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SUMMARY

Our understanding of the role of B cells in organ transplantation remains
incomplete and continues to grow. The majority of research has focused
on the detrimental role of antibodies that drive the development of patho-
genesis of the transplanted organ. However, it has been shown that not all
donor-specific antibodies are harmful and in some circumstances can even
promote tolerance through the mechanism of accommodation. Further-
more, B cells can have effects on transplanted organs through their interac-
tion with T cells, namely antigen presentation, cytokine production, and
costimulation. More recently, the role and importance of Bregs was intro-
duced to the field of transplantation. Due to this functional and ontoge-
netic heterogeneity, targeting B cells in transplantation may bring
undesired immunologic side effects including increased rejection. There-
fore, the selective control of B cells that contribute to the humoral
response against donor antigens will continue to be an important and chal-
lenging area of research and potentially lead to improved long-term trans-
plant outcomes.
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Introduction

Historical perspectives—B cells in transplant rejection

In 1990, a Nobel Prize was awarded to Drs. Murray and

Thomas “for their discoveries concerning organ and cell

transplantation in the treatment of human disease,” cel-

ebrating the benefits of clinical transplantation. Over

the last 30 years, the number of transplants has

increased even further, with more than 19 000 trans-

plants performed in the United States in 2018 [1]. Kid-

ney allograft survival dramatically improved between

1956 and 1990, partially due to advancement of

immunosuppressive agents that target T lymphocytes.

One-year unadjusted graft survival now exceeds 97%

and 93% for primary living and deceased donor kid-

neys, respectively [2,3]. However, the rate of improve-

ment of long-term graft survival over the past five

decades does not follow the remarkable positive trend

of short-term graft survival in organ transplantation

(Figs 1 and 2).

The gradual loss of graft function has been described

by various terms and is most often attributed to chronic

rejection. As reviewed by our group and others, the etiol-

ogy of chronic rejection is multifactorial [4–6] and

includes progression of underlying kidney disease, drug

toxicity, and immune injury. In his commentary on an

earlier review by us, Paul Terasaki stated, “The mantra,

‘chronic rejection is multifactorial’ is the major reason

for the lack of progress in reducing the rate of chronic
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rejection these past 30 years.” [7]. By this, he was claim-

ing that antibody was the sole important cause of graft

failure rather than other etiologies, and perhaps reacting

to the emphasis on the T cell as the agent of rejection.

Alloantibody-induced pathogenesis had been initially rec-

ognized in the 1960s by Patel and Terasaki [8], who

showed that donor-specific antibodies (DSAs) were asso-

ciated with immediate kidney transplantation failure.

Later, Terasaki and Cai [9,10] showed that human leuko-

cyte antigen (HLA) antibodies are associated with chronic

rejection. As they claimed, the T-cell-centric concept is

deeply ingrained in the transplant community, and

alloantibody or B cells had not been fully considered as a

major barrier to tolerance until recently.

Current perspectives - B cells in organ transplantation

B cells were initially considered to be associated with

graft rejection but were not considered the major com-

ponent of rejection or tolerance in organ transplanta-

tion but rather an adjunct to T-cell-mediated rejection

[11,12]. These early conclusions were mainly due to the

more obvious role of cellular immunity under subopti-

mal or no immunosuppression in early graft rejection

[11].

In the current immunosuppressive era with low rates

of acute cellular rejection, the presence of alloantibody

remains associated with poorer outcomes [13]. Post-

transplant donor-specific antibody (DSA) and de novo

DSA (dnDSA) are major risk factors and barriers to

long-term stable graft survival [14,15]. Once DSA devel-

ops, almost 40% of affected patients lose their graft in

contrast to patients with no dnDSA [16]. Furthermore,

patients with preformed DSA, who comprise 40% of

transplant waitlists, showed higher risk of rejection,

either acute or chronic antibody-mediated rejection

(ABMR) regardless of type of organ transplantation

[17–19]. Alloantibody is also a major barrier to trans-

plant tolerance. Conceptually, B cells and their down-

stream effector plasma cells (PCs) play a major role in

acute and chronic ABMR [20]. Memory B cells rapidly

differentiate to PCs following a secondary anamnestic

response [21]. The clinical impact of B cells and anti-

bodies, especially PCs that secrete antibodies against

donor antigens, including HLA and non-HLA–specific
antibodies, has received increasing attention in the past

decade [22–28]. This has included a defined B-cell sig-

nature associated with clinical kidney transplant toler-

ance [29]. Given the association of a B-cell signature

with tolerance, the B cell and its associated alloimmune

response seems to be a key determinant of stable long-

term graft survival or operational tolerance.

