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The FccRIIIA-158 VV genotype increased the risk of
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ABSTRACT

Post-transplantation lymphoproliferative disorder (PTLD) is a severe com-
plication in organ transplant recipients. The use of T lymphocyte-depleting
antibodies (TLDAb), especially rabbit TLDAb, contributes to PTLD, and
the V158F polymorphism of Fc gamma receptor IIIA (FccRIIIA) also
named CD16A could affect the concentration–effect relationship of TLDAb.
We therefore investigated the association of this polymorphism with PTLD
in kidney transplant recipients. We characterized the V158F polymorphism
in two case–control cohorts (discovery, n = 196; validation, n = 222).
Then, we evaluated the binding of rabbit IgG to human FccRIIIA-158V and
FccRIIIA-158F. The V158F polymorphism was not linked to PTLD in the
overall cohorts, but risk of PTLD was increased in VV homozygous recipi-
ents receiving TLDAb compared with F carriers in both cohorts, especially
in recipients receiving TLDAb without muromonab (discovery: HR = 2.22
[1.03–4.76], P = 0.043, validation: HR = 1.75 [1.01–3.13], P = 0.049).
In vitro, we found that the binding of rabbit IgG to human NK-cell
FccRIIIA was increased when cells expressed the 158-V versus the 158-F
allotype. While the 158-V allotype of human FccRIIIA binds rabbit
immunoglobulin-G with higher affinity, the risk of PTLD was increased in
homozygous VV kidney transplant recipients receiving polyclonal TLDAb.
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Introduction

Post-transplant lymphoproliferative disorder (PTLD) is

the second most frequent malignancy in organ trans-

plant recipients. The incidence of PTLD is increased in

the first post-transplant year, but the risk remains

beyond the first year [1-4]. Indeed, the 10-year cumula-

tive incidence is close to 2%, about 10 to 20 times

higher than in the general population [1,4,5]. The mor-

tality and the risk of graft loss remain high after PTLD

[5-7]. To prevent PTLD, we must identify individual

pretransplantation PTLD risk factors. By now, the best

described risk factors of PTLD are the seronegative EBV

status at the time of transplantation and the immuno-

suppression that can affect the antiviral T-cell response

[8,9]. However, their clinical significance remains rela-

tively limited because a large majority of adult recipi-

ents is infected by EBV before the transplantation and

the contribution of each immunosuppressive drug is

difficult to determine.

Induction therapy using T lymphocyte-depleting anti-

bodies (TLDAb) was found associated with increased

incidence of PTLD [1,4,9,10]. The mechanisms underly-

ing this risk remain unknown, although an impaired

antiviral response after T-cell depletion is usually

hypothesized from the following findings: (i) the risk of

PTLD was found reduced after treatment with poly-

clonal TLDAb (pTLDAb) like rabbit antithymocyte

globulin (rATG) or horse antilymphocyte globulin

(ALG) versus mouse muromonab-CD3 antibodies,

which induces greater T-cell depletion [11]; and (ii) a

dose reduction in TLDAb in modern induction regi-

mens has been associated with reduced PTLD incidence

[4,9]. pTLDAb induces lymphocyte depletion in the

peripheral blood primarily by complement-dependent

cell lysis, activation-induced cell death, and antibody-

dependent cell-mediated cytotoxicity (ADCC) [12],

involving the Fc gamma receptor IIIA (FccRIIIA). In

humans, this low-affinity receptor for the Fc fragment

of immunoglobulin G (IgG) links IgG-sensitized target

cells to FccRIIIA-bearing cytotoxic cells, such as natural

killer (NK) cells and monocytes/macrophages leading to

target cell lysis.

The FCGR3A gene, encoding the FccRIIIA, features a
functional allelic polymorphism (rs 396991) generating

allotypes with a phenylalanine (F) or a valine (V) at

amino acid position 176 [13,14]. The FccRIIIA-158V
allotype has a higher affinity for human IgG (especially

IgG1 and IgG3), associated with enhanced clinical

response to several therapeutic human IgG1 monoclonal

antibodies [15-18]. Interestingly, Ternant et al. [19,20]

recently reported that kidney transplant recipients with

homozygous VV genotype exhibited higher T-cell deple-

tion upon treatment with horse and rabbit pTLDAb.

