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SUMMARY

Dendritic cells (DCs) are specialized cells of the innate immune system
that are characterized by their ability to take up, process and present anti-
gens (Ag) to effector T cells. They are derived from DC precursors pro-
duced in the bone marrow. Different DC subsets have been described
according to lineage-specific transcription factors required for their devel-
opment and function. Functionally, DCs are responsible for inducing Ag-
specific immune responses that mediate organ transplant rejection. Conse-
quently, to prevent anti-donor immune responses, therapeutic strategies
have been directed toward the inhibition of DC activation. In addition
however, an extensive body of preclinical research, using transplant models
in rodents and nonhuman primates, has established a central role of DCs
in the negative regulation of alloimmune responses. As a result, DCs have
been employed as cell-based immunotherapy in early phase I/II clinical tri-
als in organ transplantation. Together with in vivo targeting through use of
myeloid cell-specific nanobiologics, DC manipulation represents a promis-
ing approach for the induction of transplantation tolerance. In this review,
we summarize fundamental characteristics of DCs and their roles in
promotion of central and peripheral tolerance. We also discuss their
clinical application to promote improved long-term outcomes in organ
transplantation.
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Basic principles

Dendritic cells (DCs) were first identified and character-

ized by Steinman and Cohn in 1973–4 [1,2]. These cells

are uniquely specialized in antigen (Ag) uptake, process-

ing and presentation, with the ability to stimulate T-cell

proliferation in mixed leukocyte reactions (MLR) more

potently than other Ag-presenting cells (APC) [3]. They

link innate and adaptive immune responses [4]. DCs

are derived from committed DC precursors (pre-DCs)

in the bone marrow (BM) and comprise different

subsets, according to their ontogeny, tissue distribution,

phenotype and function.

The main conventional DC (cDC) subsets include

cDC1 and cDC2, that are defined by lineage-specific

transcription factors, such as interferon regulatory factor

(IRF)8, basic leucine zipper ATF-like transcription fac-

tor 3 (BATF3) and inhibitor of DNA binding 2 (ID2)

(cDC1) and IRF4 and zinc finger E-box binding home-

obox 2 (ZEB2) (cDC2). In addition, cell surface pheno-

typic markers may be used to characterize cDC1 (X-C

motif chemokine receptor 1 [XCR1] and C-type lectin

ª 2019 Steunstichting ESOT 113

doi:10.1111/tri.13504

Transplant International

https://orcid.org/0000-0001-6731-8871
https://orcid.org/0000-0001-6731-8871
https://orcid.org/0000-0001-6731-8871
mailto:
mailto:


domain family 9 member A [Clec9a]) and cDC2

(CD172). Development of a separate subset, noncon-

ventional plasmacytoid DCs (pDCs), depends on the

transcription factor E2-2. pDCs are characterized phe-

notypically by the absence of myeloid Ags and the

expression of CD123 (IL-3Ra). cDCs are located in

lymphoid and nonlymphoid tissues and are known pri-

marily for presenting Ags through major histocompati-

bility complex class II (MHC-II) and MHC-I via cross-

presentation [5]. pDCs also reside in lymphoid and

peripheral organs and secrete high amounts of type I

interferon (IFN) upon viral infection [6].

It remains unclear whether monocyte-derived cells

constitute a DC subset. Monocyte-derived cells express

classical DC markers, such as CD11c and MHC-II

under inflammatory conditions, and are capable of

inducing T-cell proliferation in vitro. Consequently,

monocyte-derived cells were classified initially as mono-

cyte-derived DCs on the basis of limited phenotypic

markers and in vitro functional properties. However,

while cDCs and pDCs derive from a common DC pre-

cursor (CDP) and depend on FMS-like tyrosine kinase

3 (FLT3) for their development, monocyte-derived cells

arise from common monocyte progenitors and develop

in response to colony-stimulating factors 1 and 2

(CSF1/2). Therefore, a recently proposed classification

[7] suggests that monocyte-derived cells represent a dif-

ferent cell type, with overlapping DC functions.

Besides Ag capture, processing and presentation that

induce T-cell priming in response to nonself [8,9], an

essential role of DC subsets is to coordinate an adequate

physiological response to preserve self-tolerance [10].

Removal of DCs in transgenic CD11c-CRE mice results

in the development of spontaneous autoimmunity [11].

In the context of organ transplantation, depletion of

CD11c-expressing myeloid cells can lead to prolonged

allograft survival, suggesting that the absence of DCs pre-

vents an efficient immune response to the transplanted

organ [12]. While removal of DCs represents a potential

therapeutic methodology for the induction of immune

tolerance, protective immunity against infections may be

compromised using myeloid cell-specific depletional

approaches. As a general view, anti-donor immune

responses are mediated by mature DCs expressing high

levels of MHC and costimulatory molecules (CM) under

inflammatory conditions, whereas immune tolerance is

induced by immature, tolerogenic DCs (tolDCs). There-

fore, generation of tolDCs with or without loading of

donor Ag represents a clinically applicable approach for

the induction of indefinite allograft survival in compar-

ison with procedures that deplete stimulatory DCs.

