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SUMMARY

Inhaled nitric oxide (iNO) is usually used during lung transplantation
despite controversial postoperative benefits. Our group chose to administer
iNO systematically during the procedure and stop at the end of surgery.
This study aims to describe the features of patients who cannot be weaned
from iNO, the reasons for this and its impact on postoperative outcomes.
This is a monocentric cohort study comprised all consecutive patients who
underwent double-lung transplantation (DLT) between 1 January 2012 and
1 January 2016. The impact of iNO dependency on postoperative out-
comes was estimated using a boosted inverse probability of treatment
weighting estimator.
A total of 9.8% of the 173 patients included in the study could not be
weaned from iNO at end-surgery stage. Body mass index (OR = 2.03, 95%
CI = 1.14–3.29, P = 0.02) and intraoperative extracorporeal membrane
oxygenation (OR = 1.80, 95% CI = 1.02–2.72, P = 0.04) were risk factors
for iNO dependency In the weighted population, iNO dependency was
associated with an increased prevalence of grade 3 primary graft dysfunc-
tion (adjusted RR = 4.20, 95% CI = 1.75–10.09, P < 0.001) and decreased
postoperative survival during the first 1500 days of follow-up (adjusted
HR = 5.0, 95% CI = 1.86–13.48, P < 0.001).
Inhaled nitric oxide dependency is an early marker of a poor prognosis fol-
lowing DLT.
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Introduction

Inhaled nitric oxide (iNO) is a selective pulmonary

vasodilator that can be useful during lung transplanta-

tion because it (i) decreases pulmonary arterial resis-

tance and has a favorable effect on right ventricular

function [1], (ii) enhances arterial oxygenation by opti-

mizing the ventilation/perfusion ratio [2], (iii) prevents

reperfusion edema by reducing pulmonary capillary

pressure and inhibiting leukocyte-endothelial interac-

tions [3,4], (iv) decreases ischemic-reperfusion lesions

and early inflammatory insults to the graft [5,6] and (v)

prevents apoptosis [7]. The potential beneficial effects

of iNO may impact all phases of lung transplantation,

especially during single-lung ventilation and pulmonary

artery clamping or after reperfusion and re-ventilation

of the grafted lungs. Hence, iNO is widely used in this

indication despite a lack of randomized controlled trials

supporting its benefits in terms of oxygenation, pul-

monary ischemia-reperfusion injury or the prevention

of primary graft dysfunction (PGD) [8].

However, because iNO is systematically delivered

throughout a lung transplant procedure at our institu-

tion, we were able to identify a group of patients who

could not be weaned from iNO at the end of the proce-

dure (“iNO-dependent” patients) for hemodynamic

and/or respiratory reasons. The goal of this study was

to describe the features of these patients, the reasons for

iNO dependency at the end of their surgery and its

impact on postoperative outcome.

Methods

This study is a retrospective analysis of a prospectively

maintained institutional Anesthesia Lung Transplant

Database. Ethical approval for this study was provided

by the Ethical Committee of the French Society of

Anesthesia and Intensive Care (SFAR) (Chairperson,

Prof. J. E. Bazin) on 11 November 2017 (Reference

00010254-2017-015). Patient consent was waived. The

Foch Lung Transplant group attests that they performed

all procedures in strict compliance with the Interna-

tional Society for Heart and Lung Transplantation

ethics statement.

All consecutive patients who underwent double-lung

transplantation (DLT) at Foch Hospital between 1 Jan-

uary 2012 and 1 January 2016 (a convenient sample

population selected because of its stability in terms of

medical and surgical practices) were eligible for inclu-

sion in the registry. Patients transplanted twice during

the study period or undergoing multiorgan

transplantation, patients who required preoperative

extracorporeal membrane oxygenation (ECMO) or

intraoperative cardio-pulmonary bypass, and those in

whom ECMO was started during the surgical procedure

but could not be weaned before Intensive Care Unit

(ICU) transfer were excluded from the analysis. All

organs were obtained from brain-dead donors regardless

of etiology.

Intraoperative transplant protocol

Surgical technique

DLT, consisting of two successive mono-pulmonary

transplants [9], is performed via two antero-lateral tho-

racotomy incisions in almost all cases. Implantation of

the first graft follows these steps: anastomose of the

main bronchi, anastomose of the donor and recipient

atrial cuffs and anastomose of the pulmonary arteries.