While it has been reported that the V158F polymor-

phism is not associated with altered risk of developing

PTLD in organ transplant recipients without T-cell

depletion [21], this has not been evaluated in recipients

receiving pTLDAb, whose proportion is increasing [22].

The aim of the present study was therefore to assess the

effect of the V158F polymorphism on the risk of PTLD

in kidney transplant recipients, with a focus on those

who have received pTLDAb.

Material and methods

Patients

Discovery cohort

Among kidney recipients who underwent renal trans-

plantation in our unit between 1985 and 2015
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(n = 2107), we identified 52 patients with PTLD and

DNA samples were available for 49 of them. Ethics

committee approval was granted for the collection of

DNA samples, and the study was approved by the

Comit�e de Protection des Personnes Tours-R�egion Cen-

tre Ouest 1 (DC 2013-1780). Then, we selected three

recipients without PTLD for each recipient with PTLD

with the nearest date of transplantation because dosing

strategies of ATG and ALG have greatly changed over

time. Date of death, graft loss, or last visit was consid-

ered as the censoring date. Among the 196 matched

recipients, 147 had received pTLDAb.

Validation cohort

We obtained DNA samples extracted from peripheral

blood or tumoral tissue in 278 matched recipients (1:1)

from a French multicentric case–control study limited to

recipients receiving transplants since 1990 (Figure 1).

Cases and controls were matched one-to-one on transplant

centre, sex, age at transplantation (+/- 5 years), year of

transplantation (+/� 1 year), graft order (1st, 2nd, or 3rd

transplant), and pretransplant EBV status. To approximate

time-to-event analysis, controls were selected to have the

same time length of immunosuppression as the transplant-

to-PTLD period in cases. We excluded 16 matched recipi-

ents already included in our discovery cohort, and geno-

typing was not feasible in 19 recipients (38 matched

recipients were therefore excluded). Finally, we excluded 2

matched recipients because PTLD was recently diagnosed

in a control recipient. Among the 222 matched recipients,

129 had received pTLDAb.

FCGR3A genotyping

Single-step multiplex allele-specific PCR assays were per-

formed as previously described [23] with minor

modification. The 25 µl reaction mixture contained

10 ng genomic DNA, 400 nM forward primer (50-TCCA
AAAGCCACACTCAAAGTC-30), 400 nM reverse V allele

primer (50-AGACACATTTTTACTCCCATC-30), and

200 nM reverse F allele primer (50-GCGGGCAGGGC
GGCGGGGGCGGGGCCGGTGATGTTCACAGTCTCT-

GATCACACATTTTTACTCCCATA-30), 400 lM of each

dNTP, 2 mM MgCl2, and 0.5 U Taq DNA polymerase in

its buffer (Promega, Madison, WI, USA). PCR conditions

were 3.5 min at 95°C followed by 35 cycles, each at 95°C
for 20 s, 56°C for 20 s, and 72°C for 30 s. Next, PCR

products (137- and 81-bp fragments for F and V alleles)

were resolved on 8% acrylamide gel (Invitrogen) and

visualized after ethidium bromide staining.

Effect of the V158F polymorphism on rabbit
polyclonal IgG binding to human FccRIIIA

CD16-transduced NK-92 cell lines (FccRIIIA-158V or

FccRIIIA-158F) used to evaluate binding to FccRIIIA
were kindly provided by Dr. B. Cl�emenceau (INSERM

CR 1232 CRCINA, Nantes, France). Cells were cultured

in RPMI-1640 medium (Sigma, Albuquerque, NM, USA)

supplemented with 10% fetal bovine serum (PAA Labora-

tories, Velizy-Villacoublay, France), 100 UI/ml inter-

leukin 2 (Proleukin, Chiron Corp., Emeryville, CA, USA),

2 mM L-glutamine (Sigma), penicillin (100 UI/ml), and

streptomycin (0.1 µg/ml) (Sigma) at 37°C under a

humidified 5% CO2 atmosphere. FITC-conjugated anti-

CD16 monoclonal antibody (mAb) clone 3G8 and rabbit

polyclonal IgG (pIgG) were from Beckman Coulter and

Sigma, respectively. Tegeline� (human pIgG) was kindly

provided by LFB.

