REVIEW

Enteric dysbiosis in liver and kidney transplant recipients: a systematic review

Saranya Sivaraj¹ (b), Anita Chan¹, Elisa Pasini¹, Emily Chen¹, Bishoy Lawendy¹, Elizabeth Verna², Kymberly Watt³ & Mamatha Bhat^{1,4}

1 Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada

2 Division of Digestive and Liver Diseases, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York, NY, USA

3 Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA

4 Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, ON, Canada

Correspondence

Dr. Mamatha Bhat MD, MSc, PhD, FRCPC, Staff Hepatologist and Clinician-Scientist, Multiorgan Transplant Program, University Health Network, Assistant Professor, Division of Gastroenterology, University of Toronto, 585 University Avenue, 11PMB-318, Toronto, Ontario M5G 2N2, Canada Tel.: 416-340-4800; fax: 416-340-4043; e-mail: mamatha.bhat@uhn.ca

*Equal contribution.

SUMMARY

Several factors mediate intestinal microbiome (IM) alterations in transplant recipients, including immunosuppressive (IS) and antimicrobial drugs. Studies on the structure and function of the IM in the post-transplant scenario and its role in the development of metabolic abnormalities, infection, and cancer are limited. We conducted a systematic review to study the taxonomic changes in liver (LT) and kidney (KT) transplantation, and their potential contribution to post-transplant complications. The review also includes pre-transplant taxa, which may play a critical role in microbial alterations post-transplant. Two reviewers independently screened articles, and assessed risk of bias. The review identified 13 clinical studies, which focused on adult kidney and liver transplant recipients. Patient characteristics and methodologies varied widely between studies. Ten studies reported increased an abundance of opportunistic pathogens (Enterobacteriaceae, Enterococcaceae, Fusobacteriaceae, and Streptococcaceae) followed by butyrate-producing bacteria (Lachnospiraceae and Ruminococcaceae) in nine studies in post-transplant conditions. The current evidence is mostly based on observational data and studies with no proof of causality. Therefore, further studies exploring the bacterial gene functions rather than taxonomic changes alone are in demand to better understand the potential contribution of the IM in post-transplant complications.

Transplant International 2020; 33: 1163–1176

Key words

immunosuppression, intestinal microbiome, kidney transplantation, liver transplantation, opportunistic pathogens, post-transplant complications

Received: 23 March 2020; Revision requested: 10 April 2020; Accepted: 3 July 2020; Published online: 5 August 2020

Introduction

Solid organ transplantation (SOT) represents a life-saving intervention for those with end-stage organ disease. The use of maintenance immunosuppression and perioperative antibiotic prophylaxis is crucial for graft health and patient longevity. However, continued use of immunosuppression is associated with metabolic syndrome (MS), infections, de novo/recurrent fatty liver disease, and malignancies [1,2]. The MS, which includes obesity, hyperglycemia, dyslipidemia, and hypertension together with immunosuppressants, plays an important role in development of cardiovascular disease in transplant recipients [3,4]. Given that, immunosuppressants and perioperative antibiotics along with transplantation procedures have been reported to induce intestinal microbiome (IM) alterations [5]. In the non-transplant population, microbiome alterations are associated with several conditions, including metabolic disorders, autoimmune diseases, inflammatory bowel disease, neurological conditions, and cancer [6–9].

The IM is comprised of the genomes 10¹⁴ microorganisms, including bacteria, fungi, protozoans, and viruses that live symbiotically in the human gastrointestinal tract [10]. Bioactive metabolites produced from microbial metabolism influence host metabolism and immunity by activating cellular pathways and targets [11]. As a result, the microbiome is involved in many vital processes including digestion, sucrose degradation, de novo synthesis of essential vitamins, and detoxification [12]. Maintaining the relative abundance of each component within the microbiome is critical to health. Dysbiosis is defined as the alteration of intestinal microbiome and loss of diversity associated with post-transplant infections [40]. Dysbiosis disrupts the integral networks within the host and consequently results in number of diseases, many of which affect patients after solid organ transplantation [10,13].

A number of human and animal studies have investigated the microbial alterations in the presence of IS. Tourret et al. [14] demonstrated the overgrowth of Escherichia coli and increased colonization of opportunistic pathogens in mice exposed to everolimus, mycophenolate mofetil (MMF), tacrolimus, and prednisolone. In addition, mice treated with MMF were associated with shift in the microbial composition and colonization of pathogenic bacteria such as Escherichia/Shigella together with enrichment of lipopolysaccharide biosynthesis and β-glucuronidase, resulting in inflammation [15,16]. Two other studies on murine models reported alterations in the relative abundance of taxa within the microbiome and induced insulin resistance after the initiation of IS agents [17,18]. More specifically, our group has demonstrated the effect of immunosuppression on the metagenomic composition of the IM in rats that is reversed with the use of probiotics, suggesting a contributory role for the microbiome in PTDM [17].

We performed a systematic review to study the alteration of intestinal microbial composition in Liver and kidney transplant recipients (before and after transplantation), and why these may contribute to post-transplant complications. We decided to focus on liver and kidney transplant recipients, given the significant amount of literature that has accumulated in these two transplant patient populations.

