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To test or to estimate? P-values versus effect sizes
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SUMMARY

Most research in transplant medicine includes statistical analysis of
observed data. Too often authors solely rely on P-values derived by statisti-
cal tests to answer their research questions. A P-value smaller than 0.05 is
typically used to declare “statistical significance” and hence, “proves” that,
for example, an intervention has an effect on the outcome of interest. Espe-
cially in observational studies, such an approach is highly problematic and
can lead to false conclusions. Instead, adequate estimates of the observed
size of the effect, for example, expressed as the risk difference, the relative
risk or the hazard ratio, should be reported. These effect size measures have
to be accompanied with an estimate of their precision, like a 95% confi-
dence interval. Such a duo of effect size measure and confidence interval
can then be used to answer the important question of clinical relevance.
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The weather will change significantly in the next days

(P = 0.04). In a weather report, a comment like this is

would be inconceivable, but such statements can be

found in many scientific articles. The statement does

not contain the information that a recipient is actually

interested in: will it get warmer or colder? How much

change in weather do we have to expect? The P-value

derived by a statistical test does not answer these ques-

tions. It leaves only a vague feeling that the weather

may not stay the same. However, these questions can be

answered satisfactorily by reporting an adequate mea-

sure of the size of the effect, in this example, the

expected change in temperature.

Current practice in transplant research

In order to evaluate the current practice of reporting P-

values and effect sizes in transplant research, we

reviewed all manuscripts published in Transplant

International in 2018 in the category “clinical research”

(Table 1). Among 68 summaries of retrospective stud-

ies, in 27 (40%) P-values and measures of effect size

were reported, while in 30 (44%) only P-values were

given.

P-values and effect size measures

In transplant research, as in any other scientific disci-

pline, using a P-value as a measure of “difference” is

entirely uninformative and can even be misleading [1–

8]. (For definitions on the concepts of statistical testing

and estimation, see Table 2.) As an example, consider a

study comparing the 5-year survival after kidney trans-

plantation between two interventions or exposures.

Generally, a P-value depends on two quantities: the

observed difference between the groups and the sample

size. With a sample size of 100 in each group, assuming

5-year survival probabilities of 85% and 90% in the two

ª 2019 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
doi:10.1111/tri.13535

50

Transplant International

https://orcid.org/0000-0003-1339-0311
https://orcid.org/0000-0003-1339-0311
https://orcid.org/0000-0003-1339-0311
https://orcid.org/0000-0003-4635-6291
https://orcid.org/0000-0003-4635-6291
https://orcid.org/0000-0003-4635-6291
https://orcid.org/0000-0001-7544-6275
https://orcid.org/0000-0001-7544-6275
https://orcid.org/0000-0001-7544-6275
https://orcid.org/0000-0003-1147-8491
https://orcid.org/0000-0003-1147-8491
https://orcid.org/0000-0003-1147-8491
mailto:
http://creativecommons.org/licenses/by-nc/4.0/


Table 1. Review of all manuscripts published in Transplant International in the category “clinical research” in 2018

Results are given separately for retrospective and prospective studies. We evaluated if the summary of a manuscript mentioned at
least one measure of effect size with a measure of variability (usually the 95% confidence interval) and if at least one P-value or a
mention of statistical (in)significance was given. For a random sample of ten retrospective studies, we counted the number of
reported P-values in the Summary, the Results and in the Tables and Figures. CI, confidence interval; RCT, randomized clinical trial.
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groups, and with complete follow-up, the P-value

results as 0.39. The statistically nonsignificant result

with n = 100 could be falsely interpreted as evidence for

lack of a difference between the groups “proving” the

null hypothesis that the intervention makes no differ-

ence in survival. Researchers more aware of the fallacies

in interpreting P-values would—more cautiously and

correctly—verbalize the result as “we could not find any

evidence suggesting a difference between the groups.”

However, including 1000 patients per group into the

study and observing the same survival probabilities in

both groups, one would compute a P-value of 0.0009

and conclude the opposite: strong evidence against the

null hypothesis of no difference between the groups.

Still, in both examples, the observed 5-year mortality

risks in the two groups are 15% and 10% and thus the

relative risk is 1.5 (=0.15/0.10), which is usually consid-

ered a strong effect. In the medical field, a relative risk

of 1.5 of a hard outcome such as mortality or graft loss

is almost never achievable with a single intervention.

Therefore, prospective clinical trials are planned expect-

ing much smaller differences in outcome such as rela-

tive risks of 1.25. In this example, solely the sample size

will determine conclusions about the effect of an inter-

vention and lead to contradictory conclusions if those

are based only on the strict dichotomy of statistical sig-

nificance or nonsignificance; but consider that the 100

observations could just be a subsample of the 1000.

