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SUMMARY

The increasing global prevalence of SARS-CoV-2 and the resulting
COVID-19 disease pandemic pose significant concerns for clinical manage-
ment of solid organ transplant recipients (SOTR). Wearable devices that
can measure physiologic changes in biometrics including heart rate, heart
rate variability, body temperature, respiratory, activity (such as steps taken
per day) and sleep patterns, and blood oxygen saturation show utility for
the early detection of infection before clinical presentation of symptoms.
Recent algorithms developed using preliminary wearable datasets show that
SARS-CoV-2 is detectable before clinical symptoms in >80% of adults.
Early detection of SARS-CoV-2, influenza, and other pathogens in SOTR,
and their household members, could facilitate early interventions such as
self-isolation and early clinical management of relevant infection(s). Ongo-
ing studies testing the utility of wearable devices such as smartwatches for
early detection of SARS-CoV-2 and other infections in the general popula-
tion are reviewed here, along with the practical challenges to implementing
these processes at scale in pediatric and adult SOTR, and their household
members. The resources and logistics, including transplant-specific analyses
pipelines to account for confounders such as polypharmacy and comor-
bidities, required in studies of pediatric and adult SOTR for the robust
early detection of SARS-CoV-2, and other infections are also reviewed.
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Introduction

Post-transplant infectious disease complications are a

leading cause of mortality in solid organ transplant

recipients (SOTR) [1,2]. In particular, complications of

respiratory infections have been shown to have devastat-

ing consequences in SOTR, with earlier diagnosis and

treatment resulting in better outcomes [3]. Recent

prospective multicenter studies in adult SOTR with

clinically managed influenza infection showed ~66–71%
of recipients required hospitalization with >30% devel-

oping pneumonia and 11–16% requiring intensive care

unit (ICU) admission with mortality rates of 4–4.6%
[4,5]. Notably, SOTR who received antiviral treatment

within 48 hours of influenza A (H1N1) symptom pre-

sentation showed decreased rates of ICU admission

(8%) compared to those who received treatment after

48 h (22%) as well as decreased incidence of hospital

admission and mechanical ventilation [4].

The recent COVID-19 pandemic presents increased

risk of severe SARS-CoV-2 infection in the immunosup-

pressed SOTR. Literature reviews show 16–28%
COVID-related mortality rates in SOTR [6–8], although
larger studies are needed to dissect known comorbidity/

risk factors. The mean incubation period of SARS-CoV-

2 reported in large studies varies from 5.7 days (95%

CI, 5.1–6.4) to 7.7 days (95% CI 7.02–8.53) [9,10]. This
period is longer than the median incubation periods for

other common respiratory viral infections: influenza

B = 0.6 days (95% CI 0.5–0.6); influenza A = 1.4 days

(95% CI 1.3–1.5); rhinovirus = 1.9 days (95% CI 1.4–
2.4); parainfluenza = 2.6 days (95% CI 2�1–3�1), SARS-
CoV-1 = 4.0 days (95% CI 3�6–4�4); respiratory syncy-

tial virus (RSV) = 4.4 days (95% CI 3.9–4.9) and aden-

ovirus = 5.6 days (95% CI 4�8–6�3) [11]. Furthermore,

a number of recent studies have shown prolonged viral

shedding, and meta-analyses show that SOTRs have

higher viral burdens of SARS-CoV-2 [12,13,14] Impor-

tantly, a number of studies have estimated that up to

50% of individuals infected with SAR-CoV-2 have

asymptomatic infection courses, which significantly

increases the risk of viral spread in a household or care

center [15,16]. The mean serial interval, a key parameter

for assessing the dynamics of a disease, has been shown

to range from 3.03 to 7.6 days for SAR-CoV-2 between

the initial infectious person and the person they infect,

indicating that there is ample time for transmission of

SARS-CoV-2 within a household, or care facility, while

individuals are in pre-symptomatic or asymptomatic

phases of infection [17].

Sequencing of airway microbiota in pneumonia

patients with COVID-19 (n = 62) and without COVID-

19 (n = 125) showed COVID-19 patients had more per-

turbed airway microbiota with identification of other

potential pathogen in 47% of cases, of which 58% were

respiratory viruses. In nasopharyngeal and sputum
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samples from COVID-19 patients, enrichment of other

putative pathogenic microbes was identified, including

respiratory syncytial viruses (RSV), influenza, and other

opportunistic pathogen [18]. Therefore, early detection

of infection and early therapeutic intervention with

promising corticosteroid and antibody-based regimens

may be essential to mitigating the consequences of sev-

ere COVID-19 infection in SOTR.