Literature search

We used the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines to perform this systematic review [19]. Two independent literature searches for papers up to December 31st, 2019, were conducted on PubMed. Search MeSH terms including "intestinal microbiome", "transplant", "immunosuppression", and individual IS drugs (i.e., tacrolimus, cyclosporine, prednisone, sirolimus, everolimus, and mycophenolate mofetil) were used to identify all clinical studies in SOT that investigated the effects of immunosuppression on the microbiome. Details of the search and MeSH terms are listed in Table S1. Eligibility criteria are as follows: (i) articles published in English only; (ii) clinical studies; and (iii) IM from stool samples and rectal swabs (Fig. 1). The summary of the included studies and its outcomes can be found in Table S2.

Exclusion criteria

Clinical studies that utilized immunosuppressive therapy in the management of other solid organ transplant recipients (lung, heart, small bowel, pancreas), inflammatory bowel disease, hematopoietic stem cell transplant, fecal microbiota transplant, and graft-versus-host disease were excluded. Pediatric studies were also excluded.

Data extraction and analyses

Abstracts deemed to be relevant were then subjected to a full-text review. For each included article, details regarding study design, population characteristics, diversity, and microbiome composition pre- and post-transplant were extracted and summarized. The Newcastle-Ottawa Scale (NOS) for evaluating the quality of nonrandomized studies in meta-analyses was used to assess the quality of the studies [20]. NOS contains three sections to score the quality of the included studies: (i) selection, (ii) comparability, and (iii) outcome. We rated the quality of the studies (good, fair, and poor) based on the total obtained from the three sections. A "good" quality score requires more than or equal to total of 7. A "fair" quality score required more than or equal to total of 5. A "poor" quality score reflected less than or equal to 4 (Table 1). The microbiome composition from each study was then classified according to the taxonomic hierarchy. As per previously published

Figure 1 Flowchart of literature search for articles including clinical studies of intestinal microbiome in solid organ transplant recipients in comparison with healthy population data or pre-transplant data.

methodology [21], the microbial presence of each microorganism was determined by counting its frequency, and the corresponding order or family was identified in the pre- or post-transplant microbiome in each of the 13 included studies. Microbial predominance was determined by identifying the most abundant order or family among each of the included studies. The comparison of the microbial families identified in the pre- and post-transplant populations from both kidney and liver studies was performed using a Venn diagram (Fig. 2) [22].

Results

A total of 1877 abstracts were identified, and 93 duplicates were removed. After the application of exclusion criteria and review of full-text articles, six clinical studies were eligible for inclusion. From hand-searching, seven studies were identified for further screening (Fig. 1). We identified ten liver and three kidney transplant studies. The characteristics of the included human studies, methodology, and the taxa of each study can be found in Tables 2 and 3. The indication for IS therapy in all of the included studies was to prevent graft rejection following SOT. The maintenance IS agents used following transplantation included tacrolimus, cyclosporine, sirolimus, everolimus, mycophenolate mofetil, and prednisone.

Overall, five studies collected pre- and post-transplant fecal samples, while eight studies collected only posttransplant samples. The range of time from transplant to fecal sample collection was 3 weeks to 4.7 years. Eight studies had 16S rRNA sequencing of genetic material extracted from fecal samples using Illumina Hi/

First author, year of publication	Type of study	Selection	Comparability	Outcome	Total score	Quality
Liver transplantation studies						
Annvajhala, 2019 [23]	Cohort	4	2	3	9	Good
Bajaj, 2018 [24]	Cohort	4	2	2	8	Good
Kato, 2017 [25]	Cohort	4	2	3	9	Good
Sun, 2017 [26]	Case–Control	4	2	2	8	Good
Lu, 2019 [27]	Case–Control	4	2	2	8	Good
Kabar, 2015 [35]	Cohort	2	0	2	4	Poor
Lu, 2013 [28]	Case–Control	4	1	2	7	Good
Macesic, 2018 [32]	Cohort	3	0	3	6	Fair
Wu, 2012 [29]	Case–Control	4	1	2	7	Good
Zhang, 2017 [30]	Case–Control	4	2	2	8	Good
Kidney transplantation studies						
Fricke, 2014 [31]	Cohort	4	2	3	9	Good
Lee, 2015 [33]	Cohort	3	0	2	5	Fair
Zaza, 2017 [34]	Cohort	3	0	2	5	Fair

Table 1	. Risk of	bias assessme	nt of the	e included	studies	using t	the New	Castle-O	ttawa (NC	S) scale.
---------	-----------	---------------	-----------	------------	---------	---------	---------	----------	-----------	-----------

Quality \geq 7: Good; Quality \geq 5: Fair; Quality \leq 4: Poor.