The null hypothesis implies that the effect is

exactly zero. In observational studies, this is hardly

ever the case, and even in prospective controlled tri-

als, exact equality of outcomes is unlikely. If there is

even only a small difference which will typically have

no clinical relevance, then a large enough sample

will detect it and reject the null hypothesis (see most

cardiovascular trials where the sample size is usually

several thousand). In reaction to this unfortunate

paradox, it has been proposed to avoid the notion

“statistically significant” or “statistical significance” in

observational research completely [1]. Statements on

statistical significance for the primary outcome

should be confined to randomized clinical trials,

where the sample size is prespecified to detect a

minimal clinically relevant difference.

Generally, reporting the effect size is much more

informative than a statement on statistical significance.

In the example, one could report the mortality risk

difference or the relative risk. With both sample sizes,

the same conclusions would then be drawn: The abso-

lute mortality risk difference is 5%, and the relative

risk is 1.5 [9].

Quantifying uncertainty of estimates

To address the uncertainty that is attached to these esti-

mates of effect size, they should always be accompanied

by 95% confidence intervals. The intervals would clearly

reflect that a more precise estimate can be obtained

with more data. In our example, the 95% confidence

intervals for the mortality risk difference for sample

sizes 100 and 1000 range from -4.1% to 14.1% and

from 2.1% to 7.9%, respectively. These confidence inter-

vals do not contradict each other. By contrast, the con-

fidence interval obtained from n = 100 entirely includes

the interval for n = 1000, that is, what already can be

concluded from n = 100 can be made more precise with

the larger sample.

Emphasizing clinical relevance

Effect size measures and confidence intervals put the

emphasis on aspects of clinical relevance (also denoted

by “clinical significance”) compared to the concept of

statistical significance assessed by P-values. Clinical

relevance is determined depending on whether a dif-

ference is “real and noticeable” by individuals [10].

Effect size measures like the absolute or relative risk

difference address this issue directly. A seeming draw-

back of the concept of clinical relevance is that its

threshold must be determined on a case-by-case basis,

as it depends on values and preferences patients and

healthcare professionals attach to the outcome under

investigation, or on existence of other effective treat-

ments. Unlike statistical significance, clinical relevance

is never determined by the data. Suppose that a mor-

tality risk difference of 2.5% would constitute the

minimal clinically relevant difference, corresponding

to a number needed to treat of 40 (=1/0.025). While

the analysis with n = 1000 was adequately powered to

detect a small difference in mortality risk and

excluded parity, it cannot exclude a difference less

than 2.5%, as this value is covered by the confidence

interval. Hence, such an analysis could not “prove”

clinical relevance.

Some practical recommendations

In line with the statistical guidelines of this journal and

currently effective reporting guidelines [11], we propose

that any study that compares outcomes between two

groups should report an appropriate estimate of effect size

and provide a 95% confidence interval as a measure of

precision. These measures should be interpreted regarding
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their clinical relevance and should be compared to

reported effect size measures stemming from similar stud-

ies. Table 3 describes such effect size measures for group

comparisons of outcomes typically investigated in trans-

plantation research. An adequate effect size measure is

selected depending on the scale of measurement of the

outcome, that is, whether it is a continuous, binary, or

time-to-event variable. For all presented effect size mea-

sures, 95% confidence intervals can be estimated. To

conveniently obtain effect size measures with accompa-

nying 95% confidence intervals for two proportions or

two survival rates at a specific time point, our online

calculator https://biometrician.shinyapps.io/effectsizeci/

can be used.

If more than two groups should be compared, sepa-

rate effect size measures, each comparing one group

with the reference group, can be computed. Typically,

the reference group is chosen as the group receiving the

standard therapy, or the group of patients with the

most common characteristic. Regression models can be

used to obtain effect size measures that are generalized

to continuous variables. Consider, for example, that we

would like to express the excess mortality risk that is

associated with a 10-year increase in donor age. A Cox

regression model could be used to estimate the associa-

tion of donor age with survival and may come to the

conclusion that the hazard ratio per 10-year increase in

donor age is 1.2. In this example, a hazard ratio of 1.2

per 10 years is preferred to a hazard ratio of 1.02 per

year. Effect sizes for categorical variables should be

unambiguously reported, for example, as a hazard ratio

of 1.3 for males vs. females, not just as a hazard ratio of

Table 2. Simplified definitions of selected concepts of statistical testing and estimation

Some key ingredients to statistical testing
Null hypothesis States that two different interventions (or exposures) lead to the same outcome, that is,

that the effect size is 0 if expressed as a difference, or 1 if expressed as a ratio.
Alternative hypothesis States that two different interventions lead to different outcomes, that is, that the effect

size is not equal to 0 if expressed as a difference, or not equal to 1 if expressed as a ratio.
Statistical test Depending on the research question (e.g., scale of the outcome), various statistical tests,

like a t-test, are available. A test statistic measures the “distance” between the data and
the null hypothesis. A test is only valid if its underlying assumptions are met. These
assumptions do not only encompass direct assumptions of the test, like approximate
normal distribution in the case of a t-test, but also assumptions about the conduct of the
study, like random selection of subjects and treatment or that no interim analyses were
conducted.