The graft is re-inflated gently and then re-perfused

gradually. Deairing of the graft is performed anteriorly,

then the pulmonary artery clamp is replaced and the left

atrial clamp is removed to allow back bleeding. Once

good function of the new donor lung is confirmed, the

second implantation follows the same sequence. Two

drainage tubes are placed in each thoracic cavity at the

end of the procedure.

Anesthetic management

The standardized perioperative anesthetic management

protocol used at this institution has been published

recently [10]. It combines total intra-venous anesthesia

with propofol, remifentanil, atracurium and thoracic

epidural analgesia through which an opioid and a local

anesthetic is administered just before surgical incision.

Intraoperative hemodynamic monitoring includes

systemic arterial pressure continuous monitoring, pul-

monary artery catheterization (Swan-Ganz CCOmbo

Pulmonary Artery Catheter; Edwards Lifesciences Corp,

Irvine, CA, USA) and transesophageal echocardiography

(TEE) (Vivid 7 and a multiplane probe 6.2/5.0 MHz,

GE Healthcare, Fairfield, CT, USA). A standardized TEE

examination is performed at each step of the procedure

to examine especially left and right ventricular functions

[11,12]. TEE is also used, in particular, to look for a

patent foramen ovale, to help to position the venous

cannula when using veno-arterial ECMO and to assess

the vascular anastomoses [13]. Moreover, TEE shows, at

any time during the procedure, the reason for acute

hemodynamic modifications (decrease in blood
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pressure, increase in pulmonary artery pressure,

decrease in cardiac output and in mixed pulmonary

venous oxygen saturation especially) or to diagnose the

reason for failure of weaning ECMO or discontinuing

iNO at the end of the surgical procedure.

Tranexamic acid is administered as a bolus dose of

30 mg/kg followed by a continuous infusion of 5 mg/

kg/h. Cell salvage is used except in patients with cystic

fibrosis.

A protective ventilation strategy is used after the first

graft is implanted. The protocol is as follows: (i) a tidal

volume of 5–6 ml/kg ideal body weight to reach a max-

imum plateau pressure of 30 cm H2O; (ii) the

respiratory rate adjusted to maintain arterial pH in a

normal range (7.38–7.42) and (iii) positive end expira-

tory pressure (PEEP) maintained between 5 and 10 cm

H2O.

Inhaled nitric oxide protocol (iNO)

NO is delivered using OptiKINOXTM, which was inte-

grated into a mobile, ready-to-use treatment station

consisting of two tanks containing a 225 ppm gas mix-

ture NO (Air Liquide, 75321 Paris, France). OptiKI-

NOXTMallows NO to be sequentially administered

during inspiration via the inspiratory limb of the venti-

lator to achieve a targeted dose of iNO.

In our series, iNO was administered in all cases at an

initial concentration of 10 ppm after verification of the

adequate positioning of the double lumen tube and

beginning of ventilation of the native lungs and then

through surgery. iNO was never stopped before the end

of the procedure. Intravenous or inhaled prostaglandin

is not used at our center.

ECMO management

Veno-arterial ECMO, mostly peripherally, was inserted

during surgery in cases of a hemodynamic disturbance

refractory to standard medical treatment such as after

pulmonary artery clamping or respiratory failure refrac-

tory to ventilation optimization (i.e., major hypercarbia

with significant respiratory acidosis or refractory hypox-

emia).

End of the procedure

Patient care procedure before transfer to ICU is

described in Figure 1. It comprised three successive tri-

als: the first one to remove ECMO, the second to stop

iNO and the third to extubate the patient in the operat-

ing theater.