Bifidobacteriaceae Clostridiaceae Enterobacteriaceae Enterococcaceae Lactobacillaceae Ruminococcaceae

Pre-Transplant Microbiome

Bacteroidaceae Bifidobacteriaceae Clostridiaceae Enterobacteriaceae Enterococcaceae Eubacteriaceae Lachnospiraceae Lactobacillaceae Pasteurellaceae Prevotellaceae Pseudomonadaceae Ruminococcaceae Staphylococcaceae Streptococcaceae Veillonellaceae Verrucomicrobiaceae

Bifidobacteriaceae Clostridiaceae Enterobacteriaceae Enterococcaceae Lactobacillaceae Ruminococcaceae

Post-Transplant Microbiome

Figure 2 Comparison of pre- and post-transplant bacterial families identified to be predominant in more than one liver or kidney study.

able 2. Met.	hodologic characte	ristics and t	axa representation ir	n 10 liver transplant s	tudies.				
irst author, year f publication	Population characteristics	Sample	Antimicrobial drugs	Immunosuppressants	Sequencing platform	Hypervariable region	Pre-LT (family)	Post-LT (family)	
.nalysis of pre- an Annavajhala, 2019 [23]	d post-transplant microbic 195 adults (107 male); median age 60, 177 patients; Indication for transplant: hepatitis C ($n = 71$), NAFLD ($n = 30$), alcohol- related liver disease ($n = 19$), HCC ($n = 60$)	stool	Aminoglycoside Cephalosporins Carbapenem Daptomycin Fluoroquinolone Piperacillin– tazobactam Vancomycin	Not listed in the study	Illumina MiSeq or HiSeq	V3/V4	Bifidobacteriaceae ↑ Enterococcaceae ↑ Lactobacillaceae ↑ Ruminococcaceae ↑ (low MELD) Ruminococcaceae ↓ (ARLD) Streptococcaceae ↑ Veillonellaceae ↑	Bacteroidaceae↓ Clostridiaceae↑ Enterobacteriaceae↑ Enterococcaceae ↓ Lachnospiraceae↓ Ruminococcaceae↓ Streptococcaceae↓	
Bajaj, 2018 [24]	And the contract of the contr	Stool	Trimethoprim Sulfamethoxazole	Tacrolimus Cyclosporine MMF	Multi-Tag Sequencing	۲ 2	Bifidobacteriaceae ↑ Enterobacteriaceae ↑	Clostridiaceae↑ Sutterellaceae↑ Enterobacteriaceae↓ Lachnospiraceae↑ Ruminococcaceae↑	
Kato, 2017 [25]	(n = y) as adults (24 males); mean age 50.4 ± 2.4; Indication for transplant: Leading cause of cirrhosis was Hepatits B or C virus $(n = 14)$, post-kasai biliary atresia $(n = 6)$, alcoholic cirrhosis (n = 6), primary biliary cirrhosis (n = 4) NASH (n = 4) and other (n = 4)	Stool	Cefotaxime Ampicillin Rituximab	Tacrolimus	Illumina Mišeq	V3-V4	Low diversity: in high meld score patients compared to low meld score High meld and CPS: Enterobacteriaceae ↑ Enterooccaceae ↑ Lactobacillaceae ↓ Bacteroidaceae ↓ Lachnospiraceae ↓ Ruminococcaceae ↓	Bacteroidaceae ↑ Bifidobacteriaceae ↑ Clostridiaceae ↑ Enterobacteriaceae ↑ Lactobacillaceae ↑ Peptostreptococcaceae ↑ Ruminococcaceae ↑ Streptococcaceae ↑	

Transplant International 2020; 33: 1163–1176 © 2020 Steunstichting ESOT. Published by John Wiley & Sons Ltd

Ľ,

åd.
inue
onti
0 ai
le
Tab

	LT (family)	monadaceae ↓ erolineaceae ↓ inophagaceae ↑ tridiaceae ↓ obacteriaceae ↑ acteriaceae ↑ bacteriaceae ↓ comonosporaceae ↑ eurellaceae ↓ ucomicrobiaceae ↑ nospiraceae↑*	roidaceae 1* bbacteriaceae 1* inospiraceae 1* inococcaceae 1* obacillaceae 1* ptococcaceae 1* onellaceae 1* ipelotrichaceae 1*	obacteriaceae erococcaceae domonadaceae htylococcaceae
	· (family) Post-I	nonadaceae † Aeron arolineaceae † Ana. Ana. Aridiaceae † Chit tridiaceae † Clos bacteriaceae † Cori bacteriaceae † Desu Erus Fusc Micr Past	Bacte Bacte Fusc Rum Stree Stree Ents Ents	Enter Ente Pseu Stap
variahle	Pre-LT	Aerom Anae Clost Fusol Paste	₹ Z	Ž
Hvnerv	region	4 X	V3-V4	₹ Z
Sequencing	platform	MiSeq	Illumina Mišeq	Agar Method
	Immunosuppressants	MMF	Tacrolimus	Tacrolimus Cyclosporine Everolimus MMF MMF
	Antimicrobial drugs	No antibiotic therapy 1 month prior to LT 5–7 days after surgery Cephalosporin	No antibiotics prior to 12 weeks	Ciprofloxacin Imipenem Piperacillin- tazobactam
	Sample	Stool	stool Post-LT >24 months and <48 months	Bile & Stool
Population	characteristics	9 adults (9 males); mean age 49.4; Indication for transplant: Decompensated Cirrhosis ($n = 4$), and HCC ($n = 5$), HC = 15	biome 151 adults (LT patients = 90, HC = 61); age 35–65 years; Indication for transplant = HBV associated HCC	38 adults (25 males); mean age 52.2; Indication for transplant: alcohol ($n = 15$), HCC ($n = 8$), HCC ($n = 8$), Hepatitis B/C ($n = 5$), Cholestatic liver disease ($n = 5$), other ($n = 5$)
First author vear	of publication	Sun, 2017 [26]	Analysis of post- transplant microk Lu, 2019 [27]	Kabar, 2015 [35]

