ORIGINAL ARTICLE

The FcγRIIIA-158 VV genotype increased the risk of post-transplant lymphoproliferative disorder in T-cell-depleted kidney transplant recipients – a retrospective study

Philippe Gatault^{1,2} (b), Laurie Lajoie³, Jana Stojanova⁴, Jean-Michel Halimi¹, Sophie Caillard⁵, Stéphanie Moyrand⁶, David Martinez⁶, Marc Ladrière⁷, Emmanuel Morelon⁸, Pierre Merville^{9,10}, Marie Essig^{4,11}, Cécile Vigneau¹², Nassim Kamar¹³ (b), Nicolas Bouvier¹⁴, Pierre-François Westeel^{15,16}, Christophe Mariat^{17,18}, Marc Hazzan^{19,20}, Antoine Thierry²¹, Isabelle Etienne²², Matthias Büchler², Pierre Marquet⁴, Valérie Gouilleux-Gruart^{3,6} & Gilles Thibault^{3,6}

1 EA4245, T2I, University of Tours, Tours, France

 Department of Nephrology and Clinical Immunology, University Hospital, Tours, France
 EA7501 « Groupe Innovation et Ciblage Cellulaire » team « Fc Receptors, Antibodies and Microenvironment », University of

Tours, Tours, France 4 Pharmacology and Transplantation, Inserm, Univ Limoges, CHU Limoges, FHU SUPORT, Limoges, France

5 Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France

6 Immunology Laboratory, University Hospital, Tours, France

7 Department of Nephrology, University Hospital, Vandœuvre-lès-Nancy, France

8 Department of Transplantation, Nephrology and Clinical Immunology, Hopital Edouard Herriot, Hospices Civils de Lyon, Lyon, France

9 Service de Néphrologie-Transplantation-Dialyse-Aphérèses
CHU Bordeaux, Bordeaux, France
10 CNRS-UMR 5164 Immuno
ConcEpT Université de Bordeaux,
Bordeaux, France

11 Service de néphrologie, Dialysetransplantations, CHU Limoges, Limoges, France

ABSTRACT

Post-transplantation lymphoproliferative disorder (PTLD) is a severe complication in organ transplant recipients. The use of T lymphocyte-depleting antibodies (TLDAb), especially rabbit TLDAb, contributes to PTLD, and the V158F polymorphism of Fc gamma receptor IIIA (FcyRIIIA) also named CD16A could affect the concentration-effect relationship of TLDAb. We therefore investigated the association of this polymorphism with PTLD in kidney transplant recipients. We characterized the V158F polymorphism in two case-control cohorts (discovery, n = 196; validation, n = 222). Then, we evaluated the binding of rabbit IgG to human FcyRIIIA-158V and FcyRIIIA-158F. The V158F polymorphism was not linked to PTLD in the overall cohorts, but risk of PTLD was increased in VV homozygous recipients receiving TLDAb compared with F carriers in both cohorts, especially in recipients receiving TLDAb without muromonab (discovery: HR = 2.22[1.03-4.76], P = 0.043, validation: HR = 1.75 [1.01-3.13], P = 0.049).In vitro, we found that the binding of rabbit IgG to human NK-cell FcyRIIIA was increased when cells expressed the 158-V versus the 158-F allotype. While the 158-V allotype of human FcyRIIIA binds rabbit immunoglobulin-G with higher affinity, the risk of PTLD was increased in homozygous VV kidney transplant recipients receiving polyclonal TLDAb.

Transplant International 2020; 33: 936–947

Key words

solid-organ transplantation, post-transplant lymphoproliferative disorder, T lymphocyte-depleting antibodies, Fc gamma receptor IIIA, gene polymorphism

Received: 17 April 2019; Revision requested: 2 August 2019; Accepted: 14 April 2020; Published online: 14 May 2020

Correspondence

Philippe Gatault MD, PhD, Department of Nephrology and Clinical Immunology, 10, Bd Tonnelle, 37032 Tours, France. Tel.: +33 (0) 2 47 36 61 22; fax: +33 (0) 2 34 37 89 01; e-mail: philippe.gatault@univ-tours.fr 12 Department of Nephrology, Pontchaillou University Hospital, Rennes, France

13 Departments of Nephrology and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR–BMT, Université Paul Sabatier, Toulouse, France

- 14 Department of Nephrology and Renal Transplantation, University Hospital, Caen, France
- 15 Department of Dialysis and Transplantation, University Hospital, Amiens, France
- 16 INSERM ERI-12, University of Picardie Jules Verne, Amiens, France

17 Service de Néphrologie, Dialyse, Transplantation Rénale, Hôpital Nord CHU de Saint-Etienne, GIMAP, EA 3065, Université Jean Monnet, Saint-Etienne, France,

18 Comue Université de Lyon, Lyon, France

- 19 Service de Néphrologie, CHRU de Lille, Lille, France
- 20 UMR 995 Université de Lille, Lille, France
- 21 Department of Nephrology, Jean Bernard Hospital, University Hospital, Poitiers, France
- 22 Department of Nephrology, University Hospital Rouen, Rouen, France

Introduction

Post-transplant lymphoproliferative disorder (PTLD) is the second most frequent malignancy in organ transplant recipients. The incidence of PTLD is increased in the first post-transplant year, but the risk remains beyond the first year [1-4]. Indeed, the 10-year cumulative incidence is close to 2%, about 10 to 20 times higher than in the general population [1,4,5]. The mortality and the risk of graft loss remain high after PTLD [5-7]. To prevent PTLD, we must identify individual pretransplantation PTLD risk factors. By now, the best described risk factors of PTLD are the seronegative EBV status at the time of transplantation and the immunosuppression that can affect the antiviral T-cell response [8,9]. However, their clinical significance remains relatively limited because a large majority of adult recipients is infected by EBV before the transplantation and the contribution of each immunosuppressive drug is difficult to determine.