As of January 20th, 2021, over 291 million SARS-

CoV-2 viral tests were performed in the United States

and ~1.361 billion worldwide [19]. With an asymp-

tomatic incubation period up to ~14 days and wide

heterogeneity in clinical symptoms, early detection of

SARS-CoV-2 is imperative, yet there remain major bar-

riers to widespread and continuous testing. Most exist-

ing testing platforms are not practical to administer on

a daily/weekly basis due to transmission risks and signif-

icant logistical barriers. Furthermore, the results of diag-

nostic tests can take several days restricting the window

for early intervention, contact tracing, and impeding

data-driven healthcare decisions for high-risk individu-

als [20]. Finally, there is understandable reluctance from

SOTR and their families to enter healthcare settings for

routine visits due to potential nosocomial SARS-CoV-2

exposure. The lengthy asymptomatic incubation period

of SARS-CoV-2 and its remarkable transmissibility,

combined with a presentation altered by immunosup-

pression, and polypharmacy among transplant popula-

tions, reflect the urgent need for tools that can detect

pre-symptomatic infection. As SARS-CoV-2 sero-preva-

lence rises, more SOTR and family members will

become infected, and many cases may not be detected

early enough for effective intervention.

Wearable devices

In the last decade, advances in wearable devices such as

fitness tracker smartwatches allow a range of important

phenotypes to be measured and offer the potential to

shift clinical care from being reactive to proactive. A

study conducted in June 2019 showed that ~21% of the

US population have, and regularly wear, a smartwatch55,

and this trend appears to be increasing as they become

more affordable. Generally, an increased heart rate (HR)

of 10 beats per minute in children equates to an

increase of one degree centigrade from their baseline

temperature [21]. While activity can impact HR short-

term, prolonged periods of sustained HR increase over

12–36 hours may indicate a physiological reaction to

infection. With the ability to monitor physiological

parameters such as HR, body temperature, oxygen

saturation (SpO2), blood pressure (BP), sleep and respi-

ratory patterns, and electro-dermal activity, commer-

cially available wearables provide the opportunity for

real-time, continuous infection monitoring to comple-

ment conventional diagnostic tests. There are many

commercially available wrist watches that utilize photo-

plethysmography (PPG) sensors which shine light into

the skin and measure the reflection back to determine

blood flow and color (green light is absorbed by hemo-

globin). These blood flow measurements are used to

determine HR, and to estimate BP and SpO2 [22].

Inflatable wrist-cuffs can measure arterial pressure to

find Oscillometric BP and some wearable devices use

single-lead electrocardiography (ECG) to detect heart

rhythm, for example, Apple Watch.

Over the past few years, wearable devices have been

rigorously explored for the detection and/or monitoring

of pathologies across a range of diseases, including atrial

fibrillation, Parkinson’s disease, convulsive seizure onset,

and continuous glucose monitoring in individuals with

type 2 Diabetes [23–26]. A growing number of studies

have shown that wearable devices are also a powerful

and promising tool for infection detection. While wear-

able technologies have yet to be extensively used for

monitoring of SOTRs, a study of 88 Australian adult

CKD and kidney transplant recipients, a clinical-grade

wearable device measuring peripheral body temperature

with an infrared thermopile correctly identified infec-

tion in 65 patients with 80% sensitivity and 98% speci-

ficity [27]. Another study found that Bluetooth-enabled

devices for at-home physiological monitoring of lung

transplant recipients resulted in lower incidences of hos-

pital readmissions [28]. The at-home monitoring con-

sisted of daily updates of BP, HR, weight, blood

glucose, SpO2, pulmonary function, and activity levels,

which could be measured using wearable devices. The

rate of hospital readmission and readmission days with

home monitoring versus standard care was 56% and

46% respectively, demonstrating the potential value of

consistently monitoring SOTRs with wearable devices to

reduce hospitalizations.

One of the first studies to report using wearables to

detect SARS-CoV-2 infection via smartwatches was pub-

lished recently by a number of co-authors of this manu-

script. Using primarily retrospective data from ~5,300
wearable devices, a focus was placed on individuals wear-

ing similar devices where sufficient continuous and

robust measurements were available [29]. The algorithms

studied three parameters: increased resting HR (RHR)

relative to previous “healthy day” windows; increased HR

to activity (step count) ratio; and sleep measures
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including sleep duration and time in wake/light/deep/

REM stages. Wearables data from 32 individuals pre-,

peri-, and post-SARS-CoV-2 confirmed infection, identi-

fied aberrant physiological signals associated with illness

using various algorithms including proof-of-concept for

real-time disease detection. The study showed that it is

possible to identify infection prior to symptomatic onset

using just three parameters using consumer-grade wear-

able devices. A similar study demonstrated that combin-

ing symptom data (fatigue, breathing difficulty, fever,

etc.) with wearable sensor data (resting HR, sleep, and

activity) resulted in greater ability to discriminate

between COVID-19 and non-COVID-19 infection com-

pared to symptoms alone (AUC 0.80 vs. 0.71, P < 0.01)

[30]. The recent TemPredict study, using Oura wearable

ring data from 65,000 subjects, examined 50 COVID-19

confirmed cases and showed the ability to detect early

signs of fever in 93% of the cases on average 3 days

before symptoms manifested [31]. Fitbit watch data on

2745 SARS-CoV-2 confirmed subjects showed that even

with self-reported symptoms alone, an AUC of

0.82 � 0.017 was observed for the prediction of the hos-

pitalization requirement [32].