B cells are functionally heterogeneous populations.

Unique B-cell subsets have been defined based on loca-

tion, ability to migrate, and contribution to T-depen-

dent or T-independent response [30,31]. However,

some B-cell subtypes are well known for their regulatory

effect via IL-10, IL-35, or TGF-ß, including transitional

B cells, B10 effector cells, and other regulatory B cells

[32–35]. In this review, we will focus on potential detri-

mental and beneficial B-cell functions/mechanisms in

transplantation.

Antibodies in organ transplantation

Alloantibody as a barrier to transplant

Early in clinical transplantation, it was recognized that

pretransplant cytotoxic levels of donor-specific HLA

antibody (DSA) were associated with an increased risk

for hyperacute rejection and/or allograft dysfunction

across all organ types [8,36]. As more sensitive

solid-phase immunoassays for DSA detection were

developed, the correlation between DSA positivity and

ABMR or allograft loss diminished [37–41]. However,

surveillance biopsies and more sensitive methods for

Figure 1 A schematic and simplified view of the different pathways

through which B cells contribute to transplant rejection. B cells con-

tribute to allograft rejection after differentiating into antibody-secret-

ing plasma cells (blue). Additionally, B cells shape the T-cell response

through a combination of antigen presentation, cytokine production,

and costimulation (green). Lastly, B cells have direct effects on the

allograft that can be initiated by an ischemic injury (purple).
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detecting antibody-mediated injury reestablished a link

between ABMR and diminished long-term survival in

DSA-positive transplants [42–47]. The decision to trans-

plant across a DSA barrier or wait for a more compati-

ble organ depends on many factors, including the

urgency for transplantation, center size, and risk-aver-

sion policy, and center infrastructure that permits rapid

initiation of antirejection therapy and close post-trans-

plant monitoring of protocol biopsies and DSA. Single

and multicenter studies have developed risk stratifica-

tions correlating preformed DSA strength at initiation

of desensitization or time of transplantation with risk of

ABMR and reduced allograft survival [48–51]. Detailed

examinations of DSA characteristics have identified a

greater risk for allograft loss and ABMR with comple-

ment-fixing DSA and IgG3 subclass DSA [24,52–55].

However, even in the absence of DSA at time of trans-

plantation, the risk for ABMR in sensitized candidates

may not be completely eliminated, given the possibility

of unrecognized HLA-specific memory with the poten-

tial for recall responses immediately post-transplant

[56–59]. Risk assessments for humoral alloimmunity

require a full assessment of the patient’s current and

past sensitization events as well as the overall quality of

the transplanted organ to include HLA mismatch [60].

Therefore, while avoiding DSA is preferred, it may not

be possible in very broadly sensitized transplant candi-

dates even in the era of kidney paired donation and

broader deceased donor organ sharing across larger geo-

graphical regions [61,62]. Whether preformed DSA rep-

resents a barrier to transplantation is multifactorial and

must be determined in the context of the patient, the

organ type, and the transplant center.

The development of post-transplant de novo DSA

can occur in the absence of pretransplant HLA sensiti-

zation and has been shown to impact long-term

Figure 2 Overview of commonly used pharmacological agents targeting B cells during different developmental stages.