Induction therapy using T lymphocyte-depleting antibodies (TLDAb) was found associated with increased incidence of PTLD [1,4,9,10]. The mechanisms underlying this risk remain unknown, although an impaired antiviral response after T-cell depletion is usually hypothesized from the following findings: (i) the risk of PTLD was found reduced after treatment with polyclonal TLDAb (pTLDAb) like rabbit antithymocyte globulin (rATG) or horse antilymphocyte globulin (ALG) versus mouse muromonab-CD3 antibodies, which induces greater T-cell depletion [11]; and (ii) a dose reduction in TLDAb in modern induction regimens has been associated with reduced PTLD incidence [4,9]. pTLDAb induces lymphocyte depletion in the peripheral blood primarily by complement-dependent cell lysis, activation-induced cell death, and antibodydependent cell-mediated cytotoxicity (ADCC) [12], involving the Fc gamma receptor IIIA (Fc γ RIIIA). In humans, this low-affinity receptor for the Fc fragment of immunoglobulin G (IgG) links IgG-sensitized target cells to Fc γ RIIIA-bearing cytotoxic cells, such as natural killer (NK) cells and monocytes/macrophages leading to target cell lysis.

The FCGR3A gene, encoding the FcyRIIIA, features a functional allelic polymorphism (rs 396991) generating allotypes with a phenylalanine (F) or a valine (V) at amino acid position 176 [13,14]. The FcyRIIIA-158V allotype has a higher affinity for human IgG (especially IgG1 and IgG3), associated with enhanced clinical response to several therapeutic human IgG1 monoclonal antibodies [15-18]. Interestingly, Ternant et al. [19,20] recently reported that kidney transplant recipients with homozygous VV genotype exhibited higher T-cell depletion upon treatment with horse and rabbit pTLDAb. While it has been reported that the V158F polymorphism is not associated with altered risk of developing PTLD in organ transplant recipients without T-cell depletion [21], this has not been evaluated in recipients receiving pTLDAb, whose proportion is increasing [22]. The aim of the present study was therefore to assess the effect of the V158F polymorphism on the risk of PTLD in kidney transplant recipients, with a focus on those who have received pTLDAb.

Material and methods

Patients

Discovery cohort

Among kidney recipients who underwent renal transplantation in our unit between 1985 and 2015

Gatault et al.

(n = 2107), we identified 52 patients with PTLD and DNA samples were available for 49 of them. Ethics committee approval was granted for the collection of DNA samples, and the study was approved by the Comité de Protection des Personnes Tours-Région Centre Ouest 1 (DC 2013-1780). Then, we selected three recipients without PTLD for each recipient with PTLD with the nearest date of transplantation because dosing strategies of ATG and ALG have greatly changed over time. Date of death, graft loss, or last visit was considered as the censoring date. Among the 196 matched recipients, 147 had received pTLDAb.

Validation cohort

We obtained DNA samples extracted from peripheral blood or tumoral tissue in 278 matched recipients (1:1) from a French multicentric case-control study limited to recipients receiving transplants since 1990 (Figure 1). Cases and controls were matched one-to-one on transplant centre, sex, age at transplantation (+/- 5 years), year of transplantation (+/-1 year), graft order (1st, 2nd, or 3rd transplant), and pretransplant EBV status. To approximate time-to-event analysis, controls were selected to have the same time length of immunosuppression as the transplantto-PTLD period in cases. We excluded 16 matched recipients already included in our discovery cohort, and genotyping was not feasible in 19 recipients (38 matched recipients were therefore excluded). Finally, we excluded 2 matched recipients because PTLD was recently diagnosed in a control recipient. Among the 222 matched recipients, 129 had received pTLDAb.

FCGR3A genotyping

Single-step multiplex allele-specific PCR assays were performed as previously described [23] with minor modification. The 25 µl reaction mixture contained 10 ng genomic DNA, 400 nM forward primer (5'-TCCA AAAGCCACACTCAAAGTC-3'), 400 nM reverse V allele primer (5'-AGACACATTTTTACTCCCATC-3'), and 200 nM reverse F allele primer (5'-GCGGGCAGGGC GATCACACATTTTTACTCCCATA-3'), 400 µM of each dNTP, 2 mM MgCl₂, and 0.5 U Taq DNA polymerase in its buffer (Promega, Madison, WI, USA). PCR conditions were 3.5 min at 95°C followed by 35 cycles, each at 95°C for 20 s, 56°C for 20 s, and 72°C for 30 s. Next, PCR products (137- and 81-bp fragments for F and V alleles) were resolved on 8% acrylamide gel (Invitrogen) and visualized after ethidium bromide staining.

Effect of the V158F polymorphism on rabbit polyclonal IgG binding to human FcγRIIIA

CD16-transduced NK-92 cell lines (Fc γ RIIIA-158V or Fc γ RIIIA-158F) used to evaluate binding to Fc γ RIIIA were kindly provided by Dr. B. Clémenceau (INSERM CR 1232 CRCINA, Nantes, France). Cells were cultured in RPMI-1640 medium (Sigma, Albuquerque, NM, USA) supplemented with 10% fetal bovine serum (PAA Laboratories, Velizy-Villacoublay, France), 100 UI/ml interleukin 2 (Proleukin, Chiron Corp., Emeryville, CA, USA), 2 mM L-glutamine (Sigma), penicillin (100 UI/ml), and streptomycin (0.1 µg/ml) (Sigma) at 37°C under a humidified 5% CO₂ atmosphere. FITC-conjugated anti-CD16 monoclonal antibody (mAb) clone 3G8 and rabbit polyclonal IgG (pIgG) were from Beckman Coulter and Sigma, respectively. Tegeline[®] (human pIgG) was kindly provided by LFB.