	ost-LT (family)	acteroidaceae lostridiaceae interobacteriaceae usobacteriaceae eactobacillaceae orphyromonadaceae revotellaceae seudomonadaceae treptococcaceae treptococcaeae	nterobacteriaceae	ubacteriaceae↓* iifidobacteriaceae↓* achnospiraceae↓* actobacillaceae↓* interobacteriaceae ↑* revotellaceae ↑*
	Pre-LT (family) Pc		μ	D II II I I I
	Hypervariable region	m	Whole genome sequencing	۲ Z
	Sequencing platform	Denaturing Gradient Gel Electrophoresis	Illumina Miseq and HíSeq	qPCR
	Immunosuppressants	Tacrolimus Simulect MMF Glucocorticoids	Not listed in the study	Glucocorticoid MMF Cyclosporine Tacrolimus
	Antimicrobial drugs	Piperacillim-tazobactam, Cefepime dihydrochoride Imipenem- cilastatin sodium Cefoperazone sodium Sulbactam sodium Micafungin sodium caspofungin acetate Vancomycin Teicoplanin Flucytosine amphotericin B	Ą	No antibiotics
	Sample	Stool	Stool and/or rectal swabs	Stool
tinued.	Population characteristics	12 Adults (12 males); mean age 39; Indication for transplant: HBV (n = 12), asymptomatic adult carries of HBV with mean age 35.2 years as controls (n = 5)	142 adults; median age 60.4; 128 adults included in the analysis: hepatitis C ($n = 49$), NAFLD ($n = 18$), Autoimmune hepatitis ($n = 16$), Alcoholic liver disease ($n = 14$), Hepatitis B ($n = 9$), Fulminant hepatic failure ($n = 2$)	190 adults (169 male); mean age 41.9, Liver Transplant ($n = 111$) Liver cirrhosis ($n = 51$), Healthy control ($n = 28$) Indications for transplant: decompensated HBV Mcute or chronic HBV liver failure
Table 2. Cont	First author, year of publication	Lu, 2013 [28]	Macesic, 2018 [32]	Wu, 2012 [29]

	nunuea.							
First author, year of publication	Population characteristics	Sample	Antimicrobial drugs	Immunosuppressants	Sequencing platform	Hypervariable region	Pre-LT (family)	Post-LT (family)
Zhang, 2017 [30]	30 adults (25 males); mean age 41; indication for transplant: NAS ($n = 10$), patients with no complication post-LT ($n = 10$), non- LT healthy ($n = 10$)	Stool	No history of antibiotics within previous 3 months	Tacrolimus MMF Methylprednisolone	Illumina MiSeq	V3-V4	Ą	Ruminococcaceae ↓* Lachnospiraceae ↓* Enterococcaceae ↑* Streptococcaceae ↑* Pseudomonadaceae ↑* Verrucomicrobiaceae ↑* Prevotellaceae ↓* Bacteroidaceae ↓*
↑*, taxa enric controls; ↓, ta. nepatocellular	hed in comparison xa decreased in con carcinoma; LT, liver	with healthy nparison with transplant; N	controls; 1, taxa en pre-/post-transplant AELD, model for end	riched in comparison v taxa; ARLD, alcohol-re I-stage liver disease; MI	with pre-/post- elated liver dise MF, Mycopher	-transplant taxa ease; HBV, hepa nolate mofetil; N	; ↓*, taxa decreased ir atitis B viral infection; HAFI VA, not available; NAFI	n comparison with healthy HC, healthy controls; HCC, -D, non-alcoholic fatty liver

disease; NAS, non-anastomotic stricture; NASH, non-alcoholic steatohepatitis.

Sivaraj et al.

MiSeq platform as the method of taxonomic identification. One study with Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 hypervariable region and the remaining four studies had pyrosequencing, agar method, multi-tag sequencing, and qPCR. Table 1 provides quality scores for the studies, assessing risk of bias. In total, nine studies were of good quality [23–31], three studies were of fair quality [32–34], and one was of poor quality [35]. The main concerns were outcome (lack of adequate follow-up) and comparability.

Pre-liver transplant microbiome

The analysis included 4 studies and identified taxa at the family level. *Enterobacteriaceae* was identified in three of the four studies and found to be the most predominant. Other notable families *Bifidobacteriaceae*, *Ruminococcaceae*, *Lactobacillaceae*, and *Enterococcaceae* were identified in 2 studies. *Streptocococcaceae*, *Aeromonadaceae*, *Anaerolineaceae*, *Clostridiaceae*, *Fusobacteriaceae*, and *Pasteurellaceae* were identified in one study (Table 2).

Pre-kidney transplant microbiome

One of the three studies included a pre-transplant microbiome. Families such as *Clostridiaceae*, *Erysipelotrichaceae*, *Lachnospiraceae*, and *Peptostreptococcaceae* were less abundant (Table 3).