32 Transplant International 2020; 33: 30–40

ª 2019 Steunstichting ESOT

Schmitz et al.



allograft survival. DSA that arises post-transplant is pri-

marily directed toward donor HLA class II mismatches

and occurs in the setting of inadequate immunosup-

pression and/or increased HLA class II mismatching

[63–72]. The incidence of de novo DSA depends upon

allograft type ranging from 12% in primary kidney

transplants with a median time to development of

4 years [16] and up to 30% in lung recipients within

the first year post-transplant [45,73]. De novo DSA is

more strongly associated with ABMR and allograft loss

and thus appears to be more pathologic than preformed

DSA. The reasons for this observation may reflect the

generation of antibodies with higher specificity and

affinity for mismatched donor HLA, increased immuno-

genicity of HLA class II molecules, or the upregulation

and exposure to donor HLA class II in the context of

inflammation and infection [45,73–76]. Greater atten-

tion to alloimmune risk assessments at time of trans-

plant may better inform individualized

immunosuppression and post-transplant monitoring

strategies to detect incomplete suppression of humoral

alloimmune response and avoid DSA formation

[60,74].

Accommodation: enigmatic role of alloantibody

In contrast to the above-described harmful effects of

alloantibodies to vascularized grafts, under some cir-

cumstances humoral immunity causes little or no dam-

age to an organ graft. Recent studies have shown that

30% of nonsensitized patients develop de novo DSA

post-transplantation without demonstrating clinical

signs of rejection [63,77]. This condition is referred to

as accommodation [78,79]. Accommodation describes a

biologic state in which grafts function despite noxious

stimuli, like alloantibodies, against them, which was first

described in the 1980s in the context of clinical ABO

incompatible renal transplantation [80,81].

Accommodation can be mediated by the graft or by

the host. The proposed mechanism of host accommoda-

tion includes a qualitative change in the humoral

immune response with altered affinity and/or specificity

for the graft [82]. One example in humans is the shift

of IgG subclass to IgG2, which inefficiently activates

complement and therefore indirectly blocks the effect of

more cytotoxic IgG subclasses, as described by Yu et al.

[83]. However, data also suggest that a healthy balance

between complement-fixing and noncomplement-fixing

antibodies may be required to induce accommodation

[84]. A xenotransplantation model has shown evidence

that antibodies against the graft are required to induce

accommodation, and accommodation was not evident

when anti-donor antibodies were suppressed [85]. In a

cardiac xenograft model, investigators hypothesized that

control of the complement cascade can support accom-

modation [86]. In sensitized murine models, investiga-

tors observed durable accommodation in heart and

kidney allotransplantation models with terminal com-

plement inhibition (anti-C5 mAb) [87,88]. Other obser-

vations in sensitized human renal transplant recipients

have shown that removal of anti-HLA antibodies by

immunoadsorption prior to transplantation is leading

to accommodation in selected patients [89]. Subse-

quently, it was postulated that graft exposure with a low

concentration of DSAs induces accommodation instead

of causing graft injury. This was demonstrated in an

in vitro model by Salama et al. [90], who identified Bcl-

xl in graft endothelial cells as a possible key pathway

involved. Recent data confirmed that 72% of nonsensi-

tized pediatric kidney recipients showed evidence of de

novo DSA within the graft when DSA was present in

the serum, but the presence of graft DSAs was not, per

se, predictive of graft loss [91].

Therefore, accommodation should not be interpreted

as resistance to injury but is better described as a pro-

cess that repairs injury and regenerates tissue functions.

Barbosa et al. [92] summarized this new model of

accommodation as a period of vulnerability countered

by transiently induced cytoprotection that is followed

by ongoing loss of vulnerability, reflecting persistent cel-

lular, and biochemical changes. Viewed in this way, it is

understandable that excess accommodation can also

have downsides that include a lack of viral control and

control of malignant tumor cells as described for hep-

atitis C and multiple cancer entities [93–95].

From the above-described understanding, modern

strategies focus on controlling but not inhibiting the

interaction between circulating antibodies and the graft.

However, treatment strategies involving the complement

cascade (eculizumab) or targeted plasma cell inhibition

(bortezomib) have only been partially successful to date

[96]. Overall, our understanding of accommodation is

limited and largely driven by data generated before the

current era of highly sensitive assays to measure

allospecific antibodies, protocol graft biopsies, and more

precise histologic criteria for ABMR.

The role of B cells beyond antibody

For a more complete understanding of B cells and their

role in transplantation, aspects of B-cell biology other

than antibody production must be considered. Setting
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antibody aside, B cells function in other ways, some of

which promote rejection, and some of which have the

potential to promote tolerance.