The mAb 3G8 (mouse IgG1) recognizes an epitope within the binding site of human IgG. Therefore, it inhibits binding to $Fc\gamma RIIIA$ and was previously used to evaluate the binding of rituximab to $Fc\gamma RIIIA$ by flow

Figure 1 Flow chart (validation cohort). From 139 paired of kidney recipients enrolled into a French multicentric matched case–control study, 111 were finally eligible to build our validation cohort.

cytometry [24]. We evaluated the ability of rabbit or human pIgG to inhibit the binding of FITC-conjugated 3G8 to the FcyRIIIA-expressing NK-92 cell line. Briefly, CD16-transduced NK-92 cells (FcyRIIIA-158V or Fc γ RIIIA-158F) (2 × 10⁵ in 100 µl) were incubated with FITC-conjugated 3G8 (dilution 1:100) for 30 min at 4°C. Cells were then incubated for 30 min at 4°C with 0.01 to 10 mg/ml of rabbit or human pIgG and analyzed by flow cytometry. All flow cytometry analyses were performed with 10 000 events with a Gallios flow cytometer and Kaluza 1.3 software (Beckman Coulter, Brea, CA, USA). The results are expressed as percentage inhibition of 3G8 binding: (% of 3G8-positive NK-92 FcyRIIIA-158V or FcyRIIIA-158F cells in the absence of pIgG - % of 3G8-positive NK-92 FcyRIIIA-158V or FcyRIIIA-158F cells in the presence of pIgG) \times 100 \div % of 3G8-positive NK-92 Fc γ RIIIA-158V or FcyRIIIA-158F cells in the absence of pIgG.

Statistical analysis

Data are expressed as percentage or mean \pm SD for normally distributed variables and median (range) for nonnormally distributed variables. Qualitative data were compared by chi-square test. Quantitative data were compared by Mann-Whitney U-test. A Cox regression was performed to identify the risk factors of PTLD in the discovery cohort. We successively assessed all recipients (n = 196), recipients receiving pTLDAb with (n = 147) or without (n = 141) muromonab-CD3 antibodies, which is no longer used but was known to represent a strong risk factor of PTLD. Second, we adjusted the association between V158F polymorphism and PTLD for recipient age, type of pTLDAb (rATG or ALG), and recipient EBV serology. We carried out a similar analysis with three successive groups in the validation cohort with an adjustment for recipient age and recipient EBV serology (but not duration and type of pTLDAb because this information was not available in the validation cohort). Results are expressed as hazard ratios (HRs) and 95% confidence intervals (95% CIs). We additionally generated Kaplan-Meier curves to compare actuarial PTLD-free survival (censored at 20 years) in VV, VF, and FF recipients from both cohorts receiving pTLAD without muromonab-CD3, in order to assess a potential dose effect of V15F polymorphism on risk of PTLD. Curves were compared using log-rank test. To evaluate the effect of the V158F polymorphism on rabbit pIgG binding to FcyRIIIA, simple linear regression was calculated by the method of least squares for each inhibition to compare the half-maximal inhibitory concentration (EC₅₀). Statistical analyses involved the use of SAS v9.1 (SAS Inst., Cary, NC, USA). P < 0.05 was considered statistically significant.

Results

Baseline characteristics of the discovery and validation cohorts

The characteristics of cases (PTLD) and controls (no PTLD) in both cohorts are presented in Table 1. Cases and controls did not differ in age and had a similar proportion younger than 18 years in the discovery cohort (cases: 3/49, controls: 8/147, P = 1) and the validation cohort (cases: 1/111, controls:0/111, P = 1). Otherwise, cases and controls did not differ in demographic data, incidence of acute rejection, and maintenance immunosuppressive regimen, except for a slightly higher proportion of cases than controls receiving azathioprine in the validation cohort. Importantly, the proportion of patients seronegative for EBV before transplantation was not different in VV and F-carriers in discovery cohort (7.2% vs. 10.4%, P = 1) and validation cohort (13.5% vs. 12.4%, P = 0.857).

In the discovery cohort, 147 (75%) recipients received pTLDAb (rATG and/or ALG). Except for two recipients with steroid-resistant rejection, pTLDAb were used as induction therapy. Most recipients received rATG (n = 137, 93.2%), combined with (n = 42: cases = 11, controls = 31) or without ALG (n = 95, cases = 23, controls = 72). Ten recipients received ALG without rATG (cases = 2, controls = 8). Overall, cases and controls did not differ in the use of pTLDAb. In the validation cohort, 129 (58%) recipients received pTLDAb (rATG: 114), with a higher proportion in cases than in controls.

Increased risk of PTLD in homozygous VV kidney transplant recipients receiving pTLDAb

Discovery cohort

Among the 196 recipients, 67, 34, and 95 were homozygous for Fc γ RIIIA-158F (FF), homozygous for Fc γ RIIIA-158V (VV), and heterozygous (VF), respectively. Thus, the frequency of the V allele was 41.3%, respecting the Hardy–Weinberg equilibrium (P = 0.997). The median delay between transplantation and PTLD diagnosis was 4.9 years (range 0.1 to 20.5). On univariate analysis in the overall cohort, the V158F polymorphism was not significantly linked with PTLD and muromonab-CD3 antibody treatment was the sole