The mAb 3G8 (mouse IgG1) recognizes an epitope

within the binding site of human IgG. Therefore, it

inhibits binding to FccRIIIA and was previously used to

evaluate the binding of rituximab to FccRIIIA by flow

Figure 1 Flow chart (validation cohort). From 139 paired of kidney recipients enrolled into a French multicentric matched case–control study,

111 were finally eligible to build our validation cohort.
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cytometry [24]. We evaluated the ability of rabbit or

human pIgG to inhibit the binding of FITC-conjugated

3G8 to the FccRIIIA-expressing NK-92 cell line. Briefly,

CD16-transduced NK-92 cells (FccRIIIA-158V or

FccRIIIA-158F) (2 9 105 in 100 ll) were incubated

with FITC-conjugated 3G8 (dilution 1:100) for 30 min

at 4°C. Cells were then incubated for 30 min at 4°C
with 0.01 to 10 mg/ml of rabbit or human pIgG and

analyzed by flow cytometry. All flow cytometry analyses

were performed with 10 000 events with a Gallios flow

cytometer and Kaluza 1�3 software (Beckman Coulter,

Brea, CA, USA). The results are expressed as percentage

inhibition of 3G8 binding: (% of 3G8-positive NK-92

FccRIIIA-158V or FccRIIIA-158F cells in the absence of

pIgG � % of 3G8-positive NK-92 FccRIIIA-158V or

FccRIIIA-158F cells in the presence of

pIgG) 9 100 � % of 3G8-positive NK-92 FccRIIIA-
158V or FccRIIIA-158F cells in the absence of pIgG.

Statistical analysis

Data are expressed as percentage or mean � SD for nor-

mally distributed variables and median (range) for non-

normally distributed variables. Qualitative data were com-

pared by chi-square test. Quantitative data were compared

by Mann–Whitney U-test. A Cox regression was per-

formed to identify the risk factors of PTLD in the discov-

ery cohort. We successively assessed all recipients

(n = 196), recipients receiving pTLDAb with (n = 147) or

without (n = 141) muromonab-CD3 antibodies, which is

no longer used but was known to represent a strong risk

factor of PTLD. Second, we adjusted the association

between V158F polymorphism and PTLD for recipient

age, type of pTLDAb (rATG or ALG), and recipient EBV

serology. We carried out a similar analysis with three suc-

cessive groups in the validation cohort with an adjustment

for recipient age and recipient EBV serology (but not

duration and type of pTLDAb because this information

was not available in the validation cohort). Results are

expressed as hazard ratios (HRs) and 95% confidence

intervals (95% CIs). We additionally generated Kaplan–
Meier curves to compare actuarial PTLD-free survival

(censored at 20 years) in VV, VF, and FF recipients from

both cohorts receiving pTLAD without muromonab-

CD3, in order to assess a potential dose effect of V15F

polymorphism on risk of PTLD. Curves were compared

using log-rank test. To evaluate the effect of the V158F

polymorphism on rabbit pIgG binding to FccRIIIA, sim-

ple linear regression was calculated by the method of least

squares for each inhibition to compare the half-maximal

inhibitory concentration (EC50). Statistical analyses

involved the use of SAS v9.1 (SAS Inst., Cary, NC, USA).

P < 0.05 was considered statistically significant.

Results

Baseline characteristics of the discovery and validation
cohorts

The characteristics of cases (PTLD) and controls (no

PTLD) in both cohorts are presented in Table 1. Cases

and controls did not differ in age and had a similar

proportion younger than 18 years in the discovery

cohort (cases: 3/49, controls: 8/147, P = 1) and the vali-

dation cohort (cases: 1/111, controls:0/111, P = 1).

Otherwise, cases and controls did not differ in demo-

graphic data, incidence of acute rejection, and mainte-

nance immunosuppressive regimen, except for a slightly

higher proportion of cases than controls receiving aza-

thioprine in the validation cohort. Importantly, the pro-

portion of patients seronegative for EBV before

transplantation was not different in VV and F-carriers

in discovery cohort (7.2% vs. 10.4%, P = 1) and valida-

tion cohort (13.5% vs. 12.4%, P = 0.857).