Post-liver transplant microbiome

Table 2 summarizes the changes that occurred in the bacterial composition of the post-liver transplant microbiome. A total of 26 families and three orders were identified in 10 studies. The family *Enterobacteriaceae* was increased in the post-transplant microbiome in the majority of studies. Other taxa included *Clostridiaceae* and *Enterococcaceae*, which were increased post-LT in 5 studies. *Streptococcaceae* was increased in 4 studies. Additionally, the families *Ruminococcaceae* and *Lachnospiraceae* were found to be increased in four studies (Table 2). *Bacteroidaceae* and *Lactobacillaceae* were increased in three studies. Further, two studies demonstrated increase in the family *Fusobacteriaceae*, *Prevotellaceae*, and *Pseudomonadaceae*.

Post-kidney transplant microbiome

A total of 20 families were identified in three kidney transplant studies. *Bifidobacteriaceae*, *Lachnospiraceae*,

	re-KT [family (genus)] Post-KT (family)	llostridiaceae Bacteroidaceae ↑ Genus: Anaerotruncus) ↓ Bifidobacteriaceae ↑ isysipelotrichaceae ↑ (Genus: Coprobacillus) ↓ Clostridiaceae ↑ achnospiraceae ↑ Corynebacteriaceae ↑ Genus: Coprococcus) ↓ Enterobacteriaceae ↑ Peptostreptococcaceae ↑ Pasteurellaceae ↑ Peptostreptococcaceae ↑ Ruminococcaceae ↑ Staphylococcaceae ↑ Veillonellaceae ↑ Veillonellaceae ↑	NA Bifidobacteriaceae Clostridiaceae Eubacteriaceae Lachnospiraceae Ruminococcaceae	VA Bacteroidaceae Barteroidaceae Bifidobacteriaceae Coriobacteriaceae Enbacteriaceae Eubacteriaceae Pasteurellaceae Ruminococcaceae Streptococcaceae	taxa; KT, kidney transplant; MMF, mycophenolate
	Hypervariable region	≺1-√3	V4-V5	Ч Z	/post-transplan
olant studies	Sequencing platform	454 sequencing	Illumina MiSeq	Illumina HiSeq	rison with pre
n three kidney trans	Immunosuppressants	Simulect Thymoglobulin Campath	Tacrolimus MMF	Everolimus Tacrolimus MMF Prednisone	xa enriched in compa.
axa representation i	Antimicrobial drugs	e Cefazolin Penicillin Ciprofloxacin Sulfamethoxazole -trimethoprim	Amoxicillin Clindamycin Cefazolin Vancomycin	Ч	:ransplant taxa; ↑, ta:
tics and te	Sample	microbiom Oral & Swabs Swabs	Stool	Stool	pre-/post-t
ologic characterist	Population characteristics	d post-transplant r 60 adults (39 males); Mean age 58; indication for transplant = NA	ansplant microbion 19 adults (8 males); mean age 54.7; indication for transplant = NA	20 adults (16 Males); mean age 62.3; Indication for transplant = NA	comparison with _l /ailable.
Table 3. Method	First author, year of publication	Analysis of pre- an Fricke, 2014 [31]	Analysis of post-tra Lee, 2015 [33]	Zaza, 2017 [34]	↑, taxa decrease in mofetil; NA, not av

and *Ruminococcaceae* were found in all three studies. *Bacteroidaceae*, *Clostridiaceae*, *Enterobacteriaceae*, *Eubacteriaceae*, and *Streptococcaceae* were identified in two studies (Table 3).

Pre- and post-transplant microbial diversity and predominance

Analysis of microbial diversity and predominance was feasible only for 4 (three liver and one kidney) of the 13 studies, due to lack of data availability. An analysis (Table 4) shows the predominant microorganisms as well as diversity comparisons of the pre- and the post-transplant microbiome from liver and kidney studies. There was an overall decrease in microbial diversity post-transplant as compared to the pre-transplant state [25,28,30,31]. Additionally, an increase in the relative abundance of pathogenic microorganisms, belonging to the phyla Proteobacteria and Actinobacteria, was noted with antibiotic use despite the decrease in overall diversity. Bajaj et al. [24] noted a significant increase in diversity when comparing SDI pre-transplant and at 7 months post-transplant. Kato et al. [25] revealed a drop in microbial diversity from a median SDI of 3-4 pre-transplant to 2-3 at 14 days post-transplant. In the kidney study, Fricke et al. [31] revealed a significant reduction in the SDI from an interquartile range of 3-5 pre-transplant to 2-5 at 1 month post-transplant. However, the microbial diversity at 15-21 months post-transplant is still lower when compared to healthy controls [30].

The overall presence of bacterial families in the preand post-transplant from kidney and liver studies was compared using a Venn diagram, and the results revealed the increased presence of *Bifidobacteriaceae*, *Clostridiaceae*, *Enterobacteriaceae*, *Enterococcaceae*, *Lactobacillaceae*, and *Ruminococcaceae* in both before transplant and after transplant (Fig. 2).

Discussion

Our systematic review reveals alterations in microbial composition and an increase in pathogenic taxa in liver and kidney transplant recipients. These data provide a foundation to deepen our knowledge on the impact of SOT-mediated enteric dysbiosis on post-transplant complications.

