH as shown by included studies. A fixed mixture of

gases, for example, 95% O2 and 5% CO2, makes an

adjustment of pH and PaCO2 in the perfusion fluid

impossible if PaO2 is also controlled. Hence, separate

sources of O2, air (N2) and CO2 supply are recommended

if an individual control of PaO2 and PaCO2 or pH is

desired [69]. Bicarbonates were used to correct pH along-

side PaCO2 adjustment in included studies. However,

metabolic acidosis that cannot be corrected by adjusting

PaCO2 should urge to search first the causes. If metabolic

acidosis related to lack of lactate clearance and poor liver

function, bicarbonates would a symptomatic treatment.

When bicarbonates are indicated, then it should be

administered as slow infusion controlling the amount of

produced CO2 to prevent rapid exacerbation of intracel-

lular acidosis. Further disadvantages of bicarbonates are

hyperosmolality due to hypernatremia, volume overload,

and pH overcorrection, which could be even more harm-

ful than acidosis [70].

Anatomically, the liver is suspended under the dia-

phragm and rests on the gastrointestinal organs. Move-

ments of the diaphragm during respiration with

consequent intra-abdominal pressure changes may exert

alternating negative and positive pressure on the liver

vasculature [37]. Some authors were concerned with

liver positioning ex vivo, where all those parameters are

lacking and extensive work on liver positioning was per-

formed [37]. Researchers let the liver float in a con-

tainer filled with an asanguineous solution to avoid

pressure areas. The downside of this technique is that it

does not allow to recirculate blood lost from the wound

surface [71]. However, the collection of perfusate is not

an issue if the liver is floating in its own perfusate [48].

Positioning the liver on its visceral or diaphragm sur-

face did not show any differences [34]. Further in vivo

studies are also in accordance with this finding and

confirmed no influence of gravity in liver perfusion

[72]. To imitate intra-abdominal pressure variations

due to the respiration, some authors tested the perfu-

sion in a hermetically closed chamber and changing the

pressure inside periodically by 25 cm H2O [37,38,73].

This lead to an oscillation effect on PV and VC flow

and homogenous liver perfusion. In contrast, liver per-

fusion without this oscillation was inhomogeneous, even

with thrombosis in peripherial regions. Authors claimed

that imitating intra-abdominal pressure variations dur-

ing ex vivo perfusion seems to be beneficial [37].

In summary, this review reported technical aspects of

MP, perfusion fluid composition, and oxygenation

modes as follow-up of recently published international

experts group recommendation for MP [4]. An over-

view with up-to-date practical points for RBC-based
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NMP can be found in Table 6. For future studies, it is

advisable to report perfusion protocol more in detail.
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