Regarding ECMO, a positive weaning test was defined

as (i) a stable mean arterial pressure above 60 mmHg

with a minimal dose of vasopressors after reducing

ECMO blood flow and (ii) a PaO2/FiO2 ratio >200
with FiO2 = 40% on ECMO and FiO2 < 50% on the

ventilator. TEE was performed during this trial to look

for a possibly treatable cause of failure: low filling state,

right ventricular dysfunction (end-diastolic and end-sys-

tolic surfaces with a dilated right ventricle with a frac-

tional area change <35%, interventricular septum

curvature with the RV/LV ratio, reduced tricuspid

annular plane systolic excursion, severe tricuspid regur-

gitation and backflow in the inferior vena cava and in

the sus-hepathic veins, . . .) or left ventricular dysfunc-

tion (global and segmental left ventricular systolic func-

tion). Moreover, a restricted or kinked or thrombotic

vascular anastomosis is searched for whether it is a pul-

monary artery anastomosis, which can lead to a right

ventricular dysfunction, or a venous anastomosis, which

can induce lung edema and hypoxemia. TEE could also

find some unexpected causes such as heart compression

from pleural fluid or pericardial fluid, a dynamic right

ventricular outflow tract obstruction (the so-called “sui-

cide right ventricle”). Finally, TEE allows also a qualita-

tive evaluation of the right to left shunt due to a patent

foramen ovale, for a better interpretation of a hypox-

emic state. Patients were kept under ECMO if they did

not pass the ECMO weaning trial (patients excluded

from the analysis).

In all other cases, an iNO weaning trial was per-

formed when the PaO2/FiO2 ratio was greater than 100.

A failure was defined as a substantial decrease in PaO2

or as a hemodynamic worsening shown by Swan-Ganz

parameters and on TEE which searched especially for an

eventual right to left shunt due to a foramen ovale for a

better interpretation of a hypoxemic state and a right

ventricular dysfunction using the same criterion as dur-

ing the ECMO cessation trial. In case of failure, iNO

was reintroduced, and the patient was transferred to the

ICU under mechanical ventilation.

If the iNO weaning test was successful and if the

patient was deemed stable (i.e. hemodynamic stability,

no active bleeding, etc.), the next step was to extubate

the patient and attempt non-invasive ventilation (NIV)

if the PaO2/FiO2 ratio was greater than 200. If extuba-

tion was well-tolerated, the patient was transferred to

the ICU on oxygen therapy (via a high oxygen concen-

tration face-mask). If an acute respiratory failure was

observed after extubation and despite NIV, tracheal
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intubation and mechanical ventilation were performed

in the OR before transfer to the ICU.

ICU management

All extubated patients were placed on NIV for at least

6 h following ICU admission. Initial settings for inspira-

tory and expiratory airway pressures were 8 and

4 cmH2O, respectively, with a FiO2 of 1. NIV settings

were then adjusted according to clinical judgment and

arterial blood gases. During the following 24 h, NIV

was performed for at least 1 h every 4 h and was later

adjusted to the patient’s respiratory status. Grade 3

PGD was defined as a PaO2/FiO2 ratio <200 at 72 h

after transplantation in a patient showing no evidence

of pulmonary infection or any other specific cause.

Data collection

Data related to patient and donor characteristics, dura-

tions of lung ischemia and surgery, hemodynamic

parameters, arterial blood gases and transfusion of

intraoperative ECMO were prospectively collected. Post-

operative data were retrospectively collected from elec-

tronic medical records. The database was created as a

FileMaker Pro file (FileMaker Company, Santa Clara,

CA 95054). This file was encrypted and was accessible

only on the local intranet with a password. All data

were fully anonymized before they were extracted for

statistical analysis.

Study goals and outcomes

The patients were separated into the following two

groups: iNO non-dependent patients and iNO-depen-

dent patients. The latter group included patients who

could not be weaned from iNO at the end of the sur-

gical procedure according to the criteria defined

above.

The primary goal of the study was to identify the risk

factors for iNO dependency. Secondary goals were to

assess whether iNO dependency is associated with Grade

3 PGD, ICU and hospital length of stay and postopera-

tive mortality.

As describe above, patients who required postopera-

tive ECMO were excluded from the analysis. Neverthe-

less, we compare them to the study cohort. Data are

shown in Supporting Information.

Statistical analysis

Categorical variables are described as counts (percent-

ages) and were compared using the Fisher exact test.

Continuous variables are described as medians (25th–
75th percentiles) and were compared using the Mann–
Whitney test.

Figure 1 Protocol used for patient care. ECMO, extracorporeal membrane oxygenation; iNO, inhaled nitric oxide; NIV, non-invasive ventilation;

ICU, intensive care unit.
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The impact of iNO dependency on mortality was first

examined by plotting actuarial survival curves using the

Kaplan–Meier estimator. Patients who were still alive

were right-censored at day 1500. No patient was lost to

follow-up during this period.