Wearable biosensors have a significant advantage over

conventional diagnostic tools for early infection detec-

tion in that they can provide remote, continuous moni-

toring of vulnerable populations. With the introduction

of newer clinical-grade wearables that can monitor addi-

tional biometrics such as temperature, respiratory rate,

SpO2, BP, and ECG, it is envisioned that these addi-

tional physiological metrics have the potential to trans-

form early SARS-CoV-2 detection for both broad and

additional high-risk populations, such as CKD and

ESRD. In kidney transplant waitlisted (n = 56) and

transplant recipients (n = 80) with COVID-19, wait-

listed patients required more hospitalization (82% vs.

65%, P = 0.03) and had a higher risk of death (34% vs.

16%, P = 0.02) [33].

Patients with COVID-19 can present with severe

hypoxemia without proportional features of respiratory

distress; this is defined as silent or apathetic hypoxia.

The exact mechanisms of silent hypoxia are still not

fully understood; however, different hypotheses, includ-

ing the effect of SARS-CoV-2 on the respiratory system

have been postulated. Sudden and rapid deterioration

may occur in this subset of patients. In the initial phase

of infection with SARS-CoV-2, there is alveolar and

interstitial inflammation impairing gas exchange which

may progress to acute respiratory distress syndrome

(ARDS) due to ACE2 mediated vasoconstriction,

inflammation, and apoptosis [34]. Physiological

surveillances with SatO2 and respiration-related biomet-

rics during SARS-CoV-2 progression in prospective may

offer unique insight into this serious complication.

Immunosuppressed subjects have a weakened immune

response, and may develop ARDS, and a progressive

decline in SpO2. They may also present with above

average viral copies per oropharyngeal swab, and exhibit

a temporal pattern of elevated viral load concomitant

with physiological changes and worsening symptoms

that require urgent medical attention [35]. With these

unique pathophysiological challenges, there is a clear

promise of their utility for effective, actionable wearable

sensor data to optimize early infection detection and

thus impact outcomes for SOTRs.

Algorithms used to date for detection of early
infection

Robust algorithms are needed to transform physiologi-

cal data collected from wearables into reliable “triggers/

alerts” for early clinical intervention. Some schemes can

attain sufficient sensitivity and specificity using simple

single-parameter algorithms, such as temperature cutoffs

[27] and HRV [36], but robust algorithmic techniques

are needed for adequate performance in large, heteroge-

neous populations and phenotypes. As more algorithms

with different biometrics become available better dis-

crimination will likely be possible for different infection

types based on the given clinical population (e.g., young

vs elderly) and different comorbidities, concurrent med-

ications, and other factors.

The first algorithmic approach for early infection

detection using wearables was change of heart (CoH)

which scans for signals in continuous HR data from

wearable devices to find outlier peaks of HR elevation

[36]. This approach was able to identify multiple periods

of illness as defined by elevated high-sensitivity C-reactive

protein or self-reported illness, with AUC of greater than

0.9 for each of four individuals. Importantly, CoH identi-

fied all periods of illness and significant signals were evi-

dent prior to reported symptoms, indicating the

potential of this approach to detect illness with high sen-

sitivity. In one of the first COVID-19 wearable studies,

published by co-authors of this manuscript, an adaption

of CoH was used. Termed the RHR-Difference detection

(RHR-Diff) method, this approach systematically identi-

fies periods of elevated HR based on outlier interval

detection and compares each HR observation to a nor-

mal baseline to calculate standardized residuals [29]. A

second method, termed “heart rate over steps” anomaly

detection (HROS-AD), integrates heart rate and activity
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(step count) at hourly intervals. Of 32 COVID-19 posi-

tive participants with pre- to post-infection Fitbit device

data as well as symptom and clinical diagnoses dates,

outlying periods were identified in 26 individuals by at

least one of the two detection methods, up to 10 days in

advance of SARS-CoV-2 symptoms.

To illustrate these detection approaches, Fig. 1 outli-

nes different algorithmic outputs for a single individual

positively diagnosed for COVID-19. The participants

HR, activity steps, and sleep record were collected over

two months (during February and March 2020) which

encompassed pre-, peri-, and post-SARS-CoV-2 infec-

tion. The average resting HR from healthy baseline days

in February 2020 was compared to the average from all

days in March 2020 (test days). Periods around

COVID-19 infection correlated with HRs that were

above the baseline HR, supporting the hypothesis that

HR is elevated during COVID-19 onset. RHR-Diff

reported elevated time intervals, identifying a 10-day

window of significant HR elevation before the onset of

reported symptoms (Fig. 1a), during which the subject

was likely contagious and may have benefited from early

intervention.