In the discovery cohort, 147 (75%) recipients

received pTLDAb (rATG and/or ALG). Except for two

recipients with steroid-resistant rejection, pTLDAb were

used as induction therapy. Most recipients received

rATG (n = 137, 93.2%), combined with (n = 42:

cases = 11, controls = 31) or without ALG (n = 95,

cases = 23, controls = 72). Ten recipients received ALG

without rATG (cases = 2, controls = 8). Overall, cases

and controls did not differ in the use of pTLDAb. In

the validation cohort, 129 (58%) recipients received

pTLDAb (rATG: 114), with a higher proportion in cases

than in controls.

Increased risk of PTLD in homozygous VV kidney
transplant recipients receiving pTLDAb

Discovery cohort

Among the 196 recipients, 67, 34, and 95 were homozy-

gous for FccRIIIA-158F (FF), homozygous for

FccRIIIA-158V (VV), and heterozygous (VF), respec-

tively. Thus, the frequency of the V allele was 41.3%,

respecting the Hardy–Weinberg equilibrium

(P = 0.997). The median delay between transplantation

and PTLD diagnosis was 4.9 years (range 0.1 to 20.5).

On univariate analysis in the overall cohort, the V158F

polymorphism was not significantly linked with PTLD

and muromonab-CD3 antibody treatment was the sole

Transplant International 2020; 33: 936–947 939
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risk factor of PTLD (Table 2). In 147 recipients receiv-

ing pTLDAb, we found that VV homozygous recipients

had a higher risk of PTLD (HR = 2.08 [95% CI 1.01–
4.35], P = 0.046), whereas muromonab-CD3 antibody

treatment remained strongly associated with PTLD

(HR = 4.61 [1.62–13.06], P = 0�004). Finally, the VV

genotype was still associated with PTLD in the 141

recipients receiving pTLDAb without muromonab-CD3

antibodies as shown in Table 2 (HR = 2.22 [1.03–4.76],
P = 0.043). This greater risk remained significant after

adjustments on recipient age, type of pTLDAb, and

recipient EBV serology (HR = 3.44 [1.19–11.11],
P = 0.023).

Validation cohort

Among the 222 recipients, 72, 37, and 113 were FF, VV,

and VF, respectively. Thus, the frequency of the V allele

was 42.1%, respecting Hardy–Weinberg equilibrium

(P = 0.898). The time between transplantation and

PTLD occurrence (6.49 [0.11–25.28] years) did not dif-

fer from that in the discovery cohort (P = 0.186). We

confirmed on univariate analysis that the V158F poly-

morphism was not significantly linked with PTLD in

the overall cohort (HR = 1.37 [0.78–2.56], P = 0.268),

but was associated with PTLD in 129 recipients receiv-

ing pTLDAb (HR = 1.69 [0.97-2.94], P = 0.065), espe-

cially in 127 recipients who did not receive

muromonab-CD3 antibodies (Table 3, HR = 1.75

[1.01–3.13], P = 0.049). This association remained sig-

nificant after adjustments for recipient age and recipient

EBV serology (HR = 1.92 [1.02–3.71], P = 0.044).

We additionally raised the question of V158F poly-

morphism dose effect in all patients receiving pTLDAb

but not muromonab-CD3 antibodies (discovery and

validation cohorts were pooled for this analysis, while

we failed to show a difference between VV, VF, and FF

in the discovery cohort). We assessed 48 VV (25 from

discovery cohort/23 from validation cohort), 134 VF

(67/67), and 86 FF (49/37) (distribution of patient in

cases and controls is provided in supplementary data;

Table S1). As shown in Figure 2, we observed that risk

of PTLD was different in three groups (P = 0.026), with

the highest risk observed in VV recipients (VV vs. VF:

P = 0.029; VV vs. FF: P = 0.011; VV vs. F-carrier:

Table 2. Risk factors of PTLD in discovery cohort according to the induction therapy

HR 95% CI P-value

All patients (n = 196)
FCGRIIIA-158 VV (vs. F-carrier) 1.61 0.82–3.13 0.169
T lymphocyte-depleting agents (vs. no) 0.75 0.40–1.41 0.368
Muromonab-CD3 (vs. no) 5.22 2.07–13.19 0.0005
Recipient age (per year) 1.00 0.98–1.02 0.884