To account for potential confounding-by-indication

arising from the observational design, the impact of

iNO dependency on postoperative outcomes was esti-

mated using a propensity score approach. Specifically,

we used the inverse probability weighting estimator to

estimate the average treatment effect [14]. Propensity

score was estimated using gradient boosting, a method

that has previously proven useful for improving the

consistency of propensity score estimators because it

optimizes balance across baseline confounders between

treatment groups [15]. The following variables were

included in the propensity score model: age, body

mass index, emergency surgery, time on waiting list,

underlying lung disease, preoperative pulmonary

hypertension, pulmonary reduction, donor score, lung

ischemic time, amount of intraoperative fluid, esti-

mated intraoperative blood loss, norepinephrine sup-

port at the end of the procedure and blood lactate at

the end of the procedure. Propensity score was esti-

mated using gradient boosting as suggested by McCaf-

frey et al. [15]. Balance across confounders was

estimated using the standardized mean difference

(SMD). In the weighted population, the impact of

iNO dependency was estimated using a weighted log-

rank test for mortality, and a weighted Cox Propor-

tional Hazard model. A generalized linear model for

complex survey designs was also used with a Poisson

link for relative risks or a Gaussian link for differences

in means. All confounders with a residual imbalance

after inverse probability of treatment weighting (i.e.

SMD > 10%) were adjusted for the multivariable mod-

els. Standard errors were estimated using a robust

sandwich estimator accounting for weighting-induced

correlation.

A lasso penalized logistic regression model was used

to identify the risk factors for iNO dependency. The

hyperparameter lambda was optimized using 10-fold

cross-validation. Ninety-five per cent confidence inter-

vals were computed using the method described by Tay-

lor et al. [16]; this method is implemented in the

selectiveInference R package [17].

All statistical analyses were performed in R (version

3.3.2 for Macintosh, licenses GNU GPL, The R founda-

tion for statistical computing, Vienna, Austria) running

on a MacOsX platform. A P-value <0.05 was considered

to define statistical significance.

Results

Between 1 January 2012 and 1 January 2016, a total of

237 patients underwent DLT at our institution. After

excluding the patients who did not meet the study crite-

ria, 213 patients were assessed. Ninety-nine of these

patients required an ECMO during the surgical proce-

dure, and among them, 40 could not be weaned from

ECMO at the end of the procedure (18.8% of all cases).

Finally, 173 patients underwent an iNO weaning test at

the end of the surgical procedure and 17 of them could

not be weaned from iNO (9.8% of all cases) (Figure 2).

The most frequent diagnosis of failure to wean iNO

was severe hypoxemia in seven cases; none were related

to a significant right to left shunt due to a patent fora-

men ovale. Other reasons for iNO weaning failure were

the association of hypoxemia and of pulmonary hyper-

tension in six cases and right ventricular dysfunction in

four cases (due to air embolism or increased grafted

lungs arterial resistance since pulmonary artery anasto-

motic narrowing was never observed).

Patient characteristics

Patient characteristics are illustrated in Table 1. Pul-

monary fibrosis was more frequent in iNO-dependent

patients (P = 0.007, Table 1).

Intraoperative profiles

Intraoperative data are illustrated in Table 2. Ischemic

times were similar between groups. iNO-dependent

patients presented more frequently an hemodynamic or

respiratory refractory failure having required intraopera-

tive ECMO (P = 0.005) (Table 2).

Risk factors for iNO dependency

In univariate analysis, iNO dependency was more fre-

quently observed in patients with pulmonary fibrosis

(P = 0.01) (Table 1) and in those needing intraopera-

tive ECMO (P = 0.01) (Table 2). In multivariable analy-

sis (Table 3), the body mass index (OR = 2.03, 95%

CI = 1.14–3.29, P = 0.02) and the need for intraopera-

tive ECMO (OR = 1.80, 95% CI = 1.02–2.72, P = 0.04)

were independent risk factors for iNO dependency.