	Discovery cohort ($n =$. 196)		Validation cohort (η = 222)	
	PTLD (<i>n</i> = 49)	No PTLD (<i>n</i> = 147)	<i>P</i> -value	PTLD $(n = 111)$	No PTLD (<i>n</i> = 111)	<i>P</i> -value
Age at transplantation, years	44.5 [4.5–74.6]	44.9 [3.0–74.1]	0.492	49 [15–76]	49 [20–79]	0.477
Male recipient, number (%)	26 (53.1)	86 (58.5)	0.505	69 (62.2)	69 (62.2)	, -
First transplantation, number (%)	45 (91.8)	137 (93.2)	0.753	99 (89.2)	98 (88.3)	0.832
Deceased donor, number (%)	48 (98.0)	145 (98.6)	-			
Acute rejection, number (%)	15 (30.6)	53 (36.1)	0.488	29 (26.1)	30 (27.1)	0.879
CMV mismatch (D + R-)	14 (28.6)	44 (29.9)	0.857			
Pretransplant recipients EBV seronegative*	5 (13.9)	4 (7.3)	0.474	15 (13.5)	13 (11.7)	0.686
HLA A, B, DR mismatches, number (%) [†]			0.333			0.263
0–1	3 (6.1)	8 (5.4)		9 (8.1)	9 (8.1)	
2-4	28 (57.1)	100 (68.0)		74 (66.7)	83 (74.8)	
5–6	18 (36.7)	39 (26.5)		24 (21.6)	15 (13.5)	
Year of transplantation			0.908			0.717
1985–1994	23 (46.9)	68 (46.3)		28 (25.2)	25 (22.5)	
1995–2004	17 (34.7)	53 (36.1)		60 (54.1)	66 (59.5)	
2005–2014	9 (18.4)	26 (17.7)		23 (20.7)	20 (18.0))	
Basiliximab (%)	6 (12.2)	29 (19.7)	0.236	24 (21.6)	30 (27.0)	0.879
Lymphocyte-depleting agents, number (%)						
Polyclonal (rATG and/or ALG) [‡]	36 (73.5)	111 (75.5)	0.775	73 (69.6%)	56 (54.9)	0:030
Muromonab	5 (10.2)	2 (1.4)	0.011	2 (1.8%)	0 (0.0)	0.498
Initial maintenance immunosuppressive treatm	ients, number (%)					
Ciclosporine	38 (77.6)	122 (83.0)	0.394	78 (70.3)	80 (72.1)	0.767
Tacrolimus	10 (20.4)	23 (15.7)	0.440	29 (26.1)	26 (23.4)	0.641
Azathioprine	27 (55.1)	88 (59.9)	0.558	50 (45.0)	35 (31.5)	0.038
Mycophenolate mofetil	21 (42.9)	60 (40.8)	0.802	57 (51.3)	71 (64.0)	0.021
mTOR inhibitors	0 (0.0)	1 (0.7)	-	3 (2.7)	5 (4.5)	-
Steroids	147 (100)	147 (100)	-	108 (97.3)	109 (98.2)	0.722
Homozygous VV patients, number (%)	11 (22.4)	23 (15.6)	0.276	22 (19.8)	15 (13.5)	0.207

D+, cytomegalovirus-seropositive donor; R-, cytomegalovirus-seronegative recipient; EBV, Epstein–Barr virus; HLA: human leukocyte antigen; mTOR, mammalian target of ramamycin

*Data missing in 105 patients from discovery cohort (PTLD: 13, No PTLD: 92).

Data missing in 8 patients from validation cohort (PTLD: 4, No PTLD: 4).

'38 patients (PTLD: 13, No PTLD: 25) did not receive induction in validation cohort. Bold is used for significant differences (p-value < 0.05)

940

Table 1. Kidney transplant recipient characteristics.

Transplant International 2020; 33: 936–947 © 2020 Steunstichting ESOT. Published by John Wiley & Sons Ltd

	HR	95% CI	<i>P</i> -value
All patients ($n = 196$)			
FCGRIIIA-158 VV (vs. F-carrier)	1.61	0.82–3.13	0.169
T lymphocyte-depleting agents (vs. no)	0.75	0.40-1.41	0.368
Muromonab-CD3 (vs. no)	5.22	2.07–13.19	0.0005
Recipient age (per year)	1.00	0.98-1.02	0.884
Patients treated by T lymphocyte-depleting agents (rATG and/	/or ALG, <i>n</i> = 147)		
FCGRIIIA-158 VV (vs. F-carrier)	2.08	1.01–4.35	0.046
Type of T lymphocyte-depleting agents (vs. ALG)	0.97	0.67–1.39	0.853
Duration of T lymphocyte-depleting agents (per day)	0.97	0.88–1.06	0.453
Muromonab-CD3 (vs. no)	4.61	1.62–13.06	0.004
Recipient age (per year)	1.00	0.98–1.02	0.973
Patients treated by T lymphocyte-depleting agents (rATG and/	or ALG) without murc	monab-CD3 (<i>n</i> = 141)	
FCGRIIIA-158 VV (vs. F-carrier)	2.22	1.03–4.76	0.043
Type of T lymphocyte-depleting agents (vs. ALG)	1.00	0.68–1.47	0.992
Duration of T lymphocyte-depleting agents (per year)	0.94	0.85–1.03	0.199
Recipient age (per year)	1.00	0.98–1.02	0.897

Table 2. Nisk factors of FTLD III discovery conort according to the induction the	Table 2.	Risk factors	of PTLD in	discovery	cohort	according	to the	induction	thera
---	----------	---------------------	------------	-----------	--------	-----------	--------	-----------	-------

risk factor of PTLD (Table 2). In 147 recipients receiving pTLDAb, we found that VV homozygous recipients had a higher risk of PTLD (HR = 2.08 [95% CI 1.01– 4.35], P = 0.046), whereas muromonab-CD3 antibody treatment remained strongly associated with PTLD (HR = 4.61 [1.62–13.06], P = 0.004). Finally, the VV genotype was still associated with PTLD in the 141 recipients receiving pTLDAb without muromonab-CD3 antibodies as shown in Table 2 (HR = 2.22 [1.03–4.76], P = 0.043). This greater risk remained significant after adjustments on recipient age, type of pTLDAb, and recipient EBV serology (HR = 3.44 [1.19–11.11], P = 0.023).