Patients treated by T lymphocyte-depleting agents (rATG and/or ALG, n = 147)
FCGRIIIA-158 VV (vs. F-carrier) 2.08 1.01–4.35 0.046
Type of T lymphocyte-depleting agents (vs. ALG) 0.97 0.67–1.39 0.853
Duration of T lymphocyte-depleting agents (per day) 0.97 0.88–1.06 0.453
Muromonab-CD3 (vs. no) 4.61 1.62–13.06 0.004
Recipient age (per year) 1.00 0.98–1.02 0.973

Patients treated by T lymphocyte-depleting agents (rATG and/or ALG) without muromonab-CD3 (n = 141)
FCGRIIIA-158 VV (vs. F-carrier) 2.22 1.03–4.76 0.043
Type of T lymphocyte-depleting agents (vs. ALG) 1.00 0.68–1.47 0.992
Duration of T lymphocyte-depleting agents (per year) 0.94 0.85–1.03 0.199
Recipient age (per year) 1.00 0.98–1.02 0.897

Bold is used for significant associations (p-value < 0.05)

Table 3. Risk of PTLD in homozygous VV kidney
transplant recipients receiving T lymphocyte-depleting

agents

Validation cohort

HR 95% CI P-value

Patients treated by T lymphocyte-depleting agents (rATG
and/or ALG) (n = 129)
FCGRIIIA-158 VV (vs. F-carrier) 1.69 0.97–2.94 0.0653
Muromonab-CD3 (vs. no) 5.77 1.38–24.1 0.016
Recipient age (per year) 1.01 0.99–1.02 0.593

Patients treated by T lymphocyte-depleting agents (rATG
and/or ALG) without muromonab-CD3 (n = 127)
FCGRIIIA-158 VV (vs. F-carrier) 1.75 1.01–3.13 0.049
Recipient age (per year) 1.00 0.99–1.02 0.562

Bold is used for significant associations (p-value < 0.05)
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P = 0.010). Risk of PTLD in FF and VF recipients was

not different (P = 0.460).

Characteristics of PTLD in discovery and validation cohorts

PTLD characteristics were quite similar in the two

cohorts (Table 4A). The only difference concerned the

localization of the tumor with a lower proportion of

primary central nervous in the validation cohort PTLD,

balanced by a higher percentage of PTLD within the

kidney graft. We then assessed the PTLD characteristics

by V158F polymorphism (Table 4B). We did not

observe any differences in two cohorts with regard to

the localization, the tumor EBV status and the cell type

involved, that was almost exclusively B cells irrespective

of the genotype. Additionally, the proportion of early-

onset PTLD did not differ between VV homozygous

and F-carrier recipients. Finally, PTLD characteristics

did not differ by V158F polymorphism in recipients

treated with pTLDAb (data not shown).

Effect of the V158F polymorphism on binding of
rabbit pIgG to human FccRIIIA

We wondered whether the association between the

V158F polymorphism and the susceptibility to rATG in

kidney transplant recipients may be related to a differ-

ence in rATG binding to human FccRIIIA. To address

this question, we used our previously described flow

cytometry assay [23] to compare the in vitro ability of

rabbit pIgG to inhibit the binding of FITC-conjugated

3G8 mAb on the human NK-92 cell line expressing the

V or F allotype of FccRIIIA. rATG could not be used in

this assay because it contains antibodies for human NK-

cell membrane antigens. As expected and previously

reported with rituximab and purified NK cells [23], we

found a higher ability of human pIgG to inhibit the

binding of 3G8 mAb to FccRIIIA on NK-92 cells

expressing the 158-V versus the 158-F allotype: 50%

inhibition of 3G8 mAb binding (EC50) was achieved on

average with 0.09 and 0.29 mg/ml pIgG (n = 3), respec-

tively (Figure 3). Results obtained with rabbit pIgG

were similar: 50% inhibition of 3G8 mAb binding to

FccRIIIA-158V- and FccRIIIA-158F-expressing NK-92

cells was achieved with 0.04 and 0.2 mg/mL pIgG,

respectively. Thus, these findings unambiguously

demonstrated higher binding of rabbit IgG on NK-92

cells expressing the FccRIIIA-158V compared with cells

expressing the FccRIIIA-158F allotype.