B cells as antigen-presenting cells

Although chronic rejection is commonly considered an

antibody-mediated process, Zeng et al. [97] have pro-

vided evidence that B cells are capable of promoting

chronic rejection independently of antibody production.

In a mouse model of heart allotransplantation using cos-

timulation blockade-based immunosuppression

(CTLA4Ig and anti-CD40L), they showed that animals

genetically modified to lack circulating antibody (AID/lS
KO mice) still went on to develop chronic allograft vascu-

lopathy (CAV), a pathognomonic feature of chronic

rejection found in heart, kidney, liver, and pancreas

transplantation. On the other hand, animals genetically

modified to lack both B cells and circulating antibody

(lMT mice) were protected from CAV. CAV could be eli-

cited in lMT mice by infusing B cells from AID/lS KO

mice, even though these B cells were incapable of anti-

body production. One possible mechanism to account

for this phenomenon could be the role of B cells as anti-

gen-presenting cells. In another study of mouse cardiac

allotransplantation, Noorchasm and colleagues reported

that indirect alloantigen presentation by recipient B cells

plays a critical role in the activation of alloreactive CD4+
T cells [98]. In mice, B cells have also been reported to

play an important role in helping alloreactive CD4+ and

CD8+ T cells differentiate into memory T cells [99]. In

general, B cells may contribute to allograft rejection inde-

pendently of antibody production by shaping the T-cell

response through a combination of antigen presentation,

cytokine production, and costimulation [100–103]. Addi-

tionally, one important role of B cells may include sup-

porting the basic architecture of lymphoid tissue to allow

optimal interaction between T cells, dendritic cells, and

other components of the immune response [100–102].

B-cell response to tissue injury

The traditionally understood pathological role of B cells

in transplantation is about B-cell differentiation into anti-

body-secreting cells. However, as described above, B-cell

function as antigen-presenting cells was also recognized

[9,97]. Additionally, it is well known that B cells acutely

respond to ischemia/reperfusion injury [104–106].

Recently, Cippa et al. [107] suggested that kidney injury

in ischemia/reperfusion injury and transplantation are

both mediated by a B-cell response to dysfunctional tissue

repair. Interestingly, patients who developed chronic

rejection already showed elevated B-cell activities and

other common gene signatures for acute kidney injury

including genes related to fibrosis (e.g., COL1A1, DPT,

and MMP7) and inflammation (e.g., CD52, CXCL10, and

CCL21). Based on a nontransplant (ischemic injury)

mouse model, they found that the B-cell response to tis-

sue injury is able to contribute to chronic kidney injury

or chronic rejection in the absence of an alloimmune

response. Based on transcriptional analyses, it was

hypothesized that memory B cells infiltrate, expand, and

gradually switch to a plasma cell population after

ischemic injury and later became CD138 negative poly-

clonal B cells. Such cells may play a crucial role in devel-

oping ectopic germinal centers in the kidney, causing

chronic kidney injury. Overall, B cells could have an

important role in late immune-mediated kidney injury

and repair responses including chronic rejection.

Role of B cells in promoting tolerance

B cells are often thought to boost inflammatory

responses. However, like their counterpart T cell, B cells

can also suppress the immune response. Originally, B

cells with immune regulatory function were identified

by their function, such as their capacity to produce

inhibitory cytokines (IL-10). Additionally, their ability

to induce or recruit regulatory T cells (Tregs) has

recently been implicated [108,109].

In transplantation, B cells were previously thought to

have only a pathogenic role; however, growing evidence

demonstrates that B cells may play a pivotal role in the

induction and maintenance of transplant tolerance [110].

Regulatory B cells (Bregs) have proven their importance

in controlling immunity in a number of mouse models of

allergy and autoimmunity [103,111,112]. Although a

number of subsets have been described as Bregs, the two

B-cell subsets that are best characterized are

CD5+CD19+CD1dhi B10 and CD19+CD21hiCD23hi

CD24hi transitional-2 (T2) Breg cells. While no true con-

sensus definition of Bregs has been agreed upon, charac-

terizations generally center around the secretion of IL-10

[113]. Likewise, no signature set of phenotypic markers

for Bregs is analogous to the markers CD25 and FoxP3

that characterize Tregs. Candidate phenotypic profiles for

Bregs include CD5+CD1dhi B cells and T-cell Ig and

mucin domain protein 1 (TIM-1+) B cells [114–116].

