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Liver Transplantation is complicated by recurrent fibrosis in 40% of recipients. We evaluated
the ability of clinical and radiomic features to flag patients at risk of developing future graft
fibrosis. CT scans of 254 patients at 3–6months post-liver transplant were retrospectively
analyzed. Volumetric radiomic features were extracted from the portal phase using an
Artificial Intelligence-based tool (PyRadiomics). The primary endpoint was clinically significant
(≥F2) graft fibrosis. A 10-fold cross-validated LASSO model using clinical and radiomic
features was developed. In total, 75 patients (29.5%) developed ≥F2 fibrosis by a median of
19 (4.3–121.8) months. The maximum liver attenuation at the venous phase (a radiomic
feature reflecting venous perfusion), primary etiology, donor/recipient age, recurrence of
disease, brain-dead donor, tacrolimus use at 3months, and APRI score at 3months were
predictive of ≥F2 fibrosis. The combination of radiomics and the clinical features increased
the AUC to 0.811 from 0.793 for the clinical-only model (p = 0.008) and from 0.664 for the
radiomics-only model (p < 0.001) to predict future ≥F2 fibrosis. This pilot study exploring the
role of radiomics demonstrates that the addition of radiomic features in a clinical model
increased the model’s performance. Further studies are required to investigate the
generalizability of this experimental tool.
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INTRODUCTION

Short-term survival rates after liver transplant (LT) have continued to improve over time, with
advances in immunosuppression and post-transplant care [1]. However, this has not been matched
by gains in long-term survival rates [1–3]. Recurrent fibrosis following LT continues to be a
significant factor impacting long-term graft and patient survival. Advanced graft fibrosis occurs in
approximately 37%–43% of LT recipients [4, 5]. Development of Stage 2 graft fibrosis within the first-
year post-transplant is associated with reduced graft and patient survival [6, 7].

Graft fibrosis may occur due to repeated episodes of rejection, recurrence of primary disease, or
recurrent and de novo non-alcoholic steatohepatitis (NASH) [8]. Liver enzymes give unreliable
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information to assess progressive graft fibrosis over time when
preventive interventions are possible. Furthermore, repeated liver
biopsies for screening and monitoring in LT patients are not
practically feasible given the potential risks associated with an
invasive procedure and expense [9, 10]. Longitudinal serum
biomarkers and transient elastography are helpful in
identifying patients who have developed advanced liver fibrosis
[4, 5, 11]. However, more robust non-invasive tools are required
to identify those at the highest risk of developing advanced graft
fibrosis in the long term.

Radiomics is a method of converting medical images into high-
dimensional, mineable quantitative data, followed by subsequent
data analysis for decision support [12]. Radiomics has been used
successfully to assess liver fibrosis on CT images in chronic liver
disease [13, 14], while for LT patients it has beenmainly focused on
predicting early recurrence of hepatocellular carcinoma (HCC)
post-transplant using pretransplant CT images [15, 16]. To our
knowledge, there have been no studies to date that explore the
utility of radiomic features on post-transplant images in predicting
graft fibrosis in solid organ transplant recipients.

In this study, we aimed to develop and validate a radiomics-
based model to predict the onset of >F2 graft fibrosis in the long
term post-LT. Figure 1 represents the schematic presentation of our
aim.We opted for F2 ormore fibrosis as it is categorized as clinically
significant fibrosis [17]. It is important to identify patients at risk of
clinically significant fibrosis in the long term. Earlier identification
of such higher-risk patients will enable the implementation of
preventive measures that could save the graft. We hypothesized
that radiomic features such as subtle perfusion, and biliary and

parenchymal changes early post-LT could provide insight into the
long-term life span of the graft, beyond the longitudinal clinical and
laboratory information available.

MATERIALS AND METHODS

Patient Population
This retrospective multi-center study was done at University
Health Network and Mount Sinai Hospital, Toronto, and
included all adult patients who underwent LT between January
2009 and December 2018 and had post-transplant contrast-
enhanced computed tomography (CT) scan available,
including a venous phase with/without an arterial phase, at
3–6 months after LT. This period for CT scans was selected in
order to give time for the post-surgical changes to reverse, which
takes a few weeks [18]. Missing clinical characteristics data were
multiply imputed ten times using five iterations of multiple
imputation by chained equations. The model coefficients and
performance measures were pooled using Rubin’s rules. The
study flowchart is depicted in Figure 2.

We collected data on demographics (date and type of LT;
recipient and donor age; recipient sex, height, weight, and body
mass index (BMI); primary indication for LT; comorbidities such
as diabetes, hypertension, dyslipidemia, cardiovascular disease,
dialysis status, smoking, and alcohol consumption; recurrence of
primary etiology (any time post LT); recurrence of hepatocellular
carcinoma (HCC) or cholangiocarcinoma; development of
fibrosis; re-transplantation; and death post-LT), laboratory
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tests at various intervals post-transplant (platelets, total bilirubin,
AST, ALT, ALP, INR, sodium, creatinine, eGFR, APRI, Fib-4),
and the immunosuppression regimen.

The study’s primary endpoint was Fibrosis stage F2 or greater
(≥F2) quantified by either transient elastography (TE) or liver
biopsy. Liver biopsy was indicated either as a prerequisite of
hepatitis C treatment in the interferon era or on a need basis such
as for elevated liver enzymes. Since the availability of TE (2018),
all patients at our center underwent routine TE annually. TE was
not available for many patients due to the wide range of the study
period; hence we used both TE and liver biopsy whichever was
available, given their comparable performance in staging liver
fibrosis, even in post-liver transplant patients [5, 19, 20]. The

protocol was approved by our institutional Research Ethics Board
(REB # CAPCR ID: 19-6159).

Liver biopsy samples were considered adequate if they were at
least 15 mm long and carried at least 6 complete portal tracts, and
were read by an expert liver pathologist [21]. Fibrosis stages in
biopsy samples were scaled based on the METAVIR score, from
F0 to F4 (F0: No fibrosis–F1: Portal fibrosis without septa–F2-
Portal fibrosis with few septa–F3: fibrosis with numerous bridging
septa–and F4: cirrhosis) [22].

Transient elastography was done using the Fibroscan device
(Echosense, Paris) with standard M or XL (for obese patients, as
guided by the device) probes. Liver stiffness measurement (LSM)
expressed in kilopascals (kPa) identified graft fibrosis severity.
LSM ≥7.4 was considered significant graft fibrosis (F2 and above)
based on the results of a recent prospective study that showed a
sensitivity of 0.9 for this cutoff in LT recipients with different
underlying pathologies. Only examinations with at least
10 measurements and a successful rate >60%, with an
interquartile range <30% of the median value were considered
reliable for the study [23].