Many previous studies observed overall loss of microbial diversity has been associated with immune-related diseases, metabolic disease, and cancer in the general population [36–39]. In SOT population, pre-transplant microbiota loss or alteration is influenced by several factors such as malnutrition, infection, primary indication for transplantation, and the transplantation proce-Other notable factors include dure [40]. immunosuppressants, prophylactic antibiotics, and steroids (Fig. 3). Alterations or loss in microbial diversity increase the risk of post-transplant infection and graft rejection [5,41] particularly KT recipients demonstrated acute rejection, diarrhea, and urinary tract infection [33]. Further, LT recipients reported to have increased endotoxin levels in blood samples compared to healthy individuals and increased intestinal permeability and endotoxemia due to long-term use of tacrolimus [42,43].

Immunosuppression is critical to graft health free of rejection. However, it plays an essential role in the incidence of opportunistic infections [44]. Our analysis revealed the increased presence of Enterobacteriaceae post-transplant in the majority of included studies. Though Enterobacteriaceae is a part of the commensal IM, its increased presence leads to urinary tract, lower respiratory tract, and bloodstream infections. Lu et al. [27] reported that an increase in opportunistic pathogens in transplant recipients was associated with abnormal liver enzymes post-transplant. Particularly, Enterobacteriaceae enrichment was associated with endotoxemia, increased intestinal permeability, and liver-related diseases [45,46]. Other pathogenic families such as Enterococcaceae, Streptococcaceae, and Pseudomonodaceae were reported to be associated with non-anastomotic biliary strictures post-LT [30]. More specifically, Enterococcaceae was reported to be abundant in children with Crohn's disease treated with Infliximab and insulin-using cirrhotic patients [47,48].

The short-chain fatty acid-producing bacteria Lachnospiraceae and Ruminococcaceae were found to be increased in the transplant recipients. Interestingly, our previous study on Sprague-Dawley rats exposed to tacrolimus and sirolimus induced hyperglycemia [17]. A linear discriminant analysis (LDA) identified the Lachnospiraceae and Verrucomicrobiaceae families to be abundant in the immunosuppressed rats compared to control. The abundance of bacteria producing short-chain fatty acids plays an essential role in intestinal inflammation and host resistance [40]. Moreover, Lachnospiraceae is widely studied for its role in metabolic disorders and cardiovascular health [49,50]. The increased abundance of pathogenic taxa Enterobacteriaceae and Enterococcaceae along with the short-chain fatty acid-producing bacteria Lachnospiraceae and Ruminococcaceae may play a role in post-transplant complications.

Decreased IM diversity post-transplantation has been associated with several complications including

Table 4. Pre- and	post-transplant mi	crobial diversity and predominance from Liver and	ıd kidney transplant studies.	
First author, vear	Microbial diversity		Microbial predominance	
of publication	Pre-transplant	Post-transplant	Pre-transplant (order)	Post-transplant (family
Liver transplantatior Bajaj, 2018 [24]	studies SDI [mean	SDI [mean (±SD)] 2.1 ± 0.7	Enterobacteriales	Lachnospiraceae
Kato. 2017 [25]	(±SD)] 1.6 ± 0.7 SDI IOR 0-5	Significant increase SDI IOR 0–4	Burkholderiales	Lachnospiraceae.
	Median SDI: 3-4	Median SDI: 2–3	Campylobacterales	Veillonellaceae
		No difference in diversity pre-transplant and at 0	Desulfovibrionales Neisseriales	Bacteroidaceae
		 –/ days post-transplant. Mean diversity index decreased at days 8–14 post-transplant 	Enterobacteriales Bitidobacteriales Verrucomicrohiales Svnergistales Xanthomonadales	Enterobacteriaceae Finterococcaceae
		Significant reduction	Pseudomonadales Pasteurellales Aeromonadales	Lachnospiraceae
)	Clostridiales	Lactobacillaceae
			Erysipelotrichales Turicibacterales Lactobacillales	Ruminococcaceae
			Bacillales Bacteroidales Coriobacteriales	
			Actinomycetales Methanobacteriales Anaerolineales	
			Fusobacteriales	
			Rhizobiales	
			Sphingomonadales	
Sun, 2017 [26]	SDI 4.25	SDI 4.34	Verrucomicrobiales Synergistales	Clostridiaceae
		Non-significant difference		
Kidney transplantati	on studies			
Fricke, 2014 [31]	OTU 301		Clostridiales	Lachnospiraceae
		Significant reduction		
IQR, interquartile ra	nge; OTU, operatior	aal taxonomic unit; SD, standard deviation; SDI, Shai	annon diversity index.	

Figure 3 Schematic representation summarizing the factors contributing to enteric dysbiosis and post-transplant complications from the 13 included studies.

postoperative infections and diarrhea [31,33]. Our review identified two studies with decreased SDI posttransplantation, which was linked to postoperative infection, acute cellular rejections, and bloodstream infections. Initial post-transplant changes in the gut microbiome made a lasting impact on the compositional diversity as there was no significant changes between one and six months after transplant. [31]. Even though microbial diversity improves with time after SOT, Zhang et al. [30] still found the microbiome at 15-21 months post-transplant to be less diverse than healthy controls. The dissimilarity in the microbial diversity may be due to the difference in analysis timing; for example, Bajaj et al. noted the significant increase in microbial diversity 7 ± 3 months posttransplant, whereas Fricke et al. and Kato et al. noted significant decrease in the diversity 1 and 2 months post-transplant, respectively. Apart from the length of the microbial analysis, the compositional transformations of IM are highly variable due to the type of transplant and patient themselves along with surgical procedures, antibiotics, and IS. Additionally, end-stage diseases that necessitated SOT are themselves associated with enteric dysbiosis. We noted some of the pre-transplant families such as Enterobacteriaceae, Enterococcaceae, and Ruminococcaceae to be enriched in posttransplant period. A thorough comparison of pretransplant taxa with post-transplant taxa was not feasible because not all studies included pre-transplant data.