Table 3. Risk of PTLD in homozygous VV kidneytransplant recipients receiving T lymphocyte-depletingagents

	Valida	tion cohort	
	HR	95% CI	P-value
Patients treated by T lymphocyte- and/or ALG) ($n = 129$)	depleti	ng agents (rA	TG
FCGRIIIA-158 VV (vs. F-carrier) Muromonab-CD3 (vs. no)	1.69 5.77	0.97–2.94 1.38–24.1	0.0653 0.016
Recipient age (per year) Patients treated by T lymphocyte-	1.01 depletii	0.99–1.02 ng agents (rA	0.593 .TG
FCGRIIIA-158 VV (vs. F-carrier)	1.75	(n = 127) 1.01–3.13 0.99–1.02	0.049
Bold is used for significant associa	itions (i	0.99 - 1.02	5)

Validation cohort

Among the 222 recipients, 72, 37, and 113 were FF, VV, and VF, respectively. Thus, the frequency of the V allele was 42.1%, respecting Hardy-Weinberg equilibrium (P = 0.898). The time between transplantation and PTLD occurrence (6.49 [0.11-25.28] years) did not differ from that in the discovery cohort (P = 0.186). We confirmed on univariate analysis that the V158F polymorphism was not significantly linked with PTLD in the overall cohort (HR = 1.37 [0.78-2.56], P = 0.268), but was associated with PTLD in 129 recipients receiving pTLDAb (HR = 1.69 [0.97-2.94], P = 0.065), especially in 127 recipients who did not receive muromonab-CD3 antibodies (Table 3, HR = 1.75[1.01-3.13], P = 0.049). This association remained significant after adjustments for recipient age and recipient EBV serology (HR = 1.92 [1.02-3.71], P = 0.044).

We additionally raised the question of V158F polymorphism dose effect in all patients receiving pTLDAb but not muromonab-CD3 antibodies (discovery and validation cohorts were pooled for this analysis, while we failed to show a difference between VV, VF, and FF in the discovery cohort). We assessed 48 VV (25 from discovery cohort/23 from validation cohort), 134 VF (67/67), and 86 FF (49/37) (distribution of patient in cases and controls is provided in supplementary data; Table S1). As shown in Figure 2, we observed that risk of PTLD was different in three groups (P = 0.026), with the highest risk observed in VV recipients (VV vs. VF: P = 0.029; VV vs. FF: P = 0.011; VV vs. F-carrier:

^{© 2020} Steunstichting ESOT. Published by John Wiley & Sons Ltd

Figure 2 PTLD-free survival by V158F polymorphism in patients from both cohorts who received T lymphocyte-depleting antibodies but no muromonab. Patients were classified in two groups (VV and F-carriers, left panel) or three groups (VV, VF, and FF recipients, right panel). Kaplan–Meier plots were compared with log-rank test.

P = 0.010). Risk of PTLD in FF and VF recipients was not different (P = 0.460).

Characteristics of PTLD in discovery and validation cohorts

PTLD characteristics were quite similar in the two cohorts (Table 4A). The only difference concerned the localization of the tumor with a lower proportion of primary central nervous in the validation cohort PTLD, balanced by a higher percentage of PTLD within the kidney graft. We then assessed the PTLD characteristics by V158F polymorphism (Table 4B). We did not observe any differences in two cohorts with regard to the localization, the tumor EBV status and the cell type involved, that was almost exclusively B cells irrespective of the genotype. Additionally, the proportion of earlyonset PTLD did not differ between VV homozygous and F-carrier recipients. Finally, PTLD characteristics did not differ by V158F polymorphism in recipients treated with pTLDAb (data not shown).

Effect of the V158F polymorphism on binding of rabbit pIgG to human FcγRIIIA

We wondered whether the association between the V158F polymorphism and the susceptibility to rATG in kidney transplant recipients may be related to a difference in rATG binding to human FcyRIIIA. To address

this question, we used our previously described flow cytometry assay [23] to compare the in vitro ability of rabbit pIgG to inhibit the binding of FITC-conjugated 3G8 mAb on the human NK-92 cell line expressing the V or F allotype of FcyRIIIA. rATG could not be used in this assay because it contains antibodies for human NKcell membrane antigens. As expected and previously reported with rituximab and purified NK cells [23], we found a higher ability of human pIgG to inhibit the binding of 3G8 mAb to FcyRIIIA on NK-92 cells expressing the 158-V versus the 158-F allotype: 50% inhibition of 3G8 mAb binding (EC50) was achieved on average with 0.09 and 0.29 mg/ml pIgG (n = 3), respectively (Figure 3). Results obtained with rabbit pIgG were similar: 50% inhibition of 3G8 mAb binding to FcyRIIIA-158V- and FcyRIIIA-158F-expressing NK-92 cells was achieved with 0.04 and 0.2 mg/mL pIgG, respectively. Thus, these findings unambiguously demonstrated higher binding of rabbit IgG on NK-92 cells expressing the FcyRIIIA-158V compared with cells expressing the FcγRIIIA-158F allotype.

Discussion

In this study, we report for the first time that the V158F polymorphism of $Fc\gamma RIIIA$ is an independent risk factor of PTLD in kidney transplant recipients after polyclonal T lymphocyte depletion therapy. Risk of PTLD was