CT Feature Extraction
One radiologist (ES) manually contoured a 30 mm diameter
spherical volume of interest (VOI) in the posterior aspect of
the right liver lobe (segment V or VI) in the arterial and portal
phase of each patient. The portal branches and hepatic veins were
excluded from segmentation. A radiologist with more than
20 years of experience in abdominal radiology (MH)
confirmed the contours. 3D Slicer v4.11.2 1, an open
segmentation software was used. Feature extraction was
performed with PyRadiomics version 3.0, an image biomarker
standardization initiative compliant analytic library [24]. CT

FIGURE 1 | Schematic presentation of aim and methods.

FIGURE 2 | Study flowchart.

1https://www.slicer.org/
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images with the region of interest in the right liver lobe are
depicted as a Supplementary Figure S1. Typical CT parameters
and hyperparameters used for analysis are listed in
Supplementary Tables S1–S3. In total, 116 non-filtered
features were extracted.

Statistical Analysis
Baseline variables were compared between cohorts using the
Mann-Whitney U test and Fisher’s Exact test for continuous
and categorical variables, respectively. The association of the
clinical variables and the radiomic features with ≥F2 was
assessed by using univariable and multivariable generalized
logistic regression models. Clinical features with a skewed
distribution were log transformed.

Three models, radiomics only, clinical only, and radiomics +
clinical, were developed to predict ≥ F2 on the liver graft.
Radiomic features were standardized using Z-transformation
and features with zero variance were removed. Following this,
radiomic features that were significant (p < 0.05) in the fitted
univariable logistic regression models were retained. These
features were introduced in the Least Absolute Shrinkage and
Selection Operator (LASSO) to generate the final radiomic model
and were validated using 10-fold cross-validation. The clinical-
only model was developed using a similar methodology. All the
clinical features that were statistically significant (p < 0.05) in the
univariable model were retained and then incorporated into a 10-
fold cross-validated LASSO model to generate a final list of
clinical features. The clinical and radiomics model included all
features from the clinical-only and radiomics-only models. All
models were internally validated using 10-fold cross-validation
repeated 10 times. At the end, model performance was tested on
patients with liver biopsy-determined fibrosis by excluding
patients with fibroscan-determined fibrosis.

The mean area (AUC) under the receiver operator
characteristic curve (ROC) was used to assess the
discrimination of the radiomics and the clinical models. 95%
confidence intervals (CI) were calculated based on
1,000 bootstrap replicates. Model calibration was visually
assessed using calibration curves and quantified using average
absolute calibration error. The mean ROC curve was plotted for
each model. DeLong’s test was used to formally compare
differences in AUCs across models. Time to ≥F2 fibrosis was
estimated using cumulative incidence functions; death without
fibrosis was considered a competing risk. Patients who did not die
or develop fibrosis were censored at the date of the last follow-up.
Cumulative incidence function curves were stratified by radiomic
features and differences in curves were evaluated using
Gray’s test.

To assess confounding between each selected clinical
characteristic and the selected radiomics features when
predicting ≥F2 fibrosis, separate multivariable logistic
regression models incorporating each feature and the selected
radiomics features were fit. A difference of 10% between the
univariable and adjusted odds ratio was considered to be
indicative of confounding.

All statistical tests were two-tailed, and p < 0.05 was
considered statistically significant. Statistics were performed

using R v4.0.0 (R project for statistical computing) [25].
Methods and results were reported according to the
Transparent Reporting of Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD)
statement [26].

RESULTS

Out of 1,188 patients who underwent liver transplants during the
study period, a total of 254 patients met the inclusion criteria,
specifically due to the need for CT scans at 3–6 months post-LT.
Patients were mostly male (76%), with a mean age of 56.3 ±
10.2 years at transplant. The most common etiology of the
underlying liver disease was viral (54%). Of those included,
204 (80.3%) patients had HCC and/or cholangiocarcinoma
before transplant and 75% of patients underwent deceased
donor liver transplants. The median duration of follow-up was
6.7 (1.1–12.4) years. Table 1 summarizes the demographic and
laboratory variables.

In total, 75 (29.5%) patients developed ≥F2 fibrosis. The
median time from transplant to ≥F2 fibrosis was 19
(4.3–121.8) months, while the time from CT scan was 14.1
(0–116) months. Recurrence of primary etiology was noted in
93 (37%) patients, while 41 (16%) had a recurrence of HCC/
cholangiocarcinoma in the long term. Patients who developed ≥
F2 fibrosis in the long term had more deceased cardiac donor
(DCD) LTs (17% vs. 7%, p = 0.0079), younger age at transplant
(54 ± 9.8 vs. 57.2 ± 10.2, p < 0.001), higher rate of primary disease
recurrence (67% vs. 24%, p < 0.001), elevated liver enzymes at
3 months post-LT, and less frequent use of tacrolimus at
3 months post-LT (49% vs. 82% p < 0.001) as described in
Table 1.

The LASSO algorithm selected two radiomic features,
original first-order maximum and original first-order root
mean squared. The two were highly correlated with a
Spearman correlation coefficient of 0.86, and therefore only
the first-order maximum (maximum liver attenuation) was
selected for the radiomics model (OR: 0.52 [95% CI:
0.38–0.71], p < 0.001). The results from the univariable
logistic regression models for all radiomic features are
presented in Supplementary Table S4.

Association of Radiomics-Score and
Clinical Variables With Graft-Fibrosis
In the multivariable generalized regression analysis, primary
etiology of alcohol (OR 5.49, 95% CI 1.60–18.80, p = 0.007),
donor age (OR 1.04, 95% CI 1.01–1.07, p = 0.002), recipient age
at transplant (OR 0.95, 95% CI 0.91–0.98, p = 0.004), recurrence
of primary etiology (OR 6.31, 95% CI 2.46–16.16, p < 0.001),
brain-dead donor (OR 0.16, 95% CI 0.05–0.48, p = 0.001),
tacrolimus use at 3 months post-LT (OR 0.27, 95% CI
0.11–0.65, p = 0.004), and APRI score at 3 months post-LT
(OR 1.93, 95% CI 1.26–2.95, p = 0.003) were the clinical
variables significantly associated with ≥F2 fibrosis (Table 2).
The discriminatory performance of the clinical model
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TABLE 1 | Demographic and clinicopathological characteristics.