Mechanisms by which tolDCs regulate
immunity

TolDCs subvert effector T-cell responses via distinct

mechanisms, that include the induction of T-cell

anergy and clonal deletion due to inadequate expres-

sion of cell surface CM [13] (Fig. 1). TolDCs also

induce apoptosis in na€ıve and memory T cells via the

Fas (CD95)/FasL pathway and by elevated expression

of indoleamine 2,3-dioxygenase (IDO) [14,15]. Another

important function of tolDCs is their ability to pro-

mote the induction and expansion of different subsets

of regulatory lymphocytes that, in turn, promote

peripheral tolerance. These regulatory cells include clas-

sical CD4+CD25hi forkhead box p3 (Foxp3+) Tregs

[16], LAG-3+CD49b+CD25+Foxp3+/� T regulatory type

1 (Tr1) cells [17], CD8+ Tregs [18], regulatory B cells

(Bregs) [19], and IFNc-producing double-negative

(CD3+CD4�CD8�) T cells, in both mice and humans

[20,21]. TolDCs also contribute to the development of

tolerance by increased expression and release of

immunomodulatory molecules. These include pro-

grammed death ligand (PD-L) 1, PD-L2, human leuko-

cyte Ag-G (HLA-G) and tumor necrosis factor (TNF)-

related apoptosis-inducing ligands. Other immunosup-

pressive (IS) factors include IL-10, transforming growth

factor beta (TGFb), IL-27 and nitric oxide (NO) [22–

25]. Heme-oxygenase (HO-1) has been shown to con-

fer tolerogenic properties to DCs [26]. HO-1 is a rate-

limiting enzyme that degrades free heme in biliverdin,

carbon monoxide (CO) and Fe++, which have several

anti-inflammatory and tolerogenic actions [27]. Expres-

sion of HO-1 has been shown to be a mechanism of

action of tolerogenic DCs in organ transplantation

[28]. These suggest that tolDCs employ different mech-

anisms to facilitate tolerance induction through distinct

immune regulatory pathways.

Regulatory role of DC-derived exosomes

More recently, a unique, although not cell-specific

mechanism by which DCs modulate the alloimmune

response has been described. Exosomes are membrane

nanovesicles with a uniform shape and size described

originally in the 1980s, produced by a variety of cells,

such as DCs, T and B lymphocytes and macrophages

[29]. While their biological function is not fully under-

stood [30], recent findings suggest that exosomes act as

noncellular vehicles to transfer molecules between cells

under homeostatic [31] and pathological conditions

[32]. Exosomes display a specific pattern of molecules

114 Transplant International 2020; 33: 113–127

ª 2019 Steunstichting ESOT

Ochando et al.



on their surface that reflects the type and state of activa-

tion of the cell of origin. In the case of DCs and other

professional APCs, this may include MHC molecules,

T-cell CM, as well as adhesion molecules, indicating

that DC-derived exosomes function as Ag-presenting

nanovesicles (<100 nm) [33]. While it is becoming clear

that DC-derived exosomes bearing MHC molecules are

effective intercellular communicators and provide acti-

vating signals that promote anti-donor immune

responses [34,35], donor-derived exosomes also partici-

pate in the induction and maintenance of peripheral T-

cell tolerance [36].

The tolerogenic function of exosomes was demon-

strated initially in experimental oral tolerance in which

exosomes released by the intestinal epithelium of rats

fed with a model Ag induced specific tolerance when

injected into na€ıve recipients [37,38]. Around the same

time, it was demonstrated that presentation of donor

MHC Ags by BM-derived DC exosomes prolonged

heart allograft survival in rats when administered before

transplantation [39]. Interestingly, the combination of

BM-derived exosomes with short-term desoxypergualin

analog treatment induced Ag-specific tolerance to the

graft [40]. It remains unclear whether exosomes derived

from cDCs or pDCs may be better able to modulate

immune reactivity to favor tolerance. However, it has

been demonstrated recently that tolerance associated

with microchimerism may be induced by cross-dressed

cDCs and pDCs that acquire donor exosomes and

upregulate immune regulatory molecules, such as PD-

L1 and prolong allograft survival [41]. Moreover, spon-

taneous liver transplant tolerance in mice is associated

with cross-dressing of host cDCs within the allograft.

These cross-dressed DCs exhibit elevated levels of PD-

L1 and IL-10 and markedly inhibit anti-donor T-cell

responses, concomitant with senescence of PD1+ TIM3+

graft-infiltrating effector T cells [42]. Based on their

important roles in regulation of the alloresponse, DCs

are potential targets for manipulation to achieve pro-

longed graft survival and transplantation tolerance.

Approaches that have been used to target DCs in situ to

promote transplant tolerance and its immune regulatory

effects are summarized in Table 1.

Nanoparticle-based modulation of DCs in vivo

Current clinical organ transplant management requires

continuous, and typically, lifelong IS drug

Figure 1 Conditioning factors that

promote the generation of

tolerogenic DC (TolDC), their cell

surface characteristics, and products

that regulate alloreactive T-cell

responses and promote graft survival/

transplant tolerance.
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administration. Common anti-rejection agents, includ-

ing steroids and the IS pro-drugs, cyclosporine, tacroli-

mus and rapamycin, modulate various immune cell

types nonspecifically. This results in generalized IS, with

associated risks of cancer development and infection

[43]. Engineering nanoparticles (NP) for modulating

innate immune responses in organ transplantation rep-

resents a valuable tool to avoid these side effects [44].