Our systematic review is limited by the small number of clinical studies and population heterogeneity that contribute to difficulties in comparability. The antimicrobial, immunosuppressive drugs, and the timing of sample collection post-transplant differed among studies. Moreover, the study aims, methodology, and evaluated outcomes were variable and it was thus difficult to compare IM composition. Some studies reported a relative abundance of pre- and post-transplant microbiome, while others used the LDA or simply reported the most abundant taxa. Therefore, the included studies were analyzed based on the microbial presence of each order or family within each of the included studies. Functional analysis of the post-transplant microbiome could not be performed due to a lack of metagenomic and shotgun sequencing data or inferred functional metagenomic analysis of 16S rRNA sequencing data in the included studies.

Conclusion

Emerging evidence shows that there is a bi-directional relationship between the host and the intestinal microbiome, which is critical to health as well as pathogenesis and progression of the disease. Our systematic review provides insight into the changes that occur in the microbiome after transplant, with compositional changes of IM and predominance of pathogenic taxa. These microbial alterations may play a role in generating a higher risk of metabolic disease, malignancy, and infection post-transplant. Thus, more research is essential to determine whether changes in the composition and function of IM after SOT are causative or simply an association. Nonetheless, the types of taxonomic changes that occur in transplant recipients are suggestive of causation, given what is known in the non-transplant literature about the contribution of these taxa to metabolic disease, infection, and cancer. Further knowledge on whether the IM is causal in post-transplant complications would help in the development of preventive strategies such as modulating the microbiome with prebiotics, diet, and exercise.

Funding

The authors declare no funding was received for this study.

Conflicts of interest

The authors declare no conflicts of interest.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

 Table S1.
 Search strategy.

 Table S2.
 Summary of liver and kidney transplant studies.

REFERENCES

- Lucey MR, Terrault N, Ojo L, et al. Longterm management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. *Liver Transplant* 2013; 19: 3.
- Gallagher MP, Kelly PJ, Jardine M, et al. Long-term cancer risk of immunosuppressive regimens after kidney transplantation. J Am Soc Nephrol 2010; 21: 852.
- Siddiqui MS, Sterling RK. Posttransplant metabolic syndrome. *Int J Hepatol* 2012. https://doi.org/10.1155/012/891516.
- Jiménez-Pérez M, González-Grande R, Guzmán EO, Trillo VA, López JMR. Metabolic complications in liver transplant recipients. *World J Gastroenterol* 2016; 2: 6416.
- Rahim HP, Taylor MR, Hirota SA, Greenway SC. Microbiome alterations following solid-organ transplantation: consequences, solutions, and prevention. *Transplant Res Risk Manage* 2018; 10: 1.
- Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. *Hepatology* 2013; 57: 601.
- 7. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature* 2006; **444**: 1027.
- 8. Scheperjans F, Aho V, Pereira PAB, *et al.* Gut microbiota are related to

Parkinson's disease and clinical phenotype. *Mov Disord* 2015; **30**: 350.

- 9. Wang T, Cai G, Qiu Y, *et al.* Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. *ISME J* 2012; **6**: 320.
- Kriss M, Verna EC, Rosen HR, Lozupone CA. Functional microbiomics in liver transplantation: identifying novel targets for improving allograft outcomes. *Transplantation* 2019; **103**: 668.
- 11. Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. *Signal Transduct Target Ther* 2019; **4**: 41.
- Haque TR, Barritt AS. Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol 2016; 30: 33.
- 13. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. *Nat Rev Genet* 2012; **13**: 260.
- 14. Tourret J, Willing BP, Dion S, MacPherson J, Denamur E, Finlay BB. Immunosuppressive treatment alters secretion of ileal antimicrobial peptides and gut microbiota, and favors subsequent colonization by uropathogenic *Escherichia coli*. *Transplantation* 2017; **101**: 74.
- Flannigan KL, Taylor MR, Pereira SK, et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J Hear Lung Transplant 2018; 37: 1047.
- 16. Taylor MR, Flannigan KL, Rahim H, et al. Vancomycin relieves mycophe-

nolate mofetil–induced gastrointestinal toxicity by eliminating gut bacterialglucuronidase activity. *Sci Adv* 2019; **5**: eaax2358.