Variable Full sample (n = 254) <F2 fibrosis (n = 179) ≥F2 fibrosis (n = 75) p-value*

Primary diagnosis n (%) 0.74
Viral 136 (54) 91 (51) 45 (60)
Alcohol 38 (15) 29 (16) 9 (12)
Autoimmune liver diseases 31 (12) 22 (12) 9 (12)
NASH 22 (9) 16 (9) 6 (8)
Other 27 (11) 21 (12) 6 (8)

Liver malignancy pre-LT n (%) 0.59
Cholangiocarcinoma 3 (1) 3 (1.7) 0 (0)
HCC 196 (77) 140 (78.2) 56 (74.7)
HCC + Cholangiocarcinoma 4 (1.5) 4 (2.2) 0 (0)
HCC + Gall bladder carcinoma 1 (0.4) 1 (0.6) 0 (0)
None 50 (19.6) 31 (17.3) 19 (25.3)

Transplant Type n (%) 0.0079
Deceased cardiac donor 26 (10) 13 (7) 13 (17)
Living donor 62 (25) 39 (22) 23 (31)
Deceased brain-dead donor 164 (65) 125 (71) 39 (52)

Age at transplant (years) Mean (SD) 56.3 (10.2) 57.2 (10.2) 54.0 (9.8) <0.001
Sex n (%) 0.87
Female 59 (23) 41 (23) 18 (24)
Male 195 (77) 138 (77) 57 (76)

BMI (Kg/m2) Mean (SD) 27.1 (5.1) 27.2 (5.0) 27.0 (5.3) 0.66
BMI Category n (%) 0.43
<30 186 (74) 133 (76) 53 (71)
≥30 65 (26) 43 (24) 22 (29)
Missing 3 3 0

Donor Age (Years) Mean (SD) 44.5 (16.5) 44.0 (17.1) 45.6 (15.2) 0.40
Missing 2 2 0

Diabetes Pre LT n (%) 80 (31) 58 (32) 22 (29) 0.66
Hypertension pre-LT n (%) 85 (33) 63 (35) 22 (29) 0.39
Dyslipidemia pre-LT n (%) 33 (13) 26 (15) 7 (9) 0.51
Cardiovascular disease pre-LT n (%) 20 (8) 15 (8) 5 (7) 0.80
Smoking pre-LT n (%) 136 (54) 98 (55) 38 (51) 0.58
Dialysis pre-LT n (%) 2 (1) 0 (0) 2 (3) 0.086
Diabetes post-LT n (%) 125 (49) 93 (52) 32 (43) 0.16
Hypertension post-LT n (%) 155 (61) 104 (58) 51 (68) 0.16
Dyslipidemia post-LT n (%) 69 (27) 49 (28) 20 (27) 1
Cardiovascular disease post-LT n (%) 33 (13) 21 (12) 12 (16) 0.41
Dialysis post-LT n (%) 29 (11) 19 (11) 10 (13) 0.52
Smoking post-LT n (%) 20 (8) 17 (9) 3 (4) 0.2
Alcohol consumption post-LT n (%) 9 (4) 6 (3) 3 (4) 0.73
HCC/Cholangiocarcinoma Recurrence n (%) 41 (16) 28 (16) 13 (17) 0.71
Recurrence of the Primary diagnosis n (%) 93 (37) 43 (24) 50 (67) <0.001
Platelet at Transplant (x109/L) Median (Min, Max) 164 (29, 782) 169 (38, 782) 158 (29, 584) 0.43
Platelets at 3 months (x109/L) Median (Min, Max) 157 (15, 532) 162 (39, 532) 148.5 (15, 446) 0.044
AST at Transplant Median (Min, Max) 1040.5 (96.0, 10300.0) 1,006 (96, 8,209) 1,155 (144, 10,300) 0.48
AST at 3 months (IU/L) Median (Min, Max) 28 (9, 358) 26 (9, 358) 42 (14, 268) <0.001

Missing 1 1 0
ALT at Transplant (IU/L) Median (Min, Max) 747.5 (55.0, 7509.0) 721 (55, 7,509) 770 (128, 5,229) 0.71
ALT at 3 months (IU/L) Median (Min, Max) 35 (3, 522) 30 (3, 522) 53 (7, 493) <0.001

Missing 2 2 0
ALP at Transplant (IU/L) Median (Min, Max) 103.5 (37.0, 1791.0) 103 (37, 1,791) 105 (44, 1,279) 0.91
ALP 3 months (IU/L) Median (Min, Max) 118 (39, 2,197) 108 (39, 565) 131 (49, 2,197) 0.0041

Missing 2 2 0
Total Bilirubin at Transplant (µmol/L) Median (Min, Max) 60 (6, 613) 58 (6, 613) 65.5 (7.0, 512.0) 0.11
Total Bilirubin 3 months (µmol/L) Median (Min, Max) 10 (3, 169) 9 (3, 169) 13 (3, 73) <0.001

Missing 2 1 1
INR at LT Median (Min, Max) 1.8 (0.8, 5.2) 1.8 (0.8, 4.0) 1.8 (1.0, 5.2) 0.77
INR 3 months Median (Min, Max) 1.0 (0.9, 3.0) 1.0 (0.9, 3.0) 1.0 (0.9, 1.9) 0.87

Missing 5 5 0
Serum Creatinine at Transplant (µmol/L) Median (Min, Max) 84 (43, 359) 84 (48, 307) 84 (43, 359) 0.61
Serum Creatinine 3M (µmol/L) Median (Min, Max) 91 (28, 541) 91.5 (28.0, 159.0) 87 (44, 541) 0.32

Missing 1 1 0
Serum Sodium at Transplant (mmol/L) Mean (SD) 140.3 (4.5) 139.9 (4.3) 141.1 (4.9) 0.026
Serum Sodium 3 months (mmol/L) Mean (SD) 139.9 (3.1) 139.9 (3.3) 139.9 (2.7) 0.69

Missing 1 1 0
(Continued on following page)
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for ≥F2 fibrosis prediction was 0.793 (95% CI 0.657–0.917) with
a mean absolute calibration error of 0.290 (95% CI 0.225–0.343).
The performance of our clinical model was better than the APRI
score (at 3 months post-LT) alone to predict ≥F2 fibrosis (AUC
0.705; 95% CI 0.632–0.777, p < 0.001).

Among the radiomic features, portal venous phase maximum
liver attenuation remains significantly associated with the
outcome on multivariate analysis (OR 0.52, 95% CI 0.38–0.71,
p < 0.001). Using the median value (−0.012) as the cutoff, venous
perfusion maximum liver attenuation was significantly associated
with a cumulative incidence of ≥F2 fibrosis (p = 0.015) as shown
in Figure 3A. The combination radiomics and the clinical model
increased the AUC to 0.811 (95% CI 0.670–0.921) from 0.793
(95% CI 0.657–0.917) for the clinical-only model (p = 0.008) and
from 0.664 (95% CI 0.539–0.775) for the radiomics-only model
(p < 0.001). The mean ROC curves for each model are presented

in Figure 3B. Supplementary Figure S2 shows the calibration
plots.

Cofounding factor analysis showed a possibility of a small
amount of cofounding of radiomics with the primary diagnosis,
BMI, recurrence of primary disease, immunosuppression, and
type of LT, while no interaction was found with recipient age,
donor age, post-LT diabetes, and APRI at 3 months as shown in
Table 3 and Supplementary Figure S3.

We performed the analysis with biopsy-determined endpoints.
In total, 11 patients who had their fibrosis detected using a
Fibroscan were excluded from the analysis. Minor differences
in model performance were observed. In the radiomics-only,
clinical-only, and radiomics + clinical models, the mean AUCs
were 0.633, 0.787, and 0.793 for the biopsy-only group as
compared to 0.664, 0.793, and 0.811 for the full group,
respectively (Supplementary Tables S5, S6).