Postoperative outcomes

Postoperative outcome is illustrated in Table 4 with

results of the comparisons between iNO-non-dependent
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patients and iNO-dependent patients using Fisher exact

test or Mann–Whitney test as appropriate. In crude

analysis, iNO dependency was associated with a signifi-

cantly higher prevalence of Grade 3 PGD (crude Odds

Ratio = 5.90, 95% CI = 1.54–21.15, P = 0.004) and

higher mortality during the first 1500 days following

transplantation (crude Hazard Ratio = 3.46, 95%

CI = 1.37–8.73, P = 0.008). Covariate balance before

and after inverse probability of treatment weighting is

illustrated in the Appendix. In the weighted population,

iNO dependency was associated with a higher preva-

lence of Grade 3 PGD (adjusted RR = 4.20, 95%

CI = 1.75–10.09, P < 0.001). iNO dependency was also

associated with a longer ICU length of stay (adjusted

difference in means = 5.97 days, 95% CI = 2.36–9.58,
P < 0.001). In the weighted population, iNO depen-

dency was also associated with lower survival during the

first 1500 days of follow-up (weighted log-rank test:

P = 0.006; adjusted HR = 5.0, 95% CI = 1.86–13.48,
P < 0.001) (Figure 3).

Eleven patients were iNO dependent after having had

an intraoperative ECMO, three of them died during the

1-year follow-up. Forty patients required a postoperative

ECMO, 10 of them died during the same period. The

difference is not statistically significant (P = 0.88).

Discussion

The major findings of this study are that: (i) iNO

dependency is observed in approximately 10% of lung-

transplanted patients, (ii) body mass index and intraop-

erative ECMO seem to be risk factors for iNO depen-

dency and (iii) iNO dependency is associated with

grade 3 PGD and mortality.

Recently, Benedetto et al. [18] described the potential

benefits of iNO in lung-transplanted patients and

defined iNO as a “master reperfusion anesthetic”. This

refers to its multiple effects, including selective pul-

monary vasodilation [19], better management of reper-

fusion [20], optimization of the ventilation-perfusion

ratio, protection from inflammatory insults in the allo-

graft [5,6] and the inhibition of ischemic reperfusion

injury-induced apoptosis [7,21]. However, in a system-

atic review and meta-analysis on PGD risk factors after

lung transplantation, Liu et al. [22] concluded in favor

of a lack of association between intraoperative iNO and

the development of PGD (OR 1.09, 95% CI 0.68–1.74,
P = 0.72). In fact, systematic prophylactic use of iNO

remains controversial [8,23] and there is no study eval-

uating the iNO dependency phenomena and its implica-

tion on patient outcome.

Double-lung transplantations 
performed from January 2012 to January 2016

237 patients

Exclusion from analysis*

15 preoperative ECMO
07 cases of concurrent other organ transplantation
3 cases of redo lung transplantation during the study period
2 cases of intraoperative cardio-pulmonary bypass

No ECMO during surgery 
114 patients

ECMO required during surgery 
99 patients

NO weaning test
173 patients included in the study

Successful ECMO weaning 
59 patients

Prolonged ECMO in ICU
40 patients

No iNO dependence 
156 patients

iNO dependence 
17 patients

Figure 2 Flow chart. *Some patients were excluded for more than one reason.
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Our group systematically administers iNO at an ini-

tial concentration of 10 ppm either at the beginning of

the procedure in cases of pulmonary artery hyperten-

sion or before reperfusion of the first graft. At the end

of the procedure, iNO weaning is systematically

attempted. In the present cohort, nearly 10% of the

patients could not be weaned from iNO at the end of

the surgical procedure. Our results show that the risk of

iNO dependency increases with body mass index and

intraoperative use of ECMO.

Several studies have found an association between

recipient increased body mass index and increased risk

of PGD. Most of them have been analyzed in two suc-

cessive systematic reviews and meta-analyses [22,24];

others have been described more recently [25–27].
Moreover, Shah et al. [28] developed prediction models

for PGD and showed that patients with a normal BMI

have a lower risk of PGD and Upala et al. [24] reported

an increased risk of mortality after lung transplantation

in recipients with underweight or obesity. By contrast,

to the best of our knowledge, there is no study on the

relation between body mass index and NO administra-

tion in the field of lung transplantation and we can only

speculate that the increased risk of iNO dependency

associated with the increase in body mass index could

be due to the relation between permanent inflammatory

state, due to obesity and leptin-mediated lung inflam-

mation and the production of pro-inflammatory cytoki-

nes from adipose tissues and macrophages [26,29].