To enable real-time COVID-19 detection, outlier

detection algorithms were developed with the goal of

being both time- and activity-adaptive. Online algo-

rithms have the advantage of continuously reporting

alerts in each abnormal day. One modeling framework

to test for the presence or absence of infection using

biometric readouts is based on the CuSum procedure

[37] which assesses changes in the frequency of an event

through time [38]. CuSum has been adapted to create a

non-parametric test (CuSum Sign test) that is no longer

dependent on an assumption of normality and only

assumes symmetry in the distribution underlying the

observations [39]. In the Mishra et al. study of early

COVID-19 infection detection, a CuSum alarm model

alarmed in 15 of 24 COVID-19 positive individuals with

at least 28 days of data prior to symptom onset, show-

ing good agreement with the offline RHR-Diff approach

in 13 cases [29]. In cases that were not detected some

missed triggers appeared to be due to pre-existing

Figure 1 Algorithmic analyses of wearable device biometric datasets from a single individual pre-, peri-, and post-SARS-CoV-2 infection. The

patient’s HR, activity steps, and sleep record were collected over all of February and March 2020, which encompassed pre-, peri-, and post-

SARS-CoV-2 infection. The average resting HR from healthy baseline days in February was compared to the average from all days in March

2020 (test days). The date (in red) indicate the day the patient reported initial symptoms and the subsequent day (in purple) shows the date of

formal SARS-CoV-2 diagnoses by RT-PCR. Periods around SARS-CoV-2 infection correlated with heart rates (HR) that were significantly

increased above the baseline HR. The Resting Heart-Rate-Difference detection method (RHR-Diff) was used to systematically identify periods of

elevated HR based on outlier interval detection, and compared a normal baseline to each HR observation to calculate standardized residuals.

Panel 1a shows the RHR-Diff elevated time intervals (red arrowed horizontal line), identifying a 10-day window of significant HR elevation

before the onset of reported symptoms. Online detection results based on the number of successive outlier hours (panel b) and the CuSum

continuous real-time alerts (panel c). Individuals for this study were recruited with appropriate informed consent under protocol number 55577

approved by the Stanford University Institutional Review Board. The dates shown were staggered by +/- 7 days to protect study participant’s

identities.
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conditions such as respiratory illnesses, indicating the

importance of further study and analysis within trans-

plant populations.

Figure 1b shows results from an online detection

method based on the number of successive outlier

hours, in comparison to an online detection method

adapted from CuSum (Fig. 1c). Both online algorithms

successfully identified the abnormal intervals, indicating

the potential of applying these approaches for real-time

COVID-19 detection. Extension of such online detec-

tion methods into monitoring of lung transplant recipi-

ents has already been established. CuSum algorithms

were implemented into lung transplant recipients to

examine an automatic detection system for events of

bronchopulmonary infection or rejection. Patients used

an electronic spirometer to measure forced expiratory

volume (FEV) and recorded symptoms daily. Detection

algorithms could be tuned for specificity and the study

optimized algorithms using forced expiratory volume

(FEV) data at a specificity of 80% with 3.8 false alarms

per patient-year for the learning set and 86% with 2.8

false alarms for the validation set. Algorithms using

symptoms data had a sensitivity of 82-83% at 4.3-4.4

false alarms per patient-year [40]. Although this study

used spirometry data, rather than wearable devices, it

demonstrates the value of using CuSum baseline distri-

butions for SOTR.

Recruitment and deployment of wearables in
infectious disease

Recent studies have been designed to recruit wearable

users from the general public into COVID-19 studies,

such as COVIDENTIFY at Duke University and

DETECT at Scripps Research Institute and TemPredict.

Researchers in Hong Kong recently published a protocol

for a study in which asymptomatic subjects under

mandatory quarantine following COVID-19 exposure

wear biosensors to continuously monitor skin tempera-

ture, respiratory rate, BP, pulse rate, SpO2, and proxies

of daily activity (such as steps taken daily) [41]. The

primary study outcomes are time to SARS-CoV-2 infec-

tion diagnoses using wearables for remote monitoring,

with the aim of earlier diagnosis.

Based on the outcomes of these COVID-19 studies

early infection detection algorithms will likely have strong

utility for most healthy household members of a SOTR,

which would enable self-isolation until a trigger is veri-

fied or downgraded. Should RHR-Diff and HROS-AD or

other algorithms/pipelines show validation in SOTR,

real-time triggers can be deployed in which local clinical

care teams can be contacted after false-positive factors

have been ruled out. If a clinical care team assesses the

trigger to be indicative of any early infection then the

parents/caregivers can be contacted and asked to perform

predetermined orthogonal measures of the triggering bio-

metric(s), for example, validation of the participants tem-

perature by using a thermometer, and a telemedicine

consult may be instigated.