TABLE 1 | (Continued) Demographic and clinicopathological characteristics.

Variable Full sample (n = 254) <F2 fibrosis (n = 179) ≥F2 fibrosis (n = 75) p-value*

Immunosuppressant 3 months n (%) <0.001
Cyclosporine 63 (25) 27 (15) 36 (48)
Sirolimus 7 (3) 5 (3) 2 (3)
Tacrolimus 184 (72) 147 (82) 37 (49)

APRI at 3 months Median (Min, Max) 0.5 (0.1, 25.0) 0.5 (0.1, 8.7) 0.8 (0.1, 25.0) <0.001
Missing 7 6 1

Fib-4 at 3 months Median (Min, Max) 1.7 (0.2, 37.7) 1.5 (0.2, 11.9) 2.2 (0.2, 37.7) <0.001
Missing 8 7 1

Duration of Follow-up (Years) Median (Min, Max) 6.7 (1.1, 12.4) 6.6 (1.1, 12.4) 7.4 (1.1, 12.1) 0.79

Notes: * Mann-Whitney U test for continuous covariates, and Fisher’s Exact test for categorical covariates.
Abbreviations: ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; HCC, hepatocellular carcinoma; INR, international normalized
ratio; LT, liver transplant; NASH, non-alcoholic steatohepatitis; SD, standard deviation.
Bold values represents that the p value < 0.05.

TABLE 2 | Multivariate regression analysis of clinical and radiomics variables.

Statistic/Predictor Clinical only Radiomics only Clinical + radiomics

Mean AUC (95% CI) 0.793 (0.657, 0.917) 0.664 (0.539, 0.775) 0.811 (0.670, 0.921)
Mean Absolute Calibration Error (95% CI) 0.290 (0.225, 0.343) 0.393 (0.320, 0.464) 0.284 (0.221, 0.344)
Venous Original First-Order Maximum 0.52 (0.38, 0.71) p < 0.001 0.61 (0.41, 0.92) p = 0.019
Primary Diagnosis (ref = Viral) Autoimmune hepatitis 1.88 (0.52, 6.76) p = 0.334 2.15 (0.58, 8.02) p = 0.255

Alcohol 5.49 (1.60, 18.8) p = 0.007 4.57 (1.32, 15.90) p = 0.018
NASH 3.12 (0.78, 12.50) p = 0.109 2.54 (0.63, 10.20) p = 0.191
Other 2.48 (0.57, 10.83) p = 0.228 2.92 (0.65, 13.01) p = 0.162

Age at Transplant 0.95 (0.91, 0.98) p = 0.004 0.95 (0.92, 0.99) p = 0.011
BMI (ref <30) ≥30 1.87 (0.83, 4.22) p = 0.134 1.67 (0.73, 3.83) p = 0.228
Donor Age 1.04 (1.01, 1.07) p = 0.002 1.04 (1.01, 1.06) p = 0.006
Post-LT Diabetes (ref = No) Yes 0.59 (0.29, 1.22) p = 0.158 0.60 (0.29, 1.25) p = 0.172
Recurrence of Primary Diagnosis (ref = No) Yes 6.31 (2.46, 16.16) p < 0.001 5.01 (1.92, 13.08) p = 0.001
Transplant Type (ref = Deceased cardiac donor) Living donor 0.47 (0.14, 1.55) p = 0.214 0.40 (0.12, 1.34) p = 0.138

Deceased brain-dead
donor

0.16 (0.05, 0.48) p = 0.001 0.15 (0.05, 0.46) p = 0.001

Immunosuppressant (ref = Cyclosporine) Sirolimus 2.05 (0.20, 20.71) p = 0.545 1.99 (0.20, 19.62) p = 0.555
Tacrolimus 0.27 (0.11, 0.65) p = 0.004 0.27 (0.11, 0.66) p = 0.005

Log APRI 3M 1.93 (1.26, 2.95) p = 0.003 2.02 (1.31, 3.13) p = 0.002

p-Values comparing AUC performance.
DeLong’s test was used to compare the AUC, for the following models:
1. Radiomics vs. clinical: p < 0.001.
2. Radiomics vs. clinical + radiomics: p < 0.001.
3. Clinical vs. clinical + radiomics: p = 0.006.
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DISCUSSION

Radiomics is an emerging but promising imaging-based tool for
quantitative analysis of radiological data. Radiomics-based
models have been used to detect cirrhosis in the pre-liver
transplant setting [14, 27, 28] and have been extensively
studied in the cancer setting [29]. In the transplant setting, its
application is so far limited to the prediction of recurrent HCC
based on pre-transplant images [30]. In a first-of-its-kind study,
we evaluated the feasibility of applying radiomic imaging
biomarkers in post-transplant CT scans combined with
laboratory and clinical data to predict the future development

of clinically significant graft fibrosis (Stage 2 or greater) after LT.
We appreciate that F4 fibrosis is an important endpoint, however,
limiting to F4 only would have dropped the sample size to get a
meaningful result. Nonetheless, we believe that identifying
patients at risk of developing F2 fibrosis will help us
implement measures clinically to prevent its onset.

Radiomic CT data were used to develop a model that would
serve to predict graft fibrosis in post-LT patients. The addition of
radiomic features to the full clinical model further improved the
mean AUC significantly. The maximum liver attenuation value on
CT in a representative portion of the right lobe of the liver
calculated at the portal venous phase was heavily correlated
with the onset of graft fibrosis. As CT enhancement is related
to perfusion, greater portal perfusion of the graft may be associated
with a lower risk of long-term fibrosis. Previous studies have found
that hypoxia, which could arise from low perfusion, is linked to the
development of fibrosis [31–33], by upregulating HIF-1α and NF-
κB expression, which activates hepatic stellate cells (HSCs), induces
epithelial-mesenchymal transition, and increases inflammation.
HSCs activation leads to abnormal extracellular matrix
deposition, promoting the development of fibrosis. This in turn
can lead to vascular resistance, further decreasing the blood flow/
liver perfusion. Additionally, activated HSCs also cause sinusoidal
vasoconstriction, leading to further hypoxia [31–33]. This negative
cycle of events, whereby fibrosis leads to hypoxia which exacerbates
fibrosis, suggests the importance of assessing venous perfusion
early on to prevent or delay the fibrosis post-transplant.

The analysis of radiomics features was limited in scope to
predicting fibrosis. In our exploratory analysis consisting of
univariable logistic regression models, we observed that many
venous and arterial first-order features were associated with the
outcome, specifically, higher values of the feature were associated
with decreased odds of fibrosis. However, these features were
highly correlated with one another, and therefore only one was
selected for the final model to prevent multicollinearity. Beyond
these first-order features, no other types of features achieved
statistical significance in univariable analysis.

We showed a positive correlation of fibrosis with both the
donor’s and recipient’s age, as reported previously in the
literature [34, 35]. Increasing donor age was associated with
an accelerated rate of fibrosis progression, with a greater
fibrosis score both at 4 and 12 months post-transplant [34].
The enhanced fibrotic response observed in older donors
could be explained by age-dependent changes in the liver
extracellular matrix [35, 36].