Mechanistically, Bregs function through IL-10 and

through secretion of other cytokines (TGF-b, IL-35) to

suppress CD4+ T-cell proliferation, suppress CD8+ effec-

tor T-cell function, induce T-cell apoptosis through
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binding the FAS and PD-1 receptors, induce Tregs, sup-

press antigen-presenting and cytokine secretion by den-

dritic cells and M1 macrophages, and suppress natural

killer (NK) cells and neutrophils [113]. Evidence for

Bregs’ salutary effect is sometimes inferred from experi-

ments involving pan-B-cell depletion, which has been

shown to accelerate rejection in models of heart and skin

allotransplantation [117–119] and in human clinical

heart and kidney transplant trials [120,121]. In accor-

dance with this, agents that target specific Breg cell popu-

lations, such as daratumumab (anti-CD38mAb), showed

skewing toward memory T-cell dominance in multiple

myeloma [122] and accelerated T-cell-mediated rejection

in a NHP model [123] possibly by reducing immune reg-

ulatory cells including Bregs, which are known to express

CD38 [124,125]. More direct evidence for the role of

Bregs in contributing to tolerance comes mainly from B-

cell profiling in operationally tolerant transplant patients.

Recently, Lino et al. [126] characterized a subset of

“natural regulatory plasma cells” identified by expression

of the marker LAG-3. These cells appear to be a pre-exist-

ing “natural” subset and rapidly produce IL-10 in response

to toll-like receptor stimulation. They also express the

inhibitory receptors PD-L1, PD-L2, and CD200. Finally, B

cells have been identified as the critical antigen-presenting

cells involved in anergizing CD4+memory T cells. In work

by Dalai et al. [127], B2 follicular B cells—not DCs—were

responsible for inducing anergy in the CD4+ memory T-

cell compartment in a mouse model.

B-cell signature of transplant tolerance

A major goal of the transplant community has been to

identify a “signature” of tolerance in transplant patients.

This might allow patients demonstrating this “tolerance

signature” to wean off immunosuppression and main-

tain normal graft function. While much of the focus in

studying operational tolerance has emphasized the role

of T cells, recent evidence has pointed to a B-cell signa-

ture of tolerance in transplant recipients. To study this

phenomenon, a population of operationally tolerant

kidney transplant patients who were no longer taking

immunosuppression but maintained normal graft func-

tion were identified and compared to control patients

that remained on immunosuppression with stable graft

function. In 2010, two groups identified a transcrip-

tional signature in peripheral blood showing that upreg-

ulation of B-cell-related genes and their molecular

pathways were associated with tolerance [29,128]. Fur-

thermore, Newell et al. [29] demonstrated that this B-

cell signature had upregulated in cells found in urine

and found increased numbers of naive and transitional

B cells in peripheral blood by flow cytometry. Addi-

tional work by these groups and others has identified

that operationally tolerant patients have distinct B-cell

phenotypes in peripheral blood that exhibit a more reg-

ulatory phenotype than patients with stable graft func-

tion on immunosuppression [129–132].

Collectively, these studies have suggested a role for B

cells, in particular Bregs, in promoting or maintaining

tolerance in kidney transplant recipients. Several studies

in animal models have also shown a key role for B cells

in transplantation tolerance since B-cell depletion can

prevent tolerance induction by various methods, per-

haps due to the loss of immune regulation by B cells

[115,118,133,134]. More recent evidence in the opera-

tionally tolerant human kidney transplant recipients has

identified the same B-cell signature of tolerance by tran-

scriptional analysis of peripheral blood in both sponta-

neously tolerant individuals as well as those who

underwent specific tolerance induction protocols [135].