My Personal Health Dashboard (MyPHD) which was

developed as an open-source tool that integrates medi-

cal records, genomic, and other -omic studies, and

research databases and allows for flexible data aggrega-

tion and integration, while compliant with HIPAA and

the highest security protection requirements. Impor-

tantly it is currently scaling to allow hundreds of thou-

sands of individuals with wearables to self-enroll, or

enroll through specific studies/trials, and link their

devices to generate RHR-Diff, HROS-AD, and addi-

tional algorithms outputs [29].

There are several filters such as sustained elevation

thresholds for specific biometrics that can be used to

limit the number of false-negative alarms. After validating

these models on robust sample sizes, wider network can

be used to implement such system at scale for early-stage

COVID-19 and other infection detection and alerts to

optimize RHR-Diff and HROS-AD. The algorithm’s sen-

sitivity can be adjusted to reduce false negatives for con-

founding factors such as medications impacting HR and

ambulatory BP. In preliminary studies, the baseline curve

can be set by detecting “healthy days”. There are several

tuning parameters available for detection optimization,

for example, how many healthy days need to be included

in the initial step and the best resolution to estimate the

baseline day trend for balancing bias and variance.

Implementation in the transplant setting should ideally

utilize existing prospective studies where infectious disease

is carefully monitored and wearable devices can be added.

One such study is a prospective multicenter pediatric kid-

ney transplant biomarker study being performed at 12

North American sites with >270 recipients are already

recruited with data and samples from ~10 standard of

care time-points collected per recipient in the first year

post-transplant [42]. Initial wearables recruitment is

beginning in a number of these existing study sites for

pediatric recipients, their sibling(s), and parents/care-

givers, for a period of 48 months anticipating various

infections in large portions of these recipients, including

EBV, CMV, and BK virus. In these studies, there is an

observational arm (Phase 1) where up to 2,300 partici-

pants (575 pediatric SOTRs and approximately 1,725

household members) are observed for a period of
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~35 days where no triggers are implemented, while at

least 28 days of baseline healthy day are gathered, and the

data processing and algorithm deployment are assessed.

If the study teams deem all Phase 1 to have con-

formed to the existing MyPHD pipeline in this study

population, then a Phase 2 arm (interventional) is initi-

ated which lasts 48 months to assess the alert system

with the primary outcome measured including the

number of hours/days for an early detection of verified

infection(s) including the following: (a) respiratory

viruses such as respiratory syncytial virus (RSV), influ-

enza A and B, rhinovirus and SARS-CoV-2; and (b) de

novo or significantly elevated viremia of other post-

transplant infections including BK virus, EBV, CMV as

assayed by the local standard of care clinical laboratory

testing. In Phase 2 the adult non-transplanted individu-

als are alerted via their phones but the alert for the

transplant recipient is further assessed. In Phase 2 a

warning alert is triggered at the first time we observed a

test statistic more extreme compared with the null dis-

tribution, with a p value generated by comparing the

current test statistics with the baseline measurements.

To reduce the number of alarms, a two-tiered warning

system is employed. The first time the CuSum p value is

< 0.01 (typically within the first few hours), an initial

warning alert is generated and logged automatically, but

not sent. Monitoring continues by the MyPHD system,

and if the trigger remains elevated for 24 hours it sig-

nals a positive event. For Phase 2, each transplant center

and clinical care team can decide the criteria for an

acceptable balance between under- and over- triggering,

as the existing algorithms can easily balance sensitivity

and the number of false alarms by setting an ideal

detection threshold based on the existing dataset (from

the general population studies). If a sustained Phase 2

alert/trigger has been verified to be of high confidence,

it is sent to our clinical care teams and contact with the

transplant recipients is limited to their judgment. Trig-

gering can thus be streamlined to the clinical care

teams’ preference, with a priori criteria for what alert

thresholds are optimal, and how to deal with an alert,

for example, at every hour before engaging the clinical

care team. Such approaches are anticipated to save time

for the clinical care team by decreasing the amount of

data they need to examine and they may only need to

consult via telemedicine with the patients/parents whose

smartwatches trigger a sustained high confidence alert.

Additional recruitments of heart, liver, and lung pedi-

atric transplant recipients are also underway through

sites in the International Genetics & Translational

Research in Transplantation Network (iGeneTRAiN)

[43,44], and details and resource related to the wearable

studies are continuously updated 56.

Challenges and obstacles of implementing
wearable in transplantation

There are a number of important challenges in wearable

studies in SOTR populations. First, the physiology and

concurrent diseases of SOTR are complex, with multiple

comorbidities often evident, which need to be

accounted for when generating better algorithms to

monitor these populations. Importantly, SOTR are typi-

cally prescribed large numbers of medications which

can impact HR, HRV, BP, and body temperature, and

the transplantation procedure itself can result in physio-

logical changes in SOTRs, for example, a transplanted

heart is de-innervated which impacts HR and HRV.