Ideally, the model should have included only variables measured
closer to the CT scan. However, we anticipated that post-LT
diabetes and recurrence of primary disease would have an
impact on the incidence of graft fibrosis as supported by the
previous literature. Hence these were included in the model. The
primary etiology for the transplant and diabetes were among the top
23 ranked features impacting the incidence of graft fibrosis in a
recent study based on a deep learning framework [37]. Patients with
viral etiology (HBV and HCV) were less likely to develop fibrosis.
This could be due to the advent of potent direct-acting antivirals
(DAAs) against HBV and HCV in the recent era. This contrasts
with the previous literature from the pre-DAA era, which was

FIGURE 3 | (A) Cumulative incidence of ≥F2 fibrosis as stratified by
radiomics feature (median venous perfusion original first-order maximum). (B)
ROCcurves for the radiomics model, clinical model, and radiomics plus clinical
model.
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suggestive of a high rate of fibrosis post-LT in HCV patients [38].
As shown in previous literature, alcohol etiology was related to the
highest odds of developing clinically significant fibrosis [39]. We
also showed that the recurrence of primary disease was significantly
associated with ≥F2 fibrosis post-transplant. In patients with viral
infection-related diagnoses, their immunocompromised state post-
transplant is further worsened by an increased viral load and an
accelerated progression of the disease [34]. Primary sclerosing
cholangitis is also known to recur in around 20%–25% of
patients over a 10 years period after LT. Given the lack of
established treatment, it can rapidly progress leading to graft
failure and the need for re-transplantation [40].

The type of LT donor also contributed to the likelihood of
developing clinically significant fibrosis post-LT. Recipients
from a donor of circulatory death (DCD) were at significantly
greater risk of developing severe fibrosis post-LT than those
from a neurologically determined dead (NDD) donor or a
living donor. Though, an earlier study reported an
insignificant difference in fibrosis between DCD and NDD
groups [41]. However, the improved prognosis in fibrosis for
those with living donors has been previously reported,
although mostly with an HCV population, and may be
explained by the younger age and shorter cold ischemic
times of living donor livers [42, 43].

The immunosuppression regimen was also linked to fibrosis
occurrence post-LT, with the use of sirolimus linked to a higher
risk for the development of ≥F2 fibrosis and the use of tacrolimus
associated with a lower risk when compared to cyclosporin. This
was in concordance with previous larger UNOS/SRTR data-based
studies showing the superiority of tacrolimus over cyclosporin
and sirolimus [44].

While many studies have tested the accuracy of APRI and
FIB4 tests in predicting fibrosis in patients with liver diseases, few
have investigated their accuracy in the post-LT population [4, 5,
11]. APRI and FIB-4 tests successfully detected fibrosis in post-LT
patients with AUCs of 0.87 and 0.78, respectively [45]. In another
study, APRI and FIB-4 significantly corresponded with F2 fibrosis
on liver biopsy in a post-LT setting (p = 0.009 and 0.022,
respectively) with sensitivities of 63.4% and 57.7% and
specificities of 66.7% and 69.6%, respectively for APRI and
Fib-4 [46]. In our cohort, a univariable logistic regression
model with APRI at 3 months post-LT obtained an AUC of
0.705 to predict future fibrosis, while a full clinical model, with the
removal of correlated variables, returned a mean AUC of 0.803,
suggesting the need for a more robust prediction model of fibrosis
for post-LT populations.

Clinical Significance
Recurrent fibrosis following liver transplantation negatively
impacts long-term graft and patient survival, increasing the
need for re-transplantation. Radiomic features early post-
transplant can offer additive prognostic value and insight
into the development of significant graft fibrosis in the long
term. Due to the lack of correlation between liver enzymes and
histology, and the rapid progression of fibrosis in post-
transplant patients, there is a need for more robust tools to
predict and implement appropriate preventive and therapeutic
measures. Based on the current model using clinical and
radiomic features, clinicians may consider closer monitoring
with Fibroscan in those patients who have high-risk radiomic
features and clinically predictive features (therefore higher risk
of future F2 fibrosis).

TABLE 3 | Univariable and multivariable logistic regression models predicting ≥F2 fibrosis after adjustment for maximum liver attenuation.

Covariate Unadjusted OR (95% CI) p-value Adjusted OR (95% CI) p-value

Primary diagnosis (ref = Viral) AIH 0.83 (0.35, 1.94) 0.66 0.87 (0.36, 2.12) 0.762
ETOH 0.63 (0.27, 1.44) 0.27 0.51 (0.22, 1.21) 0.129
NASH 0.76 (0.28, 2.07) 0.59 0.55 (0.19, 1.57) 0.268
Other 0.58 (0.22, 1.53) 0.27 0.65 (0.23, 1.80) 0.408
Maximum Liver Attenuation 0.50 (0.37, 0.69) <0.001

BMI (ref <30) ≥30 1.3 (0.71, 2.39) 0.39 1.00 (0.53, 1.90) 0.999
Maximum Liver Attenuation 0.52 (0.38, 0.72) <0.001

Post LT DM (ref = No) Yes 0.69 (0.4, 1.19) 0.18 0.69 (0.39, 1.22) 0.201
Maximum Liver Attenuation 0.52 (0.38, 0.71) <0.001

Recurrent primary disease (ref = No) Yes 6.23 (3.45, 11.24) <0.001 5.45 (2.98, 9.98) <0.001
Maximum Liver Attenuation 0.58 (0.42, 0.81) 0.0011

Age at Transplant Age 0.97 (0.95, 1.00) 0.023 0.97 (0.95, 1.00) 0.039
Maximum Liver Attenuation 0.53 (0.39, 0.72) <0.001

Donor age Age 1.01 (0.99, 1.02) 0.45 1.01 (0.99, 1.02) 0.558
Maximum Liver Attenuation 0.52 (0.38, 0.72) <0.001

APRI log APRI 3M 2.12 (1.56, 2.89) <0.001 2.10 (1.53, 2.87) <0.001
Maximum Liver Attenuation 0.51 (0.37, 0.72) <0.001

Immunosuppressant (ref = Cyclosporine) Sirolimus 0.50 (0.08, 3.20) 0.47 0.62 (0.09, 4.22) 0.622
Tacrolimus 0.19 (0.10, 0.34) <0.001 0.19 (0.10, 0.36) <0.001
Maximum Liver Attenuation 0.52 (0.37, 0.73) <0.001