Discussion

In this study, we report for the first time that the V158F

polymorphism of FccRIIIA is an independent risk factor

of PTLD in kidney transplant recipients after polyclonal

T lymphocyte depletion therapy. Risk of PTLD was

Figure 2 PTLD-free survival by V158F polymorphism in patients from both cohorts who received T lymphocyte-depleting antibodies but no

muromonab. Patients were classified in two groups (VV and F-carriers, left panel) or three groups (VV, VF, and FF recipients, right panel).

Kaplan–Meier plots were compared with log-rank test.
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increased twofold in homozygous VV recipients from our

monocentric cohort and was confirmed in a larger and

more recent multicentric cohort designed differently.

[20] Accordingly, we demonstrated in vitro experiments

that the FccRIIIA 158-V allotype binds rabbit pIgG more

efficiently than the 158-F allotype.

So far, studies that assessed the role of the V158F

polymorphism on the PTLD course have focused on the

outcome following the diagnosis and shown either an

improved survival in VV patients treated or not with

rituximab or the absence of influence of the V158F

polymorphism on the response to rituximab [21,25].

Stern et al. failed to observe an association between the

V158F polymorphism and the risk of PTLD, which

might be considered as conflicting with our results at

first glance [21]. However, we obtained similar results

in our two cohorts when all patients (i.e., who received

or not pTLDAb) were analyzed. It is also of note that

only 61 recipients received pTLDAb in the previous

study. We therefore consider that results of Stern study

are not conflicting with ours that restrict the effect of

the V158F polymorphism on PTLD to patients with

lymphocyte depletion therapy. As well, heart and liver-

kidney transplant recipients were included in the study

of Stern et al. The association between the V158F poly-

morphism and PTLD should be specifically assessed in

such patients, who have a greater risk of PTLD than

kidney transplant recipients [26]. Owing to the fact that

the increased risk of PTLD in VV recipients is restricted

to patients receiving pTLDAb, overwhelmingly rATG in

the present study, our results suggest a link between T

lymphocyte depletion and the occurrence of PTLD. We

definitely demonstrated in vitro that the membrane

FccRIIIA-158V allotype bound rabbit IgG with a higher

affinity than the FccRIIIA-158F allotype, as was also

indirectly suggested in pharmacological population

studies reporting that the depletion of CD3+ and CD4+

lymphocytes was extended with the number of V alleles

[19,20]. This biological evidence of the functionality of

the V158 polymorphism with rabbit IgG and the repli-

cation of our clinical results in a validation cohort are

equally important to consider our results as reliable and

compelling. Indeed, both steps missed in studies that

established an association between the risk of PTLD and

the presence of a polymorphism in HLA and cytokines

(TNF-a, IL-28, IL-10, TGF-b) genes that have not been

confirmed thereafter [27-30]. FCGR3A gene polymor-

phism has been associated with clinical responses to dif-

ferent cytolytic mAbs [14-16]. These pharmacogenetic

studies and the present one demonstrate that FccRIIIA-
expressing cells are involved in the mechanism of action

of these mAbs and of pTLDAb. In addition, an in vitro

genotype–phenotype association has been observed: The

FCGR3A polymorphism affects the affinity of human

mAbs [23] and that of pTLDAb (present study) for

FccRIIIA and accordingly the level of ADCC mediated

by NK cells in vitro [16,23]. Finally, kidney transplant

recipients with homozygous VV genotype exhibited

higher T-cell depletion upon treatment with horse and

rabbit pTLDAb [19,20]. Taken together, these results

suggest that the increased risk of PTLD observed in VV

recipients may result from a deeper T-cell depletion

related to enhanced pTLDAb-mediated ADCC favoring

the emergence of lymphomatous cells. It can be high-

lighted that we did not observe a dose effect of poly-

morphism, suggested by pharmacologic study that

showed an increase in sensitivity of patients to r-ATG

treatment with the number of V alleles [20]. A similar

behavior of VF and FF patients is classically observed

with monoclonal therapeutic antibodies.