Table 4. Comparison of post-tr polymorphism (B)	ansplant lympl	noproliferative d	isorder (PTLD)) characteristics	between discov	ery and valida	ation cohorts (A)) and according	to V158F
A		Discovery	cohort ($n = d$	*(6t	Val	idation cohort	$(n = 111)^{\dagger}$		<i>P</i> -value
Early-onset PTLD, number (%) Localization, number (%)		6 (12.3)			24	(21.6)			0.161
Gastrointestinal tract		12 (24.5)			21	(21.4)			0.675
Lymph nodes		21 (42.9)			27	(27.6)			0.062
Primary central nervous		11 (22.4)			6	(9.2)			0.027
Graft		3 (6.1)			18	(18.4)			0.049
Hematopoietic organs		5 (10.2)			11	(11.2)			0.851
Other		12 (24.5)			23	(23.4)			0.891
Single site PTLD, number (%)		38 (77.6)			86	(73.0)			0.310
EBV-related, number (%) Histologic data		26 (66.7)			41	(53.9)			0.190
B-cell PTLD T-cell PTLD		44 (93.6) 3 (6.1)			94 4	(95.9) (4.1)			0.682 0.682
	Discovery co	hort $(n = 49)^*$		Validation co	hort $(n = 111)^{\dagger}$		All patients (r	<i>ι</i> = 160)	
	F-carrier	~		F-carrier	\sim		F-carrier	\sim	
Β	<i>n</i> = 38	<i>n</i> = 11	<i>P</i> -value	n = 89	n = 22	<i>P</i> -value	n = 127	n = 33	<i>P</i> -value
Early-onset, number (%) Localization. number (%)	5 (13.2)	1 (9.1)		22 (24.7)	2 (9.1)	0.151	27 (21.3)	3 (9.1)	0.137
Gastrointestinal tract	10 (26.3)	2 (18.2)	0.708	19 (23.5)	2 (11.8)	0.352	29 (24.4)	4 (14.3)	0.319
Lymph nodes	17 (44.7)	4 (36.4)	0.737	21 (25.9)	7 (41.1)	0.377	38 (31.9)	11 (39.3)	0.458
Primary central nervous	9 (25.0)	2 (18.2)	-	9 (11.1)	0 (0.0)	0.352	18 (15.1)	2 (7.1)	0.367
Graft	2 (5.3)	1 (9.1)	0.542	15 (18.5)	3 (17.6)	1	17 (14.3)	4 (14.3)	-
Hematopoietic organs	3 (7.9)	2 (18.2)	0.311	9 (11.1)	2 (11.8)	-	12 (10.1)	4 (14.3)	0.508
Others	10 (27.8)	2 (18.2)	0.708	21 (25.9)	4 (23.5)	0.938	31 (26.1)	6 (21.4)	0.612
Single-site PTLD, number (%)	28 (73.7)	10 (90.9)	0.415	69 (83.1)	17 (89.5)	0.730	97 (80.2)	27 (90.0)	0.208
EBV-related, number (%)	21 (65.6)	5 (71.4)	-	35 (56.5)	6 (42.9)	0.389	56 (59.6)	11 (52.4)	0.546
B-cell PTLD [*]	35 (97.2)	9 (81.8)	0.132	76 (95.0)	18 (100.0)	, -	111 (95.7)	27 (93.1)	0.561
Early-onset: PTLD occurring during	g the first post-	transplant year.							

Transplant International 2020; 33: 936–947

© 2020 Steunstichting ESOT. Published by John Wiley & Sons Ltd

Genetic risk of PTLD after T-cell depletion

[†]Missing data: localization (n = 13), number of sites (n = 9), tumoral EBV status (n = 35), histologic data (n = 13).

*Missing data: tumoral EBV status (n = 10), histologic data (n = 2).

Figure 3 Effect of the V158F polymorphism on rabbit pIgG binding to FcγRIIIA expressed on NK-92 cells. NK-92 cells transduced to express the FcγRIIIA-158V or the FcγRIIIA-158F allotype were incubated with a fixed concentration of FITC-conjugated anti-CD16 3G8 mAb, then varying concentrations of rabbit or human pIgG antibody for 30 min at 4°C for flow cytometry analysis.

increased twofold in homozygous VV recipients from our monocentric cohort and was confirmed in a larger and more recent multicentric cohort designed differently. [20] Accordingly, we demonstrated *in vitro* experiments that the FcγRIIIA 158-V allotype binds rabbit pIgG more efficiently than the 158-F allotype.

So far, studies that assessed the role of the V158F polymorphism on the PTLD course have focused on the outcome following the diagnosis and shown either an improved survival in VV patients treated or not with rituximab or the absence of influence of the V158F polymorphism on the response to rituximab [21,25]. Stern et al. failed to observe an association between the V158F polymorphism and the risk of PTLD, which might be considered as conflicting with our results at first glance [21]. However, we obtained similar results in our two cohorts when all patients (i.e., who received or not pTLDAb) were analyzed. It is also of note that only 61 recipients received pTLDAb in the previous study. We therefore consider that results of Stern study are not conflicting with ours that restrict the effect of the V158F polymorphism on PTLD to patients with lymphocyte depletion therapy. As well, heart and liverkidney transplant recipients were included in the study of Stern et al. The association between the V158F polymorphism and PTLD should be specifically assessed in such patients, who have a greater risk of PTLD than kidney transplant recipients [26]. Owing to the fact that the increased risk of PTLD in VV recipients is restricted to patients receiving pTLDAb, overwhelmingly rATG in the present study, our results suggest a link between T lymphocyte depletion and the occurrence of PTLD. We definitely demonstrated in vitro that the membrane FcyRIIIA-158V allotype bound rabbit IgG with a higher affinity than the FcyRIIIA-158F allotype, as was also

indirectly suggested in pharmacological population studies reporting that the depletion of CD3⁺ and CD4⁺ lymphocytes was extended with the number of V alleles [19,20]. This biological evidence of the functionality of the V158 polymorphism with rabbit IgG and the replication of our clinical results in a validation cohort are equally important to consider our results as reliable and compelling. Indeed, both steps missed in studies that established an association between the risk of PTLD and the presence of a polymorphism in HLA and cytokines (TNF- α , IL-28, IL-10, TGF- β) genes that have not been confirmed thereafter [27-30]. FCGR3A gene polymorphism has been associated with clinical responses to different cytolytic mAbs [14-16]. These pharmacogenetic studies and the present one demonstrate that FcyRIIIAexpressing cells are involved in the mechanism of action of these mAbs and of pTLDAb. In addition, an in vitro genotype-phenotype association has been observed: The FCGR3A polymorphism affects the affinity of human mAbs [23] and that of pTLDAb (present study) for FcyRIIIA and accordingly the level of ADCC mediated by NK cells in vitro [16,23]. Finally, kidney transplant recipients with homozygous VV genotype exhibited higher T-cell depletion upon treatment with horse and rabbit pTLDAb [19,20]. Taken together, these results suggest that the increased risk of PTLD observed in VV recipients may result from a deeper T-cell depletion related to enhanced pTLDAb-mediated ADCC favoring the emergence of lymphomatous cells. It can be highlighted that we did not observe a dose effect of polymorphism, suggested by pharmacologic study that showed an increase in sensitivity of patients to r-ATG treatment with the number of V alleles [20]. A similar behavior of VF and FF patients is classically observed with monoclonal therapeutic antibodies.