The potential benefits of in vivo NP-based therapeutics

include improved pharmacokinetics, increased bioavail-

ability of IS drugs, specific biodistribution to minimize

systemic toxicity, protection of therapeutic molecules

from enzymatic and chemical degradation, and co-deliv-

ery of multiple therapeutic agents [45–47]. While tolDC

may ingest and process peptides and tolerogenic

molecules in vitro without an nano-envelopment, mate-

rial composition, size, shape, charge and hydrophobicity

of NP are some of the key parameters that affect the

delivery of therapeutic agents to tolDC in vivo.

The use of NP for therapeutic drug delivery repre-

sents a unique approach to deliver Ags and immune

modulatory agents to APCs in vivo [44], which capture

and phagocytose virus-like particles in the range 50–
1000 nm [45]. Delivery of Ags to APCs has been

achieved through the use of monoclonal antibodies

(mAbs) specific for DC receptors [48]. In this respect,

development of drug-loaded NP that express mAbs on

their surface represents a promising approach to deliver

large immune modulatory molecules to specific APC

subsets [49,50].

Table 1. Targeting of DC in situ to promote (transplant) tolerance.

Method Species Protocol Effect Refs.

Vesicles
Apoptotic cell
vesicles

Mouse i.v. injection of donor splenocytes in
early apoptosis alone or with aCD154
mAb, 7 days before heart transplant

Donor-specific deletion of
indirectly alloreactive T cells;
increase in alloreactive T regs

[123–125]

Immature donor
DC-derived
exosomes

Mouse i.v. injection before or after heart
transplant plus low close rapamycin

Donor-specific tolerance [109]

Rat Pretransplant (heart) infusion of donor
BM-derived exosomes in fully MHC-
mismatched recipients

Prolongation of graft survival;
decreased anti-donor T-cell
responses; increased anti-donor
MHC-II alloAb production

[39]

Rat Post-transplant infusion (92) combined
with deoxyspergualin analogue

Donor-specific tolerance;
suppression of chronic rejection

[40]

Rat Caudal injection on day �7, 0 and 7
in relation to allogeneic liver
transplantation � exogenous
donor-specific Tregs

Indefinite graft survival with
exosome/Treg combination

[126]

Antibody
mAb directed
against DC
surface Ags
(lectin-like
receptors)

Mouse Ag coupled to anti-CD205 mAb Ag-specific CD8 T-cell deletional
tolerance

[117]

Mouse Pretreatment with anti-33D1 (DCIR2)
conj. with H2kd monomer in
combination with aCD8-depleting Ab

Prevention of CD4 indirect
alloresponses and IgG against
partially MHC I-mismatched skin
grafts (B6.Kd)

[127]

Rhesus
monkey

i.v. MD-3 anti-ICAM Ab combined with
low dose rapamycin and aCD154

Long-term survival of pig
xenoislets

[128]

Humanized
mouse

MD-3 mAb before transplant Xenospecific T-cell tolerance;
prevention of xenoislet rejection

[128]

Anti-DC-A5GPR†
mAb

Cynomolgus
monkey

i.d. immunization with Ag fused to
anti-DC-ASGPRAb every 5–6 weeks
after flu virus

Ag-specific, IL-10 producing Tregs
in vivo

[129]

Myeloid cell-specific
nanobiologics*

Mouse Post-transplant treatment of heart
allograft recipients

Indefinite graft survival with
expansion of CD4+ Tregs

[63]

†DC-ASGPR, DC-asialoglycoprotein.

*mTORi HDL treatment + CD40-TRAF6-specific nanobiologic (TRAF6i-HDL).
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Another approach to induce tolDCs is to engineer

NP that provide Ag to harness the natural tolerogenic

process. The aryl hydrocarbon receptor (AHR) is a

ligand-activated transcription factor that induces tolDCs

that express low levels of surface MHC and CM, and

promote T-cell anergy and Treg development [51]. In

an elegant study, Tsai et al. [52] demonstrated that

stimulation of self-Ag-specific CD8+ T cells with iron

oxide NP conjugated with disease-relevant peptide-

MHC complexes resulted in expansion of autoregula-

tory memory-like T cells, and consequent suppression

of autoreactive CD8+ T-cell activation through killing of

autoAg-presenting APCs. However, delivery of NP con-

taining only Ags in an inflammatory microenvironment

may augment the immune response. One suggested

strategy to circumvent this problem is to develop NP

that concurrently deliver encapsulated Ags and IS thera-

peutics, to recruit and modulate DCs toward a tolero-

genic phenotype. The co-delivery of 2-(10H-indole-30-
carbonyl)-thiazole-4-carboxylic acid methyl ester (an

endogenous AHR ligand) and a T-cell epitope from

myelin oligodendrocyte glycoprotein (MOG)35–55 by

gold NP has shown promising results in the induction

of tolDCs and expansion of Tregs to suppress autoim-

munity [53]. The co-administration of MHC class I Ag

and apoptosis-inducing anti-Fas mAb with magnetic

beads has also resulted in selective depletion of Ag-

specific T cells in a murine allogeneic skin transplant

model [54].