In addition, a significant proportion of patients with

stable long-term graft function while on immunosup-

pression demonstrated this B-cell tolerance signature

[135–137]. A recent meta-analysis of the gene signatures

of operationally tolerant kidney transplant patients vali-

dated the concept that the majority of biomarkers asso-

ciated with tolerance were in fact B-cell-related [138].

B-cell targeting, pros and cons

B-cell-targeted therapies have shown success in treating

and reducing the incidence of ABMR, treating sensitized

patients, and inducing tolerance. However, these advan-

tages are balanced with shortcomings of solely targeting

B cells owing to their regulatory role and interaction

with other immune cells.

Investigations into preventing and treating ABMR have

gained traction in the transplant community for this lead-

ing cause of graft failure. Rituximab (anti-CD20 mono-

clonal antibody) has been used prominently in renal

transplantation for the treatment of ABMR, often in con-

junction with IVIG, plasmapheresis (PP), or other agents,

to prevent and reduce the incidence of ABMR [139,140].

Other solid organ transplant specialists have followed suit

[141,142]. Traditionally, desensitization regimens relied

on the removal of DSAs through PP, which is costly,

invasive, and difficult to apply pretransplant in deceased

donor transplantation [143]. B-cell targeting provides a

noninvasive alternative approach. In a randomized con-

trolled study of rituximab by van den Hoogen et al. [143],

sensitized patients experienced less rejection episodes
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compared to the placebo group. The role of B cells extends

to the controversial topic of transplantation tolerance. Liu

et al. [117] showed that B-cell depletion therapy might

provoke a bias toward a regulatory phenotype and pro-

mote long-term islet allograft survival in nonhuman pri-

mates. A subsequent study showed that a possible

explanation for this earlier findingmight be that Bregs pro-

mote Treg cell development via TGF-b production [144].

There are ongoing investigations to explain these findings.

Limitations of B-cell-targeted therapies warrant a dis-

cussion to optimize their use in the clinical setting. Sev-

eral studies have found that B-cell-focused therapies

ignore the importance of T-cell-directed immune

responses, resulting in allograft rejection and tolerance

failure [118,119]. Clatworthy et al. [121] examined the

benefit of B-cell depletion by using rituximab as a sole

induction therapy in a randomized controlled trial, but

the study was halted after a high incidence of acute cel-

lular rejection was noted in the rituximab group. The

authors hypothesized that depletion led to a loss of Breg

activity and subsequent cytokine storm that activated T

cells. However, the study’s enrollment was small and

the findings would need to be replicated with larger

cohorts to confirm these findings. Furthermore, B-cell

depletion with rituximab does not address PCs. Ritux-

imab has been added to desensitization regimens to

deplete B cells, reduce PC generation, and prevent anti-

body production in sensitized patients [145]. However,

B cells no longer express CD20 once they differentiate

into PCs and become “out of reach” of rituximab

[146,147]. Clinically, depletional therapies with ritux-

imab have many side effects, such as heightened risk of

infection leading to sepsis [148,149] and cardiovascular

disease (CVD) [150–152]. CVD is emerging as a highly

morbid complication of rituximab-treated patients.

Tyden and colleagues showed in their randomized con-

trolled study that the rituximab group experienced

higher mortality due to CVD with no difference in the

incidence of AMR, T-cell-mediated rejection, or de

novo DSA production. Kyaw et al. [151] showed that

a possible explanation of such finding may be due to

the depletion of atheroprotective B-lymphocyte popula-

tions with rituximab. Notably, the incidence of CVD

in rituximab-treated patients is not limited to trans-

plant patients; many cases have been reported in clini-

cal trials in non-Hodgkin’s lymphoma, chronic

lymphocytic leukemia, and rheumatoid arthritis, among

others [152].

Concluding remarks

Clearly, alloantibody is detrimental for long-term graft

survival. The plethora of new agents targeting either the

B cell, plasma cell, related cytokines, or complement has

led to new transplantation research and clinical trials. B

cells fall into several functionally distinct subpopula-

tions, and broad B-cell depletion may bring undesired

immunologic side effects including increased rejection.

Understanding how to selectively control B cells that

contribute to the humoral response against donor anti-

gens will continue to be an important and challenging

area of research and potentially lead to improved long-

term transplant outcomes.
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