Figure 3 Effect of the V158F polymorphism on rabbit pIgG binding to FccRIIIA expressed on NK-92 cells. NK-92 cells transduced to express

the FcɣRIIIA-158V or the FcɣRIIIA-158F allotype were incubated with a fixed concentration of FITC-conjugated anti-CD16 3G8 mAb, then vary-

ing concentrations of rabbit or human pIgG antibody for 30 min at 4°C for flow cytometry analysis.
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PTLD is very heterogeneous, and classically two

types are considered based on the role of oncogenic

EBV. The EBV-positive PTLDs represent 50–80% of

cases. They can occur in EBV-positive recipients but

are particularly frequent in EBV-negative recipients

(mostly pediatric recipients) infected after the trans-

plantation, especially by a graft harvested from a EBV-

positive donor. Monitoring the EBV load is only rec-

ommended in EBV-negative recipients [31], while its

usefulness in EBV-positive recipients remains debated

[32,33]. As compared with EBV-driven PTLD, EBV-

negative PTLDs occur more often later and feature

some histological and genetic characteristics, while

their proportion increases these last years [33-35].

However, the impact of PTLDs on graft and patient

survivals did not seem to be affected by the EBV sta-

tus of the tumor [34]. In our study, the association

between the V158F polymorphism and the risk of

PTLD was not affected after adjustment for the recipi-

ent EBV serology and the proportion of EBV-negative

tumor was similar in VV and F-carrier recipients. Fur-

thermore, we did not observe any differences regarding

PTLD characteristics that could have suggested a pre-

dominant effect of the SNP on EBV-driven PTLD, in

particular the proportion of early-onset disease. Deter-

mining the FcɣRIIIA-V158F polymorphism before the

transplantation may therefore be useful to assess the

risk of both EBV-driven and EBV-negative PTLDs.

Additionally, our study suggests that a deep T-cell

depletion fosters the trigger of EBV-negative PTLDs

that remained largely unknown [8]. Finally, because

our cohort consisted mainly in EBV-seropositive adult

patients, we conclude that the impact of genotyping in

EBV-seronegative recipients remains to elucidate.

Importantly, we consider FcɣRIIIA-V158F polymor-

phism characterization as clinically pertinent because

VV recipients represented about 15% of our recipients,

in agreement with frequencies in Caucasian individuals

reported in previous studies but also because the minor

allele frequency does not greatly change around the

world, in Asian, Hispanic, or African populations

[36,37]. It is known that pTLDAb are more efficient

than interleukin-2 receptor antagonists to prevent rejec-

tion in recipients at high immunologic risk [31]. There-

fore, we do not suggest to contraindicate use of

pTLDAb in all VV recipients. However, genotyping may

provide an important information to clinicians for

recipients at lower immunologic risk for whom induc-

tion treatment and nondepleting interleukin-2 receptor

antagonists could be used alternatively in F-carriers,

whereas the former should be avoided in VV patients.

Our study has several limitations. First, the number of

patients in the discovery cohort was small. However,

results were confirmed in the second larger independent

and differently designed cohort. Second, the analyses

were performed retrospectively and some data were miss-

ing regarding the histology and the EBV status of the

tumor. This weakness is nevertheless observed in the vast

majority of studies regarding PTLD because it remains a

rare disease (especially in kidney transplantation) occur-

ring over a long period after the transplantation. Third,

transplantation occurred over a long time, during which

medical practices, particularly immunosuppressive strate-

gies like dose and duration of TLDAb, have greatly chan-

ged. Therefore, we matched cases and controls on the

date of transplantation in both cohorts. In addition, we

observed that the V158F polymorphism increased the risk

of PTLD in recipients with pTLDAb but not muromo-

nab-CD3 treatment, which is no longer used. Fourth, the

link between PTLD and the V158F polymorphism, which

additionally affected the affinity of rabbit pIgG to

FccRIIIA, supports that the substantial post-transplant

T-cell depletion may participate in subsequent develop-

ment of PTLD. Nevertheless, a retrospective case-control

study can never definitively establish a causal relation-

ship. Unfortunately, the evaluation of T-cell depletion

was not possible because CD3+, CD4+, and CD8 + T

lymphocytes counts before and after transplantation were

missing in a large proportion of patients.

In summary, we report an increased risk of post-

transplantation lymphoproliferative disorder in VV

homozygous FCGR3A kidney transplant recipients

receiving pTLDAb, especially thymoglobulin, in two

independent cohorts. These results may lead to a better

evaluation of the benefit/risk balance of the use of

depleting polyclonal antibodies in solid-organ transplan-

tation and possibly reduce the incidence of PTLD.
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