Transplant type (ref = Deceased cardiac donor) Living donor 0.59 (0.23, 1.49) 0.27 0.46 (0.17, 1.22) 0.121
Deceased brain-dead donor 0.31 (0.13, 0.72) 0.007 0.25 (0.10, 0.62) 0.003
Maximum Liver Attenuation 0.50 (0.37, 0.69) <0.001
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Limitations
We acknowledge the limitations of the smaller sample size and lack
of external validation cohort; however, this was a first-of-its-kind
proof of principle study. We also acknowledge the component of
ascertainment bias as the number of HCCpatients was higher (80%)
than usual (40%) in our cohort. This could be due to the
retrospective study design and the selection criterion of CT scan
done between 3–6months which is often done for HCC surveillance
and not available for non-HCC patients. However, we believe that
this would not have impacted the model’s capacity to predict future
graft fibrosis as HCC patients were equally distributed in the two
groups, and both groups were followed for an equal period. Further,
the CT technology changes over the last decade could add some bias.
However, limiting the timeframe to more recent dates would reduce
the sample size and the follow-up duration. We acknowledge that
performing an interobserver variability analysis would have been
ideal. However, prior studies have shown that the first-order features
found to be significant in this study are amongst the most stable
radiomics features with intraclass correlation coefficient (ICC) >
0.9 [47]. Thus, it is reasonable to assume good ICC for this particular
radiomics feature. Future work will include further analysis with
ICC in particular to assess the usability of second-order features.
Moreover, the indications of liver biopsy and other donor factors
such as comorbidities, steatosis, liver enzymes, and cold ischemia
time were not analyzed, as the major goal of this study was to assess
the predictability of radiomic features for graft fibrosis rather than
identifying clinical factors affecting graft fibrosis. Furthermore, there
was a small amount of confounding for a few clinical variables with
radiomic features, hence limiting the increment in AUCs after the
addition of radiomics in the clinical model.

CONCLUSION

Clinical parameters early post-transplant can prognosticate
the future development of clinically significant graft fibrosis.
This pilot study exploring the role of radiomics demonstrates
that the addition of radiomic features in a clinical model
significantly increased the model’s performance. Further
studies would be required to investigate the generalizability
of this experimental tool.
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recurrence of primary disease, Transplant type, and immunosuppression type
comparing maximum liver attenuation in patients with or without ≥F2 fibrosis.

REFERENCES

1. Watt KDS, Pedersen RA, KremersWK, Heimbach JK, CharltonMR. Evolution
of Causes and Risk Factors for Mortality Post-Liver Transplant: Results of the
NIDDK Long-Term Follow-Up Study. Am J Transplant (2010) 10(6):1420–7.
doi:10.1111/j.1600-6143.2010.03126.x

2. Bhat M, Mara K, Dierkhising R, Watt KD. Gender, Race and Disease
Etiology Predict De Novo Malignancy Risk After Liver Transplantation:

Insights for Future Individualized Cancer Screening Guidance.
Transplantation (2019) 103(1):91–100. doi:10.1097/TP.
0000000000002113

3. Bhat M, Mara K, Dierkhising R, Watt KDS. Immunosuppression, Race, and
Donor-Related Risk Factors Affect De Novo Cancer Incidence Across Solid
Organ Transplant Recipients. Mayo Clin Proc (2018) 93(9):1236–46. doi:10.
1016/j.mayocp.2018.04.025

4. Bhat M, Rollet-Kurhajec KC, Bhat A, Farag A, Deschenes M, Wong P, et al.
Incidence and Predictors of Advanced Liver Fibrosis by a Validated Serum

Transplant International | Published by Frontiers September 2023 | Volume 36 | Article 111499

Qazi Arisar et al. Radiomics Predicting Liver Graft Fibrosis

https://www.frontierspartnerships.org/articles/10.3389/ti.2023.11149/full#supplementary-material
https://www.frontierspartnerships.org/articles/10.3389/ti.2023.11149/full#supplementary-material
https://doi.org/10.1111/j.1600-6143.2010.03126.x
https://doi.org/10.1097/TP.0000000000002113
https://doi.org/10.1097/TP.0000000000002113
https://doi.org/10.1016/j.mayocp.2018.04.025
https://doi.org/10.1016/j.mayocp.2018.04.025


Biomarker in Liver Transplant Recipients. Can J Gastroenterol Hepatol (2017)
2017:4381864. doi:10.1155/2017/4381864

5. Bhat M, Tazari M, Sebastiani G. Performance of Transient Elastography and
Serum Fibrosis Biomarkers for Non-Invasive Evaluation of Recurrent Fibrosis
After Liver Transplantation: A Meta-Analysis. PLoS One (2017) 12(9):
e0185192. doi:10.1371/journal.pone.0185192

6. Berenguer M, Schuppan D. Progression of Liver Fibrosis in Post-Transplant
Hepatitis C: Mechanisms, Assessment and Treatment. J Hepatol (2013) 58(5):
1028–41. doi:10.1016/j.jhep.2012.12.014

7. Crespo G, Lens S, GambatoM, Carrión JA, Mariño Z, LondoñoMC, et al. Liver
Stiffness 1 Year After Transplantation Predicts Clinical Outcomes in Patients
With Recurrent Hepatitis C. Am J Transpl (2014) 14(2):375–83. doi:10.1111/
ajt.12594

8. Galvin Z, Rajakumar R, Chen E, Adeyi O, Selzner M, Grant D, et al. Predictors
of De Novo Nonalcoholic Fatty Liver Disease After Liver Transplantation and
Associated Fibrosis. Liver Transpl (2019) 25(1):56–67. doi:10.1002/lt.25338

9. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD, American
Association for the Study of Liver Diseases. Liver Biopsy. Hepatology (2009)
49(3):1017–44. doi:10.1002/hep.22742

10. Sebastiani G. Non-Invasive Assessment of Liver Fibrosis in Chronic Liver
Diseases: Implementation in Clinical Practice and Decisional Algorithms.
World J Gastroenterol (2009) 15(18):2190–203. doi:10.3748/wjg.15.2190

11. Bhat M, Ghali P, Rollet-Kurhajec KC, Bhat A, Wong P, Deschenes M, et al.
Serum Fibrosis Biomarkers Predict Death and Graft Loss in Liver
Transplantation Recipients. Liver Transpl (2015) 21(11):1383–94. doi:10.
1002/lt.24217

12. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi:10.1148/radiol.2015151169

13. Lubner MG,Malecki K, Kloke J, Ganeshan B, Pickhardt PJ. Texture Analysis of
the Liver at MDCT for Assessing Hepatic Fibrosis. Abdom Radiol (Ny) (2017)
42(8):2069–78. doi:10.1007/s00261-017-1096-5

14. Cui E, Long W, Wu J, Li Q, Ma C, Lei Y, et al. Predicting the Stages of Liver
Fibrosis With Multiphase CT Radiomics Based on Volumetric Features.
Abdom Radiol (Ny) (2021) 46(8):3866–76. doi:10.1007/s00261-021-
03051-6

15. Ivanics T, Salinas-Miranda E, Abreu P, Khalvati F, Namdar K, Dong X, et al. A
Pre-TACE Radiomics Model to Predict HCC Progression and Recurrence in
Liver Transplantation. A Pilot Study on a Novel Biomarker. Transplantation
(2021) 105:2435–44. doi:10.1097/TP.0000000000003605