- 17. Bhat M, Pasini E, Copeland J, *et al.* Impact of immunosuppression on the metagenomic composition of the intestinal microbiome: a systems biology approach to post-transplant diabetes. *Sci Rep* 2017; **7**: 10277.
- Zhang Z, Liu L, Tang H, et al. Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice. Am J Transplant 2018; 18: 1646.
- Moher D, Shamseer L, Clarke M,, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015; 4: 1.
- 20. Wells G, Shea B, O'Connell D, Peterson J. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Ottawa, ON: Ottawa Hospital Research Institute, 2000.
- Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. Systematic review of the human milk microbiota. *Nutr Clin Pract* 2017; 32: 354.
- Venny-. Venn Diagrams for comparing lists. By Juan Carlos Oliveros. [Internet]. [Cited 2020 Mar 3]. Available from: https://bioinfogp.cnb.c sic.es/tools/venny_old/venny.php.
- Annavajhala MK, Gomez-Simmonds A, Macesic N, *et al.* Colonizing multidrug-resistant bacteria and the

longitudinal evolution of the intestinal microbiome after liver transplantation. *Nat Commun* 2019; **10**: 4715.

- Bajaj JS, Kakiyama G, Cox IJ, et al. Alterations in gut microbial function following liver transplant. *Liver Transplant* 2018; 24: 752.
- 25. Kato K, Nagao M, Miyamoto K, *et al.* Longitudinal analysis of the intestinal microbiota in liver transplantation. *Transplant Direct* 2017; **3**: e144.
- Sun LY, Yang YS, Qu W, et al. Gut microbiota of liver transplantation recipients. Sci Rep 2017; 7: 3762.
- Lu H-F, Ren Z-G, Li A, *et al.* Fecal microbiome data distinguish liver recipients with normal and abnormal liver function from healthy controls. *Front Microbiol* 2019; **10**: 1518.
- Lu H, He J, Wu Z, *et al.* Assessment of microbiome variation during the perioperative period in liver transplant patients: a retrospective analysis. *Microb Ecol* 2013; 65: 781.
- Wu ZW, Ling ZX, Lu HF, et al. Changes of gut bacteria and immune parameters in liver transplant recipients. *Hepatobiliary Pancreat Dis Int* 2012; 11: 40.
- 30. Zhang J, Ren FG, Liu P, et al. Characteristics of fecal microbial communities in patients with non-Anastomotic biliary strictures after liver transplantation. World J Gastroenterol 2017; 23: 8217.
- Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation. *Am J Transplant* 2014; 14: 416.
- 32. Macesic N, Gomez-Simmonds A, Sullivan SB, *et al.* Genomic surveillance reveals diversity of multidrug-resistant organism colonization and infection: a prospective cohort study in liver

transplant recipients. *Clin Infect Dis* 2018; **67**: 905.

- 33. Lee JR, Muthukumar T, Dadhania D, et al. Gut microbiota and tacrolimus dosing in kidney transplantation. *PLoS One* 2015; **10**: e0122399.
- 34. Zaza G, Gassa AD, Felis G, Granata S, Torriani S, Lupo A. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: comparison between an everolimus-and a standard tacrolimus based regimen. *PLoS One* 2017; **12**: e0178228.
- 35. Kabar I, Hüsing A, Cicinnati VR, *et al.* Analysis of bile colonization and intestinal flora may improve management in liver transplant recipients undergoing ERCP. *Ann Transplant* 2015; **20**: 249.
- 36. Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? *Front Microbiol* 2016; 7: 455.
- 37. Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. *J Intern Med* 2016; **280**: 339.
- 38. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. *Cell* 2014; **157**: 121.
- Rajagopala SV, Vashee S, Oldfield LM, et al. The human microbiome and cancer. Cancer Prev Res 2017; 10: 226.
- Xiao J, Peng Z, Liao Y, *et al.* Organ transplantation and gut microbiota: current reviews and future challenges. *Am J Transl Res* 2018; 10: 3330.
- 41. Vindigni SM, Surawicz CM. The gut microbiome: a clinically significant player in transplantation? *Expert Rev Clin Immunol* 2015; **11**: 781.
- 42. Gabe SM, Bjarnason I, Tolou-Ghamari Z, et al. The effect of tacrolimus

(FK506) on intestinal barrier function and cellular energy production in humans. *Gastroenterology* 1998; **15**: 67.

- Madsen KL, Yanchar NL, Sigalet DL, Reigel T, Fedorak RN. FK506 increases permeability in rat intestine by inhibiting mitochondrial function. *Gastroenterology* 1995; 109: 107.
- 44. Ramos-Vivas J, Chapartegui-González I, Fernández-Martínez M, *et al.* Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. *Sci Rep* 2019; **9**: 8928.
- 45. Arai M, Mochida S, Ohno A, Arai S, Fujiwara K. Selective bowel decontamination of recipients for prevention against liver injury following orthotopic liver transplantation: Evaluation with rat models. *Hepatology* 1998; 27: 123.
- 46. Wang L, Wan YJY. The role of gut microbiota in liver disease development and treatment. *Liver Res* 2019; **3**: 3.
- 47. Kowalska-duplaga K, Kapusta P, Gosiewski T. Changes in the intestinal microbiota are seen following treatment with infliximab in children with Crohn's disease. J Clin Med 2020; 9: 687.
- Bajaj JS, Betrapally NS, Hylemon PB, et al. Gut microbiota alterations can predict hospitalizations in cirrhosis independent of diabetes mellitus. Sci Rep 2015; 5: 18559.
- 49. Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci 2019; 20: 1.
- 50. Salonen A, Lahti L, Salojärvi J, *et al.* Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. *ISME J* 2014; **8**: 2218.