Nanocarrier-based approaches to promotion of trans-

plant tolerance are summarized in Table 2. Trans-

planted mice have been treated with NP-encapsulated IS

drugs, including tacrolimus, rapamycin and mycophe-

nolic acid, that have superior efficacy in terms of inhibi-

tory effects on DC maturation when compared to

soluble drugs [55,56]. Recently, high-density lipoprotein

(HDL) NP have been tested in transplant models. These

natural, small NP exert an immune protective function

through macrophage targeting [57,58]. HDL-NPs inter-

act preferentially with receptors that are highly

expressed on myeloid cells, including ATP-binding cas-

sette receptor A1 and scavenger receptor type B-1 [59].

This allows for targeting of the innate immune system

to prevent development of graft-reactive immune

responses by encapsulating rapamycin, an IS drug used

in organ transplantation since 1991 [60,61]. Besides T-

Table 2. Nanocarrier-based approaches to mediate transplant tolerance.

Nanocarrier Drug/agent Model Effect Reference

PLGA-NPs Anti-CD3 In vivo Prolongation of mouse heart allograft survival increased intragraft
and draining lymph node Treg depletion

[49]

PLGA-MPs H-2Kb-Ig dimer
and anti-Fas
mAb

In vivo Prolongation of mouse skin allograft survival and depletion of
Ag-specific CD8 T cells

[130]

PLGA-NPs Rapamycin In vitro Secretion of high levels of TGF-b and very low levels of IL-10 and
IL-12 by DCs

[56]

MPEG-PLA-NPs Tacrolimus In vivo Prolongation of rat liver transplant survival [131]
PEG-bl-PPS Micelle Rapamycin and

Tacrolimus
In vivo Prolongation of mouse skin allograft survival [132]

PLG-NPs Donor Ag In vivo Induction of transplant tolerance in fully MHC-mismatched mouse
allogeneic islet transplantation

[133]

PLGA-NPs Rapamycin In vitro Downregulation of ICAM-1 and maintenance of an
immunosuppressive cytokine milieu for DCs

[134]

PLGA-NPs Mycophenolic
acid

In vivo Prolongation of mouse skin allograft survival [135]

HDL-NPs CD40-TRAF6
inhibitory and
Rapamycin

In vivo Prevention of alloreactive CD8+ T-cell-mediated immunity and
promotion of tolerogenic Treg cell expansion

[63]

PLGA-NPs Either protein
or peptide
Ags and
rapamycin

In vivo Inhibition of Ag-specific CD4+ and CD8+ T cells and B-cell
activation while inducing Ag-specific Tregs and Bregs

[64]

HDL, high-density lipoprotein; MPEG-PLA, poly(ethyleneglycol)-poly(D,L-lactide); NPs, nanoparticles; PEG-bl-PPS, poly(ethylene
glycol)-bl-poly(propylene sulfide); PLG, poly(lactide-co-glycolide); PLGA, polylactic-co-glycolic acid; TRAF6, tumor necrosis factor
receptor associated factor 6.
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cell suppression and the induction of Treg, rapamycin

treatment induces tolDC [61]. However, its poor water

solubility and low bioavailability compromise its sys-

temic use [62].

In recent work, we engineered a rapamycin HDL

nanobiologic termed mTOR inhibitor (i)-HDL for the

induction of organ transplant acceptance. In this study,

specific myeloid-derived cell targeting allowed down-

regulation of the innate immune response through

inhibition of pro-inflammatory mediators and CM,

such as TNF-a, IL-6 and CD40, which resulted in

organ transplant acceptance [63]. In a separate study,

polymeric NP containing rapamycin and Ag induced

durable Ag-specific immune tolerance [64]. Mechanis-

tically, these NP were shown to generate tolDC,

expand Tregs and inhibit effector T-cell activation

[64,65], suggesting that Ag-specific immune tolerance

may be achieved through use of NP loaded with donor

Ags.

Besides their use as drug nanocarriers, NP can help

visualize and monitor events within transplanted organs.

Thus, NP have been used to visualize APCs in vivo and

to assess their number, migration and functional state

[66–68]. Using different NP designs and suitable detec-

tion methods, it may be possible to obtain diagnostic

and prognostic information and to evaluate treatment

efficacy in transplant patients [44].

DCs as cellular therapeutic agents in
transplantation models

Several approaches have been adopted to generate

tolDC of donor or host origin that have been adoptively

transferred to experimental allograft recipients. Their

in vivo fate and function, including the role of host DCs

in mediating the immune regulatory function of donor-

derived (d-d) tolDCs have also been examined

[24,69,70].

Generation and testing of d-d tolDC

The concept that tolDCs might be used in transplanta-

tion as suppressors of allograft rejection was first

examined >20 years ago [71,72]. In these reports,

Thomson and colleagues showed that pancreatic islet

or cardiac allograft survival was prolonged when recip-

ient animals were pretreated iv with d-d DC progeni-

tors expressing MHC-II, but low levels of CM [72].

These cells induced alloAg-specific T-cell anergy

in vitro [73]. In contrast, transfer of d-d mature DC

expressing high levels of CD80 and CD86 stimulated

T-cell proliferation and accelerated heart allograft

rejection.