The most relevant confounders listed in Table 1

include the following: medications; indication for trans-

plant; presence and recurrence of pre- and post-trans-

plant infections; and other comorbidities impacting

physiological signals. There are a number of considera-

tions when integrating these confounding variables into

algorithms: if the variable alters the baseline physiologic

characteristics or the physiologic responses to infection

and; if there is any discernible effect on the biometric

readout of interest for COVID-19 early detection and

the robustness of each data element, for example, does

taking a specific medication always result in change, or

only under certain conditions. Furthermore, vaccina-

tions can pose another challenge, as previous groups

have identified subtle changes in HR and temperature

following immunization with certain vaccines [45]. This

potential confounder can be mitigated by actively docu-

menting patient vaccination history and identifying any

COVID-19 vaccine-related physiological fluctuations.

Ongoing wearables studies in iGeneTRAiN sites are

weighting all known transplant-specific confounders for

RHR-Diff and HROS-AD algorithm iterations using

available retrospective and prospective SOTR datasets

and non-transplant controls. Organ-specific infection

signatures are also being investigated, for example,

Table 2 outlines a number of kidney transplant-specific

covariates including primary disease and post-transplant

complications which may impact wearables outputs.

Refining transplanted organ-specific RHR-Diff algo-

rithms to recognize “healthy days” (including medica-

tion data for each SOTR and the temporal impact on

their HR, HRV, temperature, SpO2, and other biomet-

rics) and examining downstream periods for the earliest

signs of infection using the improved algorithm(s) is
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ongoing. This approach has the significant advantage

that all comparisons used to trigger clinical interven-

tions are intra-participant, allowing control for variation

in physiology between individuals. Pre-transplant wear-

able and phenotype data would allow dissection of the

effect of transplant medications and other stressors that

Table 1. Confounders impacting COVID-19-related physiological biometrics signatures.

Specific confounder Baseline vs response
Impacted
readout Clinical factors possibly impacting biometric measurements

Medications
Immunosuppression
regimes

Baseline BP Mainstay immunosuppression regimens include prednisone and
tacrolimus which may cause PTDM hypertension and
hyperglycemia. Mycophenolate may cause nausea, vomiting,
diarrhea, and anemia. Multiple drug–drug interactions

Beta blocker Baseline and response BP, HR, HRV Beta blockers to treat hypertension can lower BP and HR,
increased HRV, and fatigue. ##Calcium channel antagonists
to treat post-Tx hypertension can also cause low BP and reflex
tachycardia

Erythropoiesis
stimulating agents

Baseline and response HR, HRV Post-transplant anemia can cause elevated HR, irregular HR,
fatigue, and shortness of breath which may resolve with
erythropoiesis-stimulating drugs

Antivirals Baseline and response Multiple Valganciclovir, a common antiviral for CMV prophylaxis, is
associated with multiple GI symptoms, anemia, leukopenia,
and thrombocytopenia

Antibacterials/
Antifungals

Baseline and response Multiple Bactrim can cause nausea, vomiting, anemia, and rash.
Nystatin can cause diarrhea, nausea, and stomach pain.
Antibiotics used to treat post-transplant bacterial infections
are associated with GI symptoms such as diarrhea, nausea,
stomach pain, and rash

Antidepressants Baseline HR, BP SSRIs can cause nausea, vomiting, diarrhea, appetite change,
headache, fatigue and possibly QT prolongation. SNRIs are
associated with nausea, constipation, fatigue, urination
difficulty, sweating and hypertension with serotonin
syndrome. Multiple drug–drug interactions

Over-the-counter
products

Baseline and response Multiple Analgesics may reduce fever, cough and cold products may
increase HR, antihistamines may cause GI symptoms, fatigue,
and irregular HR, antacids may cause GI symptoms, PPIs may
cause GI symptoms

Underlying infection(s)
EBV Baseline and response Multiple Can cause fever, changes in HRV that mimic SARS-CoV-2

infection. May cause PTLD which presents with fever, weight
loss, fatigue

CMV Baseline and response Multiple Can cause fever, changes in HRV that mimic SARS-CoV-2.
Prophylaxis may result in hypertension/hypotension and fever

Comorbidities
PTLD Baseline and response Multiple Fever, weight loss, diarrhea, fatigue
Hypertension Baseline BP Post-transplant hypertension is very common
Anemia Baseline and response HR, HRV Anemia results in increased heart rate and reduced heart rate

variability
PTDM Baseline and response Multiple PTDM is associated with hypertension as well as an increased

risk for infection and sepsis, including UTIs, pneumonia, CMV
CKD Baseline and response BP, HR, HRV CKD effects physiology, including anemia, dehydration, and

electrolyte imbalances, resulting in effects on BP, HR, and HRV

BP, Blood pressure; CMV, Cytomegalovirus; EBV, Epstein–Barr virus; HR, Heart rate; HR, Heart rate variability; SSRIs, Selective
serotonin reuptake inhibitors; SNRIs, Serotonin and norepinephrine reuptake inhibitors; PTDM, Post-transplant diabetes mellitus;
PTLD, Post-transplant lymphoproliferative disorders; PPI, Proton-pump inhibitors.