P-value To facilitate interpretation and comparison, a test statistic is usually transformed to a
probability scale and expressed as a P-value. The P-value measures the compatibility of the
observed data with the null hypothesis. Technically, it expresses the probability with which,
given the null hypothesis was true, data with an effect size as extreme as the observed one
or more extreme than the observed one can be obtained. The P-value cannot separate
implausibility of the null hypothesis from implausibility of any of the assumptions: A small
P-value gives evidence that the data are not compatible with the specified model—
encompassing the null hypothesis and all assumptions. Hence, the P-value should be
viewed as a continuous measure of compatibility of the data to the model ranging from 0
(complete incompatibility) to 1 (complete compatibility) [1]. Consequently, precise P-values
should be presented (e.g., P = 0.07 and not P = NS or P > 0.05).

Key ingredients to estimation
Effect size estimate Expresses the expected difference or ratio in the outcome between two interventions.
Confidence interval Expresses the imprecision of an estimate of effect size that arises from a limited sample size.

Technically, when the study could be repeated very often and the confidence level is set to
95%, then 95% of the confidence intervals computed on the study repetitions will cover
the true effect size.

Clinical relevance Based on the effect size estimate and confidence interval in addition to subject matter
knowledge and other published results, a researcher can finally answer the question of
clinical relevance “Are observed differences between the two study groups large enough
to be of clinical significance?”

For methodologically correct definitions, we refer to Greenland et al. [2]. For information on statistical testing, we refer to text-
books on statistics, for example, Agresti et al. [14].
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1.3 for gender. Regression models can also be used to

adjust the effect size measure for potential confounders.

A confounder is a variable that is associated with the

risk factors (e.g., donor age) and causally related to the

outcome. In our example, the estimated glomerular fil-

tration rate of the donor could assume the role of a

confounder. Adjustment for confounders is especially

important in observational studies where patients are

not randomized and hence their characteristics likely

have influenced the treatment decision [12]. It should

always be stated if effect size estimates obtained from a

regression model are unadjusted or adjusted. If they are

adjusted, the adjustment variables should be stated.

With continuous outcome variables, the scale of their

measurement has to be reported. Generally, the Interna-

tional System of Units (SI units) should be preferred

over other systems.

Detailed guidance on reporting of results from obser-

vational and randomized studies and other study types

can be found on the website of the “Enhancing the

Quality and Transparency of Health Research (EQUA-

TOR) network” (http://www.equator-network.org,

accessed 08 July 2019) [11,13]. The EQUATOR network

website links to published reporting guidelines for any

type of study in any medical discipline. Summarizing,

instead of solely relying on P-values to answer their

research questions, authors are encouraged to present ade-

quate effect size measures accompanied with 95% confi-

dence intervals.
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Table 3. Some commonly used effect size measures to compare two interventions in transplantation research

Scale of the outcome Examples
Effect size
measures

Example of interpretation “If
intervention 1 is compared to
intervention 2, . . .”*

Statistical method for
generalization

Continuous Glomerular filtration
rate, glucose level

Difference of
means

“. . .the expected difference in
glomerular filtration rate is
5 mL/min/1.73 m2.”

General linear model
(linear regression,
ANCOVA)

Binary within a fixed,
fully observable time
frame

Complications during
transplantation,
delayed graft
function

Risk difference
p1-p2

“. . . in 5% of all people the
occurrence of a complication
during transplantation could
be avoided.”

Risk prediction after
logistic regression

Relative risk (RR)
p1/p2

“. . . the probability of the
occurrence of a complication
during transplantation
multiplies by 1.25.”

Poisson regression
(for rare outcome
events)

Odds ratio (OR)
Odds1/Odds2

“. . . the odds of the occurrence
of a complication during
transplantation multiples by
1.5.” [Odds1 = p1/(1�p1)]

Logistic regression

Binary within varying
follow-up time

Incidence of acute
rejection episodes

Incidence rate
ratio

“. . . the expected number of
acute rejection episodes per
patient year multiplies by
1.15.”

Poisson regression

Time-to-event Patient survival, graft
survival

Survival difference at
t years, S2(t)�S1(t)

“. . . in 7% of all people graft
loss within the first two years
could be avoided.”

Survival estimation
after Cox regression

Hazard ratio (HR) “. . . the instantaneous
mortality multiplies by 1.2.”

Cox regression

The choice of effect size measure depends on the scale of the outcome. Examples of correct interpretations for comparison of
two interventions are given. Statistical methods to generalize the analysis for adjustment for potential confounders or continu-
ous exposure variables are presented. p1, p2, the observed event rates after intervention 1 or 2; S1(t), S2(t), the observed sur-
vival proportions at t years after interventions 1 and 2.

*For comparing exposures, change to “If exposed individuals are compared to unexposed individuals, . . .”
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