Since these early studies, numerous protocols have

been used to generate donor- or recipient-derived

tolDCs that have been tested extensively in transplant

models [24,74–76] (Table 3). Lutz et al. [77] generated

d-d DCs with an immature phenotype from BM pro-

genitors using low concentrations of GM-CSF. Com-

pared to mature DCs generated in the presence of

high concentrations of GM-CSF or GM-CSF plus IL-4,

these immature DCs were weak stimulators of allo-

geneic and peptide-specific T-cell responses, but were

more effective in the presentation of native protein.

Interestingly, the immature DC were resistant to matu-

ration under inflammatory conditions, such as expo-

sure to bacterial lipopolysaccharide (LPS), TNFa or

anti-CD40 mAb, and did not increase expression of

surface CM. They induced T-cell unresponsiveness

in vitro and in vivo, and prolonged haplotype-specific

cardiac allograft survival. However, administration of

in vitro-generated immature DCs had to occur at a

specific time-point before transplantation (7, but not

3, 14 or 28 days pretransplant was effective), indicating

specific kinetics for tolerance induction by tolDCs.

Importantly, homing to secondary lymphoid organs

was found to be required to elicit the beneficial effects

of ex vivo-generated tolerogenic d-d DCs on graft sur-

vival [78]. This represents a challenge for the infusion

of tolDCs, since immature DCs express the chemokine

receptor CCR5 that guides their migration to periph-

eral tissues, while CCR7 expression (by mature DCs) is

required for homing to secondary lymphoid organs. A

solution might be the use of semi-mature DCs that

can be generated in the presence of corticosteroids.

Emmer et al. [79] cultured DCs in the presence of

dexamethasone (dex) and matured these cells using

LPS. They upregulated CD40, but expression of MHC-

II and CD86 remained low. Moreover, production of

pro-inflammatory IL-12 was much lower compared to

mature DCs, while IL-10 production was unaffected,

leading to an increased IL-10/IL-12 ratio for cells gen-

erated with dex/LPS. After infusion of d-d DCs

exposed to dex and LPS, responder T cells of the

recipients showed donor-specific hyporesponsiveness,

while fully mismatched heart allograft survival was pro-

longed.

Since DC maturation depends on activation of the

NFjb pathway, Li et al. [80] silenced RelB,- the primary

NFjb protein involved in DC maturation using small

inhibitory (si) RNA. DC maturation was arrested, with

reduced expression of MHC-II and CM, while d-d
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RelB-silenced DCs inhibited MLR and prevented heart

allograft rejection.

Generation and testing of host-derived tolDCs

The mammalian target of rapamycin (mTOR) pathway

represents an interesting target for generation of stable,

maturation-resistant tolDC. When pulsed with donor

alloAg and administered a week before transplant,

together with a short course of rapamycin, they pro-

mote graft infiltration by alloAg-specific Tregs and

indefinite heart graft survival [61,81].

Garrovillo et al. [82] showed that intrathymic or sys-

temic administration of immunodominant allopeptide-

Table 3. Promotion of indefinite organ allograft* survival in rodents by adoptive transfer of tolDC.

DC Species DC treatment
Additional host
treatment

Route of
injection (day) MST Ref.

Donor-derived tolDC
MoDC Rat GM-CSF TLI; ATG iv (day 14/15) >160 days [136]
BMDC Mouse GM-CSF + IL-4 or

TGFb
Anti-CD40L mAb iv (day �7) >100 days (40%) [137]

BMDC Mouse Low GM-CSF None iv (day �7) >100 days [77]
BMDC Mouse BM-CSF + IL-

4 + NFjb
ODN + rAd CTLA4Ig

None iv (day �7) >100 days (40%) [90]

BMDC Rat Low GM-CSF + IL-4 ALS iv (day �7) >200 days (50%) [138]
BMDC Mouse Low GM-CSF Anti-CD54

mAb + CTLA4Ig
iv (day �7) 100 days [139]

BMDC Rat
(kidney)

GM-CSF + IL-
4 + dexamethasone

CTLA4Ig (91)
+ cyclosporine

iv (day �10) >100 days [140]

BMDC Rat (liver) GM-CSF + IL-4 host Tregs iv (day �7)
(both tolDC
and Treg)

22 days (tolDC);
30 days (Treg);
42 days
(tolDC + Treg)
vs. 8 days (control)

[141]

Spleen DC Mouse
(skin)

Flt3L Cyclophosphamide +
T-cell-depleted donor
BM cells

iv (day 0) >100 days [142]

BMDC Mouse
(skin)

Flt3L CTLA4Ig + anti-CD40L;
anti-NK1.1Ab

iv (day �10) 51 days (tolDC)
vs. 15 days (conrol)

[91]

Recipient-derived tolDC
BMDC Rat GM-CSF + IL-

4 + donor MHC I
peptide (RT1.Au)

ALS it (day �7) >150 days [143]

BMDC Rat GM-CSF + IL-
4 + donor MHC I
peptide (RT1.Au)

ALS iv (day �7) >200 days [82]

BMDC Mouse GM-CSF + IL-
4 + RAPA + donor
cell lysate

None iv (93)
(day �10,
�3, 0)