16. Guo D, Gu D, Wang H, Wei J, Wang Z, Hao X, et al. Radiomics Analysis
Enables Recurrence Prediction for Hepatocellular Carcinoma After Liver
Transplantation. Eur J Radiol (2019) 117:33–40. doi:10.1016/j.ejrad.2019.
05.010

17. Patel PJ, Cheng JC, Banh X, Gracen L, Radford-Smith D, Hossain F, et al.
Clinically Significant Fibrosis Is Associated With Longitudinal Increases
in Fibrosis-4 and Nonalcoholic Fatty Liver Disease Fibrosis Scores. Clin
Gastroenterol Hepatol (2020) 18(3):710–8. doi:10.1016/j.cgh.2019.07.036

18. Girometti R, Como G, Bazzocchi M, Zuiani C. Post-Operative Imaging in
Liver Transplantation: State-Of-The-Art and Future Perspectives. World
J Gastroenterol (2014) 20(20):6180–200. doi:10.3748/wjg.v20.i20.6180

19. Adebajo CO, Talwalkar JA, Poterucha JJ, KimWR, Charlton MR. Ultrasound-
Based Transient Elastography for the Detection of Hepatic Fibrosis in Patients
With Recurrent Hepatitis C Virus After Liver Transplantation: A Systematic
Review and Meta-Analysis. Liver Transpl (2012) 18(3):323–31. doi:10.1002/lt.
22460

20. Vinciguerra T, Brunati A, David E, Longo F, Pinon M, Ricceri F, et al.
Transient Elastography for Non-Invasive Evaluation of Post-Transplant
Liver Graft Fibrosis in Children. Pediatr Transpl (2018) 22(2):e13125.
doi:10.1111/petr.13125

21. Poynard T, Halfon P, Castera L, Munteanu M, Imbert-Bismut F, Ratziu V,
et al. Standardization of ROC Curve Areas for Diagnostic Evaluation of Liver
Fibrosis Markers Based on Prevalences of Fibrosis Stages. Clin Chem (2007)
53(9):1615–22. doi:10.1373/clinchem.2007.085795

22. Bedossa P, Poynard T. An Algorithm for the Grading of Activity in Chronic
Hepatitis C. The METAVIR Cooperative Study Group. Hepatology (1996)
24(2):289–93. doi:10.1002/hep.510240201

23. Siddiqui MS, Idowu MO, Stromberg K, Sima A, Lee E, Patel S, et al. Diagnostic
Performance of Vibration-Controlled Transient Elastography in Liver

Transplant Recipients. Clin Gastroenterol Hepatol (2021) 19(2):367–74.
doi:10.1016/j.cgh.2020.03.067

24. Fornacon-Wood I, Mistry H, Ackermann CJ, Blackhall F, McPartlin A, Faivre-
Finn C, et al. Reliability and Prognostic Value of Radiomic Features are Highly
Dependent on Choice of Feature Extraction Platform. Eur Radiol (2020)
30(11):6241–50. doi:10.1007/s00330-020-06957-9

25. R Foundation. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing (2021). Available
from: https://www.R-project.org/ (Accessed August 1, 2023).

26. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD). Ann Intern Med (2015) 162(10):735–6. doi:10.7326/L15-5093-2

27. Wang JC, Fu R, Tao XW, Mao YF, Wang F, Zhang ZC, et al. A Radiomics-
Based Model on Non-Contrast CT for Predicting Cirrhosis: Make the Most of
Image Data. Biomark Res (2020) 8:47. doi:10.1186/s40364-020-00219-y

28. Ni M, Wang L, Yu H, Wen X, Yang Y, Liu G, et al. Radiomics Approaches for
Predicting Liver Fibrosis With Nonenhanced T1 -Weighted Imaging:
Comparison of Different Radiomics Models. J Magn Reson Imaging (2021)
53(4):1080–9. doi:10.1002/jmri.27391

29. Harding-Theobald E, Louissaint J, Maraj B, Cuaresma E, Townsend W,
Mendiratta-Lala M, et al. Systematic Review: Radiomics for the Diagnosis
and Prognosis of Hepatocellular Carcinoma. Aliment Pharmacol Ther (2021)
54(7):890–901. doi:10.1111/apt.16563

30. Park HJ, Park B, Lee SS. Radiomics and Deep Learning: Hepatic Applications.
Korean J Radiol (2020) 21(4):387–401. doi:10.3348/kjr.2019.0752

31. Cai J, Hu M, Chen Z, Ling Z. The Roles and Mechanisms of Hypoxia in Liver
Fibrosis. J Transl Med (2021) 19(1):186. doi:10.1186/s12967-021-02854-x

32. Foglia B, Novo E, Protopapa F, Maggiora M, Bocca C, Cannito S, et al.
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells (2021) 10(7):
1764. doi:10.3390/cells10071764

33. Roth KJ, Copple BL. Role of Hypoxia-Inducible Factors in the Development of
Liver Fibrosis. Cell Mol Gastroenterol Hepatol (2015) 1(6):589–97. doi:10.1016/
j.jcmgh.2015.09.005

34. Machicao VI, Bonatti H, Krishna M, Aqel BA, Lukens FJ, Nguyen JH, et al.
Donor Age Affects Fibrosis Progression and Graft Survival After Liver
Transplantation for Hepatitis C. Transplantation (2004) 77(1):84–92.
doi:10.1097/01.TP.0000095896.07048.BB

35. Delire B, Lebrun V, Selvais C, Henriet P, Bertrand A, Horsmans Y, et al. Aging
Enhances Liver Fibrotic Response in Mice Through Hampering Extracellular
Matrix Remodeling. Aging (Albany NY) (2016) 9(1):98–113. doi:10.18632/
aging.101124

36. Acun A, Oganesyan R, Uygun K, YehH, YarmushML, Uygun BE. Liver Donor
Age Affects Hepatocyte Function Through Age-Dependent Changes in
Decellularized Liver Matrix. Biomaterials (2021) 270:120689. doi:10.1016/j.
biomaterials.2021.120689

37. Azhie A, Sharma D, Sheth P, Qazi-Arisar FA, Zaya R, Naghibzadeh M, et al. A
Deep Learning Framework for Personalised Dynamic Diagnosis of Graft
Fibrosis After Liver Transplantation: A Retrospective, Single Canadian
Centre, Longitudinal Study. Lancet Digit Health (2023) 5:e458–e466. doi:10.
1016/S2589-7500(23)00068-7

38. Hanouneh IA, Macaron C, Lopez R, Feldstein AE, Yerian L, Eghtesad B, et al.
Recurrence of Disease Following Liver Transplantation: Nonalcoholic
Steatohepatitis vs Hepatitis C Virus Infection. Int J Organ Transpl Med
(2011) 2(2):57–65.