Updated information was taken from McDonald 2020 [44].
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impact typical post-transplant comorbidities such as

increased BMI, PTDM, and hypertension.

Implementation and compliance issues with the wear-

able devices are also anticipated. In order to effectively

establish baseline healthy days as well as track potential

signs of infection, the smartwatches should be worn

consistently in both asymptomatic and symptomatic

periods. The recent adult retrospective COVID-19 wear-

able study showed that many individuals neglected both

charging and wearing the devices during symptomatic

periods (as many only wore their devices when exercis-

ing), so compliance with all transplant household mem-

bers wearing the devices is imperative [29,46].

It is important in such studies to emphasize to the

SOTR/household participants that they should not rely

on smartwatch devices as means of infection detection,

and if they are showing signs of infection, or other

symptoms, that would typically cause them to reach out

to their clinical care team, then they should do so. At

Phase 2 should an alert be triggered, participants can be

guided to take actions to validate any signs of potential

illness with orthogonal reading of the biometric(s) of

relevance, such as a using a thermometer to assess

potential fever, and they may self-isolate until the trig-

ger is further sustained or downgraded.

The most anticipated hurdles for implementation of

smartwatches for early detection of infection in trans-

plant household are the workflows for managing large

complex datasets systematically, accurately, and securely

while reducing the burden on the clinical management

teams. Resources such as MyPHD, Future use of data

can be used where allowable, for example, to aggregate

large-scale prospective transplant datasets to generate

early infection detection pathogen-specific algorithms.

Figure 2 illustrates the various components of clinical

decision support (CDS) and return-of-results (RoR) to

manage care of SOTRs between and outlines some of

the basic workflows.

Legal frameworks that set guidelines for the collection

and processing of personal information, such as the

Table 2. Kidney transplant-specific confounders.

Specific confounder
Baseline vs
response

Impacted
readout Clinical factors possibly impacting biometric measurements

Indication for Kidney Transplant
Congenital anomalies of
kidney
and ureters (CAKUT)

Response BP Congenital anomalies of the kidney and ureters are
common. Posterior urethral valves are associated with
recurrent UTIs.

Glomerulonephritides Baseline Blood pressure Glomerulonephritides recur post-transplant and provoke
increased risk for post-Tx hypertension.

FSGS Baseline Proteinuria, BP FSGS recipients present with nephrotic syndrome
(peripheral edema, hypoalbuminemia, high-grade
proteinuria, and hypertension).

Underlying infection(s)
BK Virus Baseline and

response
Multiple Reactivation can cause asymptomatic viuria and viremia

which may progress to nephropathy and lead to graft
failure [37]

Urinary tract infection Baseline and
response

Multiple Infections can cause fever, changes in HRV that mimic
SARS-COV-2 infection.

Comorbidities
FSGS recurrence Baseline BP FSGS recipients present with nephrotic syndrome

(peripheral edema, hypoalbuminemia, high-grade
proteinuria, and hypertension).

CKD Baseline and
response

BP, HR, HRV CKD effects physiology, including anemia, dehydration,
and electrolyte imbalances, resulting in effects on BP, HR,
and HRV.

Reno-vascular disease Baseline BP Reno-vascular disease is a common complication, causing
persistent hypertension

BP, Blood pressure; FSGS, Focal segmental glomerulosclerosis; HR, Heart rate; HRV, Heart rate variability; Urinary UTI, tract
infection.

Updated information was taken from McDonald 2020 [44].
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General Data Protection Regulation (GDPR) for partici-

pants from the European Union (EU), regulate that

consent must be clear, properly informed, freely given,

and specific to the study in question 31946621 [47].

Other GDPR principles that relate to the lawful basis of

processing data include the following: data minimiza-

tion, so that the minimum relevant amount of personal

data necessary for processing is collected; data security,

to ensure personal data are processed in a manner that

ensures appropriate security. Such frameworks also

ensure that retention of data (personal data are not

stored for longer than necessary) and are securely

encrypted. Consents in such studies may include sharing

of de-identified meta-data for comparison of existing

algorithms and development of newer algorithms.

Patient medical records and device data can be linked

to secure data encryption keys and held in highly secure

hospital/University or Institute servers, and using

resources such as MyPHD ensures that studies can be

performed under local institutional review board (IRB)

regulatory guidelines, with encrypted wearables data

streamed to servers that have the same high-level secu-

rity as other electronic medical record (EMR) servers

containing PHI (this is illustrated in Figure S1). This

approach also allows smartwatch data not to have to be

streamed onto a smartwatch vendor’s system.