>100 days [61]

BMDC Rat GM-CSF + IL-4 LF 15-0195† iv >100 days [83]
BMDC Mouse GM-CSF + IL-4 NFjb ODN + donor-

derived lysate
iv >100 days (33%) [144]

BMDC Rat Low GM-CSF + IL-4 None iv >100 days (20%) [84]

ALS, anti-lymphocyte serum; ATG, anti-thymocyte globulin; BMDC, bone marrow-derived dendritic cells; Flt3L, fms-like tyrosine
kinase 3 ligand; i.t, intrathymic; iv, intravenous; MoDC, monocyte-derived DC; MST, mean survival time; ODN, oligodeoxyri-
bonucleotides; rAd, recombinant adenovirus; RAPA, rapamycin; TLI, total lymphoid irradiation; Tregs, regulatory T cells.

For more exhaustive review of the influence of adoptively transferred tolDC an organ allograft survival in rodents, see refer-
ences [24,69,70,94,145,146].

*Heart allografts unless otherwise specified.

†Deoxyspergualin derivative.
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pulsed host thymic DCs 7 days before transplant, com-

bined with transient anti-lymphocyte serum, resulted in

permanent, donor-specific rat heart allograft survival.

These results were reproduced in a more clinically rele-

vant model using iv injection of peptide-pulsed host

BM-derived DCs. In addition, Cuturi and colleagues

have studied extensively the influence of host BM-

derived tolDCs unpulsed with donor Ags (thus unable

to induce host sensitization) on rodent organ allograft

survival [20,83–85]. They have shown that, in conjunc-

tion with minimal IS therapy (including use of a

deoxyspergualin analog/NFKB inhibitor or anti-CD3

Ab), iv infusion of these host-derived tolDC capable of

cross-presentation of donor alloAg, a day before trans-

plant induces donor-specific Tregs and prolongs graft

survival in a donor-specific fashion. It is important to

highlight that, while some common immunosuppres-

sants negatively affect the induction of Treg, IS therapy

with deoxyspergualin analogs promote tolerance induc-

tion through a self-maintaining regulatory loop between

TolDC and Treg [86]. Strategies using host-derived

tolDC, whether or not they are pulsed with donor

alloAgs, can potentially be generalized to deceased

donor organ or composite tissue allotransplantation

[87,88].

Genetic modification of tolDCs

Besides exposure to pharmaceutical agents or si RNA

for the generation of stable tolDCs, genetic engineering

of DCs to express immunoregulatory surface molecules

or cytokines has been explored. Thus, for example, BM-

derived DC transfected with Fas ligand (FasL) to aug-

ment their capacity to induce apoptosis in Fas+ cells

[89] inhibited T-cell proliferation in MLR and induced

hyporesponsiveness to alloAg in vivo. Moreover, infu-

sion of d-d FasL-transfected DCs prolonged MHC-mis-

matched allograft survival.

Bonham et al. [90] engineered d-d DCs to secrete

cytotoxic T lymphocyte Ag 4 (CTLA4-Ig), a potent cos-

timulation-blocking agent. These cells promoted apop-

tosis of activated T cells and when infused 7 days before

transplant, prolonged mouse heart allograft survival.

Interestingly, to prevent maturation of DCs after infec-

tion with the transducing adenoviral vector, the authors

used double-stranded “decoy” oligodeoxyribonu-

cleotides with binding sites for NFjb, demonstrating

that NFjb antisense decoys, in conjunction with recom-

binant adenoviral vectors, represented a successful strat-

egy to avoid DC maturation during the genetic

engineering process.

Fate of adoptively transferred tolDCs and the role of
host DCs in mediating the effect of d-d tolDCs

Adoptively transferred tolDCs have been tracked by

immunohistochemical staining, or fluorochrome- or

radio-labeling. Host-derived, rapamycin-conditioned

tolDCs labeled with PKH-67 and infused i.v. home to

T-cell areas of mouse secondary lymphoid tissue [61],

whereas i.v.-infused indium-111-tagged tolerogenic

allopeptide-primed autologous rat DC home to the

spleen and liver, but not the thymus [82]. Hill et al.

[20] further showed that i.v.-injected PKH-26-lableled

autologous tolDC established close contact with double-

negative T cells in spleens of rats that became tolerant

to donor allografts. Yamano et al. [91] observed that

FITC-labeled d-d tolDC generated from mouse BM in

Flt3L (but not GM-CSF) reached the thymus and spleen

(but not lymph nodes) after iv injection. These cells

induced both central and peripheral tolerance to donor

MHC Ags and prolonged survival of donor skin grafts

in NK cell-depleted and costimulation blockade-treated

recipients.

While transferred d-d tolDCs may interact directly

with anti-donor T cells, inducing anergy, deletion and

regulation, endogenous host DC are thought to play an

important role in their immunoregulatory effects [92].

Thus, in mice, infused d-d tolDCs are thought to

undergo NK cell-mediated cell death and to be repro-

cessed by recipient DCs for presentation of donor Ag to

CD4+ T cells, increasing the number of Tregs. In this

concept, therapeutic donor-derived DC function as Ag-

transporting cells rather than APCs to prolong allograft

survival. Hence, modulating the recipient DC compart-

ment as described above, is an alternative strategy to

prolong graft survival, potentially more effectively

[70,75,84,93,94].