39. Sourianarayanane A, Arikapudi S, McCullough AJ, Humar A. Nonalcoholic
Steatohepatitis Recurrence and Rate of Fibrosis Progression Following Liver
Transplantation. Eur J Gastroenterol Hepatol (2017) 29(4):481–7. doi:10.1097/
MEG.0000000000000820

40. Montano-Loza AJ, Bhanji RA, Wasilenko S, Mason AL. Systematic Review:
Recurrent Autoimmune Liver Diseases After Liver Transplantation. Aliment
Pharmacol Ther (2017) 45(4):485–500. doi:10.1111/apt.13894

41. Tao R, Ruppert K, Cruz RJ, Malik SM, Shaikh O, Ahmad J, et al. Hepatitis C
Recurrence Is Not Adversely Affected by the Use of Donation After Cardiac
Death Liver Allografts. Liver Transplant (2010) 16(11):1288–95. doi:10.1002/
lt.22168

42. Selzner N, Girgrah N, Lilly L, Guindi M, Selzner M, Therapondos G, et al. The
Difference in the Fibrosis Progression of Recurrent Hepatitis C After Live
Donor Liver Transplantation Versus Deceased Donor Liver Transplantation Is

Transplant International | Published by Frontiers September 2023 | Volume 36 | Article 1114910

Qazi Arisar et al. Radiomics Predicting Liver Graft Fibrosis

https://doi.org/10.1155/2017/4381864
https://doi.org/10.1371/journal.pone.0185192
https://doi.org/10.1016/j.jhep.2012.12.014
https://doi.org/10.1111/ajt.12594
https://doi.org/10.1111/ajt.12594
https://doi.org/10.1002/lt.25338
https://doi.org/10.1002/hep.22742
https://doi.org/10.3748/wjg.15.2190
https://doi.org/10.1002/lt.24217
https://doi.org/10.1002/lt.24217
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00261-017-1096-5
https://doi.org/10.1007/s00261-021-03051-6
https://doi.org/10.1007/s00261-021-03051-6
https://doi.org/10.1097/TP.0000000000003605
https://doi.org/10.1016/j.ejrad.2019.05.010
https://doi.org/10.1016/j.ejrad.2019.05.010
https://doi.org/10.1016/j.cgh.2019.07.036
https://doi.org/10.3748/wjg.v20.i20.6180
https://doi.org/10.1002/lt.22460
https://doi.org/10.1002/lt.22460
https://doi.org/10.1111/petr.13125
https://doi.org/10.1373/clinchem.2007.085795
https://doi.org/10.1002/hep.510240201
https://doi.org/10.1016/j.cgh.2020.03.067
https://doi.org/10.1007/s00330-020-06957-9
https://www.R-project.org/
https://doi.org/10.7326/L15-5093-2
https://doi.org/10.1186/s40364-020-00219-y
https://doi.org/10.1002/jmri.27391
https://doi.org/10.1111/apt.16563
https://doi.org/10.3348/kjr.2019.0752
https://doi.org/10.1186/s12967-021-02854-x
https://doi.org/10.3390/cells10071764
https://doi.org/10.1016/j.jcmgh.2015.09.005
https://doi.org/10.1016/j.jcmgh.2015.09.005
https://doi.org/10.1097/01.TP.0000095896.07048.BB
https://doi.org/10.18632/aging.101124
https://doi.org/10.18632/aging.101124
https://doi.org/10.1016/j.biomaterials.2021.120689
https://doi.org/10.1016/j.biomaterials.2021.120689
https://doi.org/10.1016/S2589-7500(23)00068-7
https://doi.org/10.1016/S2589-7500(23)00068-7
https://doi.org/10.1097/MEG.0000000000000820
https://doi.org/10.1097/MEG.0000000000000820
https://doi.org/10.1111/apt.13894
https://doi.org/10.1002/lt.22168
https://doi.org/10.1002/lt.22168


Attributable to the Difference in Donor Age. Liver Transpl (2008) 14(12):
1778–86. doi:10.1002/lt.21598

43. Jain A, Singhal A, Kashyap R, Safadjou S, Ryan CK, Orloff MS. Comparative
Analysis of Hepatitis C Recurrence and Fibrosis Progression Between
Deceased-Donor and Living-Donor Liver Transplantation: 8-Year
Longitudinal Follow-Up. Transplantation (2011) 92(4):453–60. doi:10.1097/
TP.0b013e3182259282

44. van der Laan LJ, Hudson M, McPherson S, Zondervan PE, Thomas RC,
Kwekkeboom J, et al. Results of a Two-Center Study Comparing Hepatic
Fibrosis Progression in HCV-Positive Liver Transplant Patients Receiving
Cyclosporine or Tacrolimus. Transpl Proc (2010) 42(10):4573–7. doi:10.1016/j.
transproceed.2010.10.013

45. Pissaia A, Borderie D, Bernard D, Scatton O, Calmus Y, Conti F. APRI and
FIB-4 Scores Are Useful After Liver Transplantation Independently of
Etiology. Transplant Proc (2009) 41(2):679–81. doi:10.1016/j.transproceed.
2008.12.014

46. Imai H, Kamei H, Onishi Y, Ishizu Y, Ishigami M, Goto H, et al. Diagnostic
Usefulness of APRI and FIB-4 for the Prediction of Liver Fibrosis After Liver
Transplantation in Patients Infected With Hepatitis C Virus. Transplant Proc
(2018) 50(5):1431–6. doi:10.1016/j.transproceed.2018.03.005

47. Haarburger C, Müller-Franzes G, Weninger L, Kuhl C, Truhn D, Merhof D.
Radiomics Feature Reproducibility Under Inter-Rater Variability in
Segmentations of CT Images. Sci Rep (2020) 10(1):12688. doi:10.1038/
s41598-020-69534-6

Copyright © 2023 Qazi Arisar, Salinas-Miranda, Ale Ali, Lajkosz, Chen, Azhie,
Healy, Deniffel, Haider and Bhat. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Transplant International | Published by Frontiers September 2023 | Volume 36 | Article 1114911

Qazi Arisar et al. Radiomics Predicting Liver Graft Fibrosis

https://doi.org/10.1002/lt.21598
https://doi.org/10.1097/TP.0b013e3182259282
https://doi.org/10.1097/TP.0b013e3182259282
https://doi.org/10.1016/j.transproceed.2010.10.013
https://doi.org/10.1016/j.transproceed.2010.10.013
https://doi.org/10.1016/j.transproceed.2008.12.014
https://doi.org/10.1016/j.transproceed.2008.12.014
https://doi.org/10.1016/j.transproceed.2018.03.005
https://doi.org/10.1038/s41598-020-69534-6
https://doi.org/10.1038/s41598-020-69534-6
https://creativecommons.org/licenses/by/4.0/

	Development of a Radiomics-Based Model to Predict Graft Fibrosis in Liver Transplant Recipients: A Pilot Study
	Introduction
	Materials and Methods
	Patient Population
	CT Feature Extraction
	Statistical Analysis

	Results
	Association of Radiomics-Score and Clinical Variables With Graft-Fibrosis

	Discussion
	Clinical Significance
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Conflict of Interest
	Supplementary Material
	References