Both traditional machine learning and deep learning

approaches have been used to successfully perform

numerous classification tasks related to COVID-19,

including prediction of SARS-CoV-2 seropositivity and

risk stratification of confirmed positive cases using mul-

timodal datasets. Gradient boosting classifiers, a tradi-

tional approach involving an ensemble of “weak

learners” such as decision trees combined in an additive

process that is optimized via gradient descent, have

been used to predict COVID-19 infection with up to

0.74 AUC using clinical variables such as presence of

anosmia, cough, shortness of breath, and patient age

[48]. Convolutional neural networks, a high-dimen-

sional “deep neural network” design utilized for image

Figure 2 Monitoring of transplant recipients and their family members for early detection of infection. The data collected from wearables on

transplant recipients and their families are monitored by a clinical team. Robust abnormal deviations of key physiological biometric baseline sig-

nals may indicate potential infection which can be verified through clinical/telehealth consults or measured using orthogonal devices. The algo-

rithms sensitivities can be adjusted to reduce false negatives for confounding factors such as medications impacting HR and ambulatory BP.

Confirmed sustained biometric abnormalities can instigate preventative self-isolation of potentially infected household members and instigation

of formal diagnoses of the infection(s). Anticipated triggering of recipients, and any telemedicine/other investigative care such as at-home

SARS-CoV-2 clinical testing, can be performed through defined protocols from the local clinical care team. Data protection includes no per-

sonal health information (PHI) transfer and limiting the activity data so that no geolocation data are recorded.
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processing and pattern recognition, can distinguish

COVID-19 pneumonia from non-COVID-19 pneumo-

nia on chest CT scans with AUC of 0.95 [49]. The pro-

mise that artificial intelligence tools have shown in these

areas of COVID-19 detection leaves little to imagine

regarding how such approaches can be translated to

analysis of data from wearable devices.

Geographical and environmental exposures are also

important consideration for wearable datasets. The “ex-

posome” field has advanced significantly in the last few

years [50,51],. and additional data relating to weather,

pollution, and socioeconomic status can be derived

from geocoding from a subject’s 9-digit zip code [52].

Conclusions

Epidemiological models clearly demonstrate that slow-

ing the spread of COVID-19 will prevent hundreds of

thousands of deaths [53]. While SARS-CoV-2 therapeu-

tics and vaccine administration and further develop-

ment are being carried out at a frenetic pace, there are

still uncertainties how they will perform long-term in

vulnerable immunocompromised SOTR, and vaccines

are not yet available to SOTRs <16 years of age. The

long-term consequences of post-COVID-19 disease are

also very unclear in the general populations, let alone in

SOTR. A recent prepublication indicated that meta-

analyses of 47,190 patients estimated that appreciable

portions of the patients that were infected with SARS-

CoV-2 developed at least one or more long-term symp-

toms [54].

The increased sophistication of wearable sensors and

cheap data storage/analyses has made data from commer-

cially available devices extremely useful for accurate

health surveillance. By combining clinical-grade wearable

devices, advanced algorithms, and novel data manage-

ment platforms, new processes are being developed to

assess the health of SOTR, and their household members,

by guiding decision-making in COVID-19 testing and

triggering risk-informed medical actions such as self-iso-

lation and early pathogen detection, especially with the

emergence of specific clinical SARS-CoV-2 home-testing

assays to rule-in or rule-out infection.

Smartwatch studies from over 100,000 participants

from the general population including the DETECT,

TemPredict, and Stanford MyPHD wearable studies

show very promising data for early infection detection.

Thus it reasonable to envisage in a clinical study set-

ting, household members of transplanted recipients

using such smartwatch systems to allow early detection

and reduce the risk of infection transmission, including

self-isolation, until an alert/trigger is verified. The ben-

efit of being able to receive continuous measurements

of temperature, blood pressure, and heart rate data

from the smartwatch of a participant every 5-15 min-

utes allows short- to long-term assessment of biometric

correlations with various infection-related outcomes.

Using wearable devices in conjunction with open-

source secure systems is an innovative approach that

can also allow effective integration with electronic

health records (EHR).

Smartwatch datasets from large-scale transplant stud-

ies have only recently begun to be initiated and imple-

mented, many challenges remain, and larger more

formal rigorous studies still need to be conducted to

truly prove its impact on transplant patient care.

Quantitative and qualitative metrics of outcomes,

including those related to morbidity and mortality,

using smartwatches/wearables for surveillance and inter-

vention early infections, need to be performed in prop-

erly designed, well-powered clinical studies before

wearable devices enter routine clinical practice. The

infrastructure needed to take this important step to

prove its impact on patient care can be facilitated using

existing resources like MyPHD where SOTR and house-

hold members can provide remote consent, and linkage

to their own wearable datasets and EHR under remote

HIPAA compliant systems for remote monitoring. It is

also important that the sensitivity of the infection detec-

tion based on biometrics such as HR, HRV, and activity

can be tuned to reduce false-alerts but the algorithms

used for infection detection will become more sensitive

and specific for a range of post-transplant pathogens as

monitored populations increase in size and diversity.

This will also allow suspected SARS-CoV-2 or other

infection cases to be quickly identified and managed,

limiting risk for the transplant patient and additional

burden on healthcare systems.
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