TolDCs in nonhuman primate transplant studies

Preclinical testing of tolDCs in transplantation has been

extended to nonhuman primate (NHP) models. Pre-

transplant (day �7) infusion of tolDC generated from

donor blood monocytes in the presence of vitamin D3

and IL-10, together with minimal IS therapy (rapamycin

and CTLA4Ig), was shown to prolong subsequent MHC

mis-matched kidney allograft survival in rhesus maca-

ques [95]. The rhesus d-d tolDCs expressed low MHC-

II and CM, but high levels of PD-L1, and were resistant

to maturation in response to pro-inflammatory cyto-

kines. No adverse events were associated with their infu-

sion. DC treatment reduced memory/Treg ratios in the
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graft recipients. More recently, the same group has

addressed the influence of CTLA4-Ig on expression of

the transcription factor Eomes by memory T cells in

their NHP renal transplant model. The results showed

that prolonged renal allograft survival achieved with d-d

tolDC infusion was associated with Eomeslo CTLA4hi

donor-reactive CD8+ suppressive memory T cells [96].

Of note, generation and infusion of tolDCs might not

always be required to exhibit the potential of tolDCs after

organ transplantation. It was shown [97] that ligation of

the vitamin D receptor on DCs with 1,25-dihydroxyvita-

min D(3) (VitD3) reduced expression of CM on DCs, as

well as IL-12 expression and increased expression of IL-

10, promoting a persistent state of DC immaturity. Ador-

ini et al. [98] treated fully mismatched islet allografts

briefly with VitD3 before transplantation. This condition-

ing treatment increased the percentage of CD4+CD25+

Tregs in spleen and draining lymph nodes and protected

100% of recipients from rejection.

Testing of tolDCs in clinical organ
transplantation

The potential of tolDCs as a novel, adjunct induction

therapy for prevention of rejection and promotion of

clinical transplant tolerance has been discussed exten-

sively in recent reviews [75,76,99,100] and is an emerg-

ing approach to reduce dependence on pharmacologic IS

[76,101]. Early phase clinical trials of tolDCs in renal or

liver transplantation have begun, both in Europe and the

US (Table 4). Based on the therapeutic efficacy of autol-

ogous tolDCs documented in their earlier rodent allo-

graft studies [83–85], investigators at the University of

Nantes (France) have conducted a phase 1/2 (feasibility/

safety) trial under the umbrella of the European consor-

tium “The ONE Study” (www.onestudy.org), of

unpulsed (no donor alloAg), autologous tolDCs, infused

1 day before transplant, into living donor renal trans-

plant recipients given standard-of-care (SOC) triple-drug

(mycophenolic acid [MPA], steroid, tacrolimus) IS ther-

apy (clinicaltrials.gov identifier: NCT0225055 [69]). In

this trial, the autologous, monocyte-derived tolDCs are

generated in low concentration GM-CSF. The investiga-

tors postulate that following their infusion, they migrate

to the graft where they capture and process d-d Ag lead-

ing to Ag-specific regulation of the host response. They

also consider that use of recipient-derived tolDCs (com-

pared with d-d tolDCs) is associated with a lower per-

ceived risk of host sensitization, absence of NK cell-

mediated killing of the infused tolDC and suitability for

application in both living and deceased donor

transplantation. At the University of Pittsburgh (US) on

the other hand, a National Institutes of Health (NIH)-

supported cell dose-escalation trial to test the safety of a

single infusion of donor monocyte-derived tolDCs

administered 1 week before living donor renal transplan-

tation (Table 4) [96], together with SOC IS (MPA, ster-

oid and tacrolimus) (NCT 0364265), will commence in

2019. The rationale for this alternative approach, based

on the extensive rodent and NHP studies, is that

although the allogeneic d-d cells may not survive very

long, their products are acquired by quiescent host DCs

in secondary lymphoid tissue that mediate the tolero-

genic effects of the infused tolDCs [92,102].

A first-in-human, single center, open-label, phase I/II

study (NCT03164265) to test the safety and preliminary

efficacy of a single infusion of d-d tolDCs in de novo

adult living donor liver transplant recipients [101] has

been initiated at the University of Pittsburgh. Patients

receive SOC IS (MPA, steroid and tacrolimus), without

Ab induction. Good manufacturing practice (GMP)

grade tolDCs are generated [103] in VitD3 and IL-10

from monocytes obtained by leukapheresis from

prospective living organ donors and infused as induction

therapy into their respective recipients, 1 week before

transplant. The tolDC dose range (2.5–10 9 106/kg) cor-

responds to the range for which both safety and efficacy

were established in the preclinical NHP renal transplant

model [95]. A half dose of MPA is administered con-

comitant with the tolDC infusion and until the time of

transplant, to minimize any low potential risk of host

sensitization. In eligible patients, determined by permis-

sive liver function tests and (at 12 months post-trans-

plant) a permissive liver biopsy, weaning of the

remaining IS drug (tacrolimus) begins at 12 months and

continues to complete withdrawal by month 24. Follow-

up continues for 3 years after the last dose of IS.