PTLD is very heterogeneous, and classically two types are considered based on the role of oncogenic EBV. The EBV-positive PTLDs represent 50-80% of cases. They can occur in EBV-positive recipients but are particularly frequent in EBV-negative recipients (mostly pediatric recipients) infected after the transplantation, especially by a graft harvested from a EBVpositive donor. Monitoring the EBV load is only recommended in EBV-negative recipients [31], while its usefulness in EBV-positive recipients remains debated [32,33]. As compared with EBV-driven PTLD, EBVnegative PTLDs occur more often later and feature some histological and genetic characteristics, while their proportion increases these last years [33-35]. However, the impact of PTLDs on graft and patient survivals did not seem to be affected by the EBV status of the tumor [34]. In our study, the association between the V158F polymorphism and the risk of PTLD was not affected after adjustment for the recipient EBV serology and the proportion of EBV-negative tumor was similar in VV and F-carrier recipients. Furthermore, we did not observe any differences regarding PTLD characteristics that could have suggested a predominant effect of the SNP on EBV-driven PTLD, in particular the proportion of early-onset disease. Determining the FcyRIIIA-V158F polymorphism before the transplantation may therefore be useful to assess the risk of both EBV-driven and EBV-negative PTLDs. Additionally, our study suggests that a deep T-cell depletion fosters the trigger of EBV-negative PTLDs that remained largely unknown [8]. Finally, because our cohort consisted mainly in EBV-seropositive adult patients, we conclude that the impact of genotyping in EBV-seronegative recipients remains to elucidate.

Importantly, we consider FcyRIIIA-V158F polymorphism characterization as clinically pertinent because VV recipients represented about 15% of our recipients, in agreement with frequencies in Caucasian individuals reported in previous studies but also because the minor allele frequency does not greatly change around the world, in Asian, Hispanic, or African populations [36,37]. It is known that pTLDAb are more efficient than interleukin-2 receptor antagonists to prevent rejection in recipients at high immunologic risk [31]. Therefore, we do not suggest to contraindicate use of pTLDAb in all VV recipients. However, genotyping may provide an important information to clinicians for recipients at lower immunologic risk for whom induction treatment and nondepleting interleukin-2 receptor antagonists could be used alternatively in F-carriers, whereas the former should be avoided in VV patients.

Our study has several limitations. First, the number of patients in the discovery cohort was small. However, results were confirmed in the second larger independent and differently designed cohort. Second, the analyses were performed retrospectively and some data were missing regarding the histology and the EBV status of the tumor. This weakness is nevertheless observed in the vast majority of studies regarding PTLD because it remains a rare disease (especially in kidney transplantation) occurring over a long period after the transplantation. Third, transplantation occurred over a long time, during which medical practices, particularly immunosuppressive strategies like dose and duration of TLDAb, have greatly changed. Therefore, we matched cases and controls on the date of transplantation in both cohorts. In addition, we observed that the V158F polymorphism increased the risk of PTLD in recipients with pTLDAb but not muromonab-CD3 treatment, which is no longer used. Fourth, the link between PTLD and the V158F polymorphism, which additionally affected the affinity of rabbit pIgG to FcyRIIIA, supports that the substantial post-transplant T-cell depletion may participate in subsequent development of PTLD. Nevertheless, a retrospective case-control study can never definitively establish a causal relationship. Unfortunately, the evaluation of T-cell depletion was not possible because CD3+, CD4+, and CD8 + T lymphocytes counts before and after transplantation were missing in a large proportion of patients.

In summary, we report an increased risk of posttransplantation lymphoproliferative disorder in VV homozygous *FCGR3A* kidney transplant recipients receiving pTLDAb, especially thymoglobulin, in two independent cohorts. These results may lead to a better evaluation of the benefit/risk balance of the use of depleting polyclonal antibodies in solid-organ transplantation and possibly reduce the incidence of PTLD.

Authorship

PG: performed literature search, figures, study design, data collection, data analysis, data interpretation, and writing. LL: involved in figures, data collection, data analysis, data interpretation, and writing. JS and DM: collected data. J-MH: carried out data analysis, data interpretation, and writing. SC: performed data interpretation and writing. SM: involved in data collection and data analysis. ML, EM, PM, ME, CV, NK, NB, P-FW, CM, MH, AT, IE, and MB: performed data collection and writing. PM: involved in study design, data collection, data analysis, and writing. VG-G: involved in study design, data analysis, and writing. GT: involved in study design, data analysis, and writing.

study design, data collection, data analysis, data interpretation, and writing.

Funding

Investissement d'avenir programs, Grant Agreement LabExMAbImprove: ANR-10-LABX-53.

Conflicts of interest

The authors of this manuscript have no conflicts of interest to disclose as described by *Transplant Interna-tional*. The results presented in this paper have not been published previously in whole or part.

Acknowledgements

We thank Mrs Marie-Noelle Marson for her technical skills. The authors are grateful to Laura Smales for copyediting.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 Distributon of patients receiving polyclonal T lymphocytedepleting antibodies without muromonab-CD3 by status (PTLD or niPTLD) in discovery and validaton cohorts.

REFERENCES

- Opelz G, Döhler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. *Am J Transplant* 2004; 4: 222.
- Bustami RT, Ojo AO, Wolfe RA, et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am J Transplant 2004; 4: 87.
- Faull RJ, Hollett P, McDonald SP. Lymphoproliferative disease after renal transplantation in Australia and New Zealand. *Transplantation* 2005; 80: 193.
- 4. Caillard S, Lamy FX, Quelen C, et al. Epidemiology of posttransplant lymphoproliferative disorders in adult kidney and kidney pancreas recipients: report of the French registry and analysis of subgroups of lymphomas: PTLD French Registry. Am J Transplant 2012; 12: 682.
- 5. Evens AM, David KA, Helenowski I, et al. Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. J Clin Oncol 2010; **28**: 1038.
- 6. Trappe RU, Dierickx D, Zimmermann H, et al. Response to rituximab induction is a predictive marker in Bcell post-transplant lymphoproliferative disorder and allows successful stratification into rituximab or R-CHOP consolidation in an international, prospective, multicenter phase II trial. J Clin Oncol 2017; 35: 536.
- 7. Rabot N, Büchler M, Foucher Y, *et al.* CNI withdrawal for post-transplant lymphoproliferative disorders in

kidney transplant is an independent risk factor for graft failure and mortality. *Transpl Int* 2014; **27**: 956.