The relationship between intraoperative ECMO and

iNO dependency has never been previously described

but this seems logical since hypoxemia due to graft dys-

function is a frequent indication for intraoperative

ECMO. The ECMO withdrawal trial at the end of the

procedure was satisfactory in the patients analyzed in

this study but some degree of graft dysfunction might

persist explaining a significant effect of iNO and conse-

quently iNO dependency. iNO dependency can thus be

considered as an early sign of PGD, which may start

during the surgical procedure. This is consistent with an

experimental study that showed that the first phase of

lung injury occurs within 30 min after reperfusion [30].

Accordingly, Pottecher et al. [31] recently demon-

strated that extravascular lung water measured after

unclamping of the second graft and elevated plasma

concentrations of epithelial biomarkers may predict the

occurrence of Grade 3 PGD.

In our series, iNO dependency was associated with

higher prevalence of Grade 3 PGD and higher mortality.

If we assume that iNO dependency is an early sign of

PGD, it is not surprising that iNO dependency pre-

dicted bad outcome. Samano et al. [32] reported 177.7

mean survival days for patients with Grade 3 PGD and

1628.9 days for the other patients (P < .001). The

meta-analysis performed by Liu et al. [22] showed a

3.95-fold (95% CI 2.80–5.57) increased risk of short-

term mortality in patients with PGD. More recently,

Sabashnikov et al. [33] identified the low PaO2/FiO2-

ratio at 72 h after surgery as an independent predictor

for 1-year mortality (95% CI: 0.988–0.999; P = 0.024).

Our study has some limitations, first, it is a single

center retrospective study characterized by a particular

intraoperative management: systematic iNO administra-

tion throughout the surgical procedure with an abrupt

cessation which can expose to a rebound effect [34],

exclusive intraoperative use of a veno-arterial ECMO,

the indication of a veno-venous ECMO being discussed

secondarily in case of isolated postoperative respiratory

failure, ECMO and/or iNO weaning trials at the end of

the procedure and immediate extubation in selected

cases [10]. Second, iNO dependency was defined by the

practitioner in charge of the patient. Third, we used

TEE systematically and if necessary epicardic echocar-

diography [13] to search for a cause of ECMO and/or

iNO negative weaning trials but it must be recognized

that very often the analysis is more qualitative, i.e.

visual estimation, than quantitative given the limited

time for analysis, the sometimes average or mediocre

quality of imaging, fluid fluctuations and rapid hemo-

dynamic changes and occurrence of arrhythmias. How-

ever, most treatment decisions are based on major signs

that qualitative analysis can reveal. Finally, another

Table 3. Multivariate analysis of risk factors for iNO dependency

Variables Odds ratio for iNO dependency 95% Confidence interval P

Age 0.49 0.70–3.30 0.13
Body mass index 2.03 1.14–3.29 0.02
Oto score 1.42 0.03–1.87 0.71
Intraoperative ECMO 1.80 1.02–2.72 0.04

ECMO, extracorporeal membrane oxygenation; iNO, inhaled nitric oxide.
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limitation could have been our definition of PGD based

on a PaO2/FiO2 ratio <200 at 72 h after transplantation

and not on the ratio within 72 h of the intervention as

usually used. However, our definition corresponds to

the most recent definition of the PGD [35].

In conclusion, we observed in 9.8% of cases that iNO

could not be interrupted at end-surgery stage after a

rigorous weaning protocol. iNO dependency appears to

be a very early marker of short-term outcome with an

increased risk of PGD and of long-term poor outcome

with an increased mortality at 1500 days. Although we

observed such significant associations, we still cannot

conclude on causation since the presence of unobserved

confounders cannot be ruled out.
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Figure S1. Survival analysis using Kaplan–Meier

curve according to the three groups.
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Figure 3 Weighted population survival curves (p values were generated from weighted log-rank tests).
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Appendix S1. Comparison of iNO non-dependent

patients, iNO dependent patients and of patients requir-

ing prolonged ECMO after surgery.
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