Therapeutic potential of DC-derived exosomes

Exosomes derived from immature donor DCs present-

ing MHC-Ag complexes prolong heart allograft survival

in rats, with decreased anti-donor CD4+ T-cell

responses [39,40] (Table 1). Similar results have been

obtained using exosomes from immature BM-derived

DC in a rat intestinal transplant model, in which graft

prolongation was associated with an increase in Tregs

[104]. Since DC-derived exosomes exhibit immune reg-

ulatory properties in an Ag-specific manner, efforts are

being made to produce and characterize clinical-grade

(cGMP) exosomes, that may be used as therapeutic

agents [105]. As discussed above, the role of exosomes
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in development of tolerance versus immunity depends

on the surface characteristics of the vesicles and the type

and stage of activation of the cells that secrete the exo-

somes [106]. Additionally, the microenvironment in

which the exosome interaction occurs affects the out-

come of the immune response: exosomes acting in a

tolerogenic milieu promote tolerance [107]. This sug-

gests that d-d exosomes bearing MHC molecules impact

the effectiveness of the immune response against nonself

MHC molecules, in both vascularized and nonvascular-

ized transplant models. Exosome-derived immune regu-

lation may occur in secondary lymphoid tissues where

cross-dressed recipient DCs present donor MHC to

na€ıve T cells, or in the donor organ where graft-infil-

trating recipient DCs acquire donor exosomes to regu-

late memory T-cell responses. A better understanding of

the regulatory interactions between DC-derived

microvesicles and immune effector cells [108] will open

new possibilities for optimizing and using these

nanovesicles synergistically in combination with current

IS agents for the induction of donor-specific immune

tolerance in organ transplantation [109].

Conclusions, challenges and future prospects

Cell therapy using tolDCs of donor or host origin, or tar-

geting of DCs in situ to promote their tolerogenicity

represent emerging approaches to reduce the use of

systemic pharmacologic IS in transplant patients and

to promote donor-specific tolerance [44,76,101]. BM-

derived DCs generated with GM-CSF and exhibiting

immunoregulatory properties prolong allograft survival

following their adoptive transfer into transplant recipi-

ents [72,77]. These cells express DC-specific markers,

including CD11c (N418) and 33D1 [110,111]. Since

33D1 is also known as DC inhibitory receptor 2

(DCIR2), its ability to regulate Ag processing and T-

cell activation has been evaluated using a chimeric

33D1 mAb bearing ovalbumin (OVA). Interestingly,

Ag delivered via 33D1 mAb elicited no detectable

CD8 T-cell responses in vitro [112]. In vivo, dose–re-
sponse experiments confirmed that Ag-specific CD8

T-cell expansion after 33D1-OVA treatment was mod-

est. This suggests that CD8-CD33D1+ (CLEC4A4/

DCIR2) DCs, that correspond to cDC2, might be the

main DC subset that contributes to development of

tolDC. Indeed, recent reports are consistent with this

hypothesis and demonstrate that DCIR2 cDC2 pro-

mote Ag-specific activation and proliferative expansion

of naturally occurring Foxp3+ Tregs and tolerance

[113,114]. However, cDC2 are also specialized in

CD4+ T-cell stimulation [112,115]. Besides, Ab target-

ing to DEC205 (cDC1) but not DCIR2, contributes to

peripheral tolerance through the development of

Table 4. Registered clinical trials of tolDCreg or regulatory macrophages in living donor kidney or liver transplantation.

Cell type*
Organ transplant
K (kidney); L (liver) Type of trial

Target cell dose
(range) Trial ID

Recruitment
status (#
patients)

TolDC
Autologous, blood
monocyte-derived
tolDC

K Phase I/II 106/kg University of Nantes (ONE
STUDY) NCT02252055

Completed
(11)

Donor blood
monocyte-derived
tolDC

K Phase I 0.5–5 9 106/kg
(dose
escalation)

University of Pittsburgh
NCT03726307

Recruiting (14)

Donor blood
monocyte-derived
tolDC

L Phase I/II 2.5–10 9

106/kg
University of Pittsburgh
NCT03164265

Recruiting (14)

Regulatory macrophages (Mreg)*
Donor blood
monocyte-derived
regulatory
macrophages

K Phase I/II 2.5–7.5 9

106/kg
University of Regensburg
(ONE STUDY) NCT
02085629

Terminated (8)

In each instance, immunosuppressive therapy comprises prednisone, MPA and tacrolimus.

*Administered before transplantation.
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induced Foxp3+ Tregs under inflammatory conditions

[48,116].

Together with data showing that cDC1 contribute to

homeostatic tolerance under steady-state conditions

[117,118], it remains unclear whether tolDCs represent

a specific DC subset or a functional state of any particu-

lar DC subset. While strong data demonstrate that dif-

ferentiation into cDC1 or cDC2 is determined within

the BM at the common DC progenitor stage [119], it

seems that either cDC1 or cDC2 can present Ag in vivo

in a tolerogenic or immunogenic fashion [120]. The

quest to identify and develop FLT3-dependent

[121,122], clinical-grade human tolDCs for the induc-

tion of transplantation tolerance is ongoing [24].
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