- Dharnidharka VR, Webster AC, Martinez OM, et al. Post-transplant lymphoproliferative disorders. Nat Rev Dis Primers 2016; 2: 15088.
- Sampaio MS, Cho YW, Shah T, et al. Impact of Epstein-Barr virus donor and recipient serostatus on the incidence of post-transplant lymphoproliferative disorder in kidney transplant recipients. Nephrol Dial Transplant 2012; 27: 2971.
- Francis A, Johnson DW, Teixeira-Pinto A, *et al.* Incidence and predictors of post-transplant lymphoproliferative disease after kidney transplantation during adulthood and childhood: a registry study. *Nephrol Dial Transplant* 2018; 33: 881.
- Cherikh WS, Kauffman HM, McBride MA, *et al.* Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation1. *Transplantation* 2003; **76**: 1289.
- Mueller T. Mechanisms of action of thymoglobulin. *Transplantation* 2007; 84(Suppl 11): S5.
- Koene HR, Kleijer M, Algra J, et al. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997; 3: 1109.
- 14. Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic variation in

low-to-medium-affinity Fcgamma receptors: functional consequences, disease associations, and opportunities for personalized medicine. *Front Immunol* 2019; **10**: 2237.

- 15. Cartron G, Dacheux L, Salles G, *et al.* Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. *Blood* 2002; **99**: 754.
- 16. Bibeau F, Lopez-Crapez E, Di Fiore F, et al. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 2009; 27: 1122.
- Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu –positive metastatic breast cancer. J Clin Oncol 2008; 26: 1789.
- Louis E, El Ghoul Z, Vermeire S, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn's disease. Aliment Pharmacol Ther 2004; 19: 511.
- Ternant D, Büchler M, Bénéton M, et al. Interindividual variability in the concentration-effect relationship of antilymphocyte globulins - a possible influence of FcgammaRIIIa genetic polymorphism. Br J Clin Pharmacol 2008; 65: 60.
- Ternant D, Büchler M, Thibault G, et al. Influence of FcγRIIIA genetic polymorphism on T-lymphocyte depletion induced by rabbit

antithymocyte globulins in kidney transplant patients. *Pharmacogenet Genomics* 2014; 24: 26.

- Stern M, Opelz G, Dohler B, et al. Natural killer-cell receptor polymorphisms and posttransplantation non-Hodgkin lymphoma. Blood 2010; 115: 3960.
- Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2013 Annual Data Report: kidney. Am J Transplant 2015; 15(Suppl 2): S1.
- Dall'Ozzo S, Andres C, Bardos P, et al. Rapid single-step FCGR3A genotyping based on SYBR Green I fluorescence in real-time multiplex allele-specific PCR. J Immunol Methods 2003; 277: 185.
- 24. Dall'Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. *Cancer Res* 2004; **64**: 4664.
- 25. Zimmermann H, Weiland T, Nourse JP, et al. Fc[gamma]-Receptor IIIA Polymorphism p. 158F has no negative predictive impact on rituximab therapy with and without sequential chemotherapy in CD20-positive posttransplant lymphoproliferative disorder. J Immunol Res. 2014; 2014: 1.
- 26. Dharnidharka VR, Lamb KE, Gregg JA, et al. Associations between EBV

serostatus and organ transplant type in PTLD risk: an analysis of the SRTR National Registry Data in the United States. *Am J Transplant* 2012; **12**: 976.

- Reshef R, Luskin MR, Kamoun M, et al. Association of HLA polymorphisms with post-transplant lymphoproliferative disorder in solidorgan transplant recipients. Am J Transplant 2011; 11: 817.
- McAulay KA, Haque T, Crawford DH. Tumour necrosis factor gene polymorphism: a predictive factor for the development of post-transplant lymphoproliferative disease. Br J Cancer 2009; 101: 1019.
- 29. Akay E, Patel M, Conibear T, et al. Interleukin 28B gene polymorphisms and Epstein-Barr virus-associated lymphoproliferative diseases. Intervirology 2014; 57: 112.
- Babel N, Vergopoulos A, Trappe RU, et al. Evidence for genetic susceptibility towards development of posttransplant lymphoproliferative disorder in solid organ recipients. *Transplantation* 2007; 84: 387.
- Kasiske BL, Zeier MG, Craig JC, et al. Special Issue: KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. Am J Transplant. 2009; 9(Suppl 3): S1.
- 32. Franceschini E, Plessi J, Zona S, *et al.* Clinical utility of Epstein-Barr virus viral load monitoring and risk factors

for posttransplant lymphoproliferative disorders after kidney transplantation: a single-center, 10-year observational cohort study. *Transplant Direct* 2017; **3**: e182.

- Peters AC, Akinwumi MS, Cervera C, et al. The changing epidemiology of posttransplant lymphoproliferative disorder in adult solid organ transplant recipients over 30 years: a single-center experience. Transplantation 2018; 102: 1553.
- 34. Luskin MR, Heil DS, Tan KS, *et al.* The impact of EBV status on characteristics and outcomes of posttransplantation lymphoproliferative disorder. *Am J Transplant* 2015; **15**: 2665.
- 35. Morscio J, Dierickx D, Ferreiro JF, et al. Gene expression profiling reveals clear differences between EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant 2013; 13: 1305.
- 36. Karassa FB, Trikalinos TA, Ioannidis JPA. The FcγRIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. *Kidney Int* 2003; 63: 1475.
- 37. Brambila-Tapia AJL, Gámez-Nava JI, González-López L, et al. FCGR3A V (176) polymorphism for systemic lupus erythematosus susceptibility in Mexican population. Rheumatol Int 2011; 31: 1065.