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Peak spirometry after single lung transplantation (SLTx) for interstitial lung disease (ILD) is
lower than after double lung transplantation (DLTx), however the pathophysiologic
mechanisms are unclear. We aim to assess respiratory mechanics in SLTx and DLTx
for ILD using oscillometry. Spirometry and oscillometry (tremoflo

®
C-100) were performed

in stable SLTx and DLTx recipients in a multi-center study. Resistance (R5, R5–19) and
reactance (X5) were compared between LTx recipient groups, matched by age and
gender. A model of respiratory impedance using ILD and DLTx data was performed. In
total, 45 stable LTx recipients were recruited (SLTx n = 23, DLTx n = 22; males: 87.0% vs.
77.3%; median age 63.0 vs. 63.0 years). Spirometry was significantly lower after SLTx
compared with DLTx: %-predicted mean (SD) FEV1 [70.0 (14.5) vs. 93.5 (26.0)%]; FVC
[70.5 (16.8) vs. 90.7 (12.8)%], p < 0.01. R5 and R5–19 were similar between groups (p =
0.94 and p = 0.11, respectively) yet X5 was significantly worse after SLTx: median (IQR) X5
[−1.88 (−2.89 to −1.39) vs. −1.22 (−1.87 to −0.86)] cmH2O.s/L], p < 0.01. R5 and X5
measurements from the model were congruent with measurements in SLTx recipients.
The similarities in resistance, yet differences in spirometry and reactance between both
transplant groups suggest the important contribution of elastic properties to the
pathophysiology. Oscillometry may provide further insight into the physiological
changes occurring post-LTx.
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GRAPHICAL ABSTRACT |

INTRODUCTION

Lung transplantation (LTx) is an established intervention for
patients with advanced interstitial lung disease (ILD) refractory to
medical therapy [1]. LTx improves survival in patients with ILD
[2] and outcomes depend on donor and recipient factors, choice
of procedure and post-operative progress [3]. Single lung
transplantation (SLTx) has been the predominant procedure
used in patients with ILD, however, double lung
transplantation (DLTx) is increasingly used [4]. Survival after
LTx is limited by acute and chronic allograft dysfunction and
subsequent failure, however there is conflicting data comparing
outcomes post-SLTx versus DLTx [1,5,6].

Chronic allograft dysfunction is usually detected on
spirometric surveillance [7] and defined as a persistent decline
in the forced expiratory volume in one second (FEV1), from the
best achieved post-operative FEV1 [8]. Studies have consistently
demonstrated that FEV1 and forced vital capacity (FVC) are
significantly lower in patients post-SLTx compared to post-DLTx
during both short- and long-term follow up [9–11]. Lower
spirometry post-SLTx may be attributed to disease progression
in the contralateral native lung [9]. However, spirometry alone
provides limited insight into the mechanisms contributing to the
complex physiological differences between SLTx and DLTx.

Furthermore, spirometry may be confounded and therefore
produce variable results in SLTx recipients due to possible
allograft compression during the forced breathing maneuver [12].

Oscillometry is a non-invasive lung function test performed
during quiet tidal breathing that measures the respiratory
mechanics of the chest wall, lung and airways [13]. During
oscillometry measurement, pressure oscillations, usually of
frequencies between 5 and 19 Hertz (Hz), are superimposed at
the mouth [14]. The measured pressure and airflow changes are
used to calculate impedance—comprised of resistance (Rrs), a
measure of airway calibre; and reactance (Xrs) representing the
elastic (compliance) components. Oscillometry has
predominantly been used in obstructive respiratory diseases
with a paucity of studies in patients with ILD. Studies have
demonstrated increased Rrs and decreased Xrs in those with
ILD [15, 16] compared to healthy controls [17] and people
with mild-moderate COPD [18]. Conversely, other studies
have demonstrated that Rrs in ILD, specifically interstitial
pulmonary fibrosis, is normal yet Xrs is decreased [19, 20],
likely reflecting reduced lung compliance from lung fibrosis
[19]. Despite its increasing use in tertiary centers, including
six in Sydney thus far, studies assessing oscillometry
measurements post-LTx remain limited. One study identified
physiological changes, increased R5–19 and reactance area (Ax)

Transplant International | Published by Frontiers December 2023 | Volume 36 | Article 117582

Sim et al. Oscillometry Post Lung Transplant



and decreased X5, in biopsy-proven acute cellular rejection post-
DLTx that were undetectable by spirometry [21]. Mathematical
models have also been used to calculate impedance using various
airway and lung tissue models to describe respiratory mechanics
in different disease states [22]. However, none has examined
oscillometry measurements in patients with ILD following LTx.
Thus, combining our existing knowledge of oscillometry in other
disease states and the lack of understanding in our study’s patient
population, oscillometry may provide further useful
pathophysiological insights in patients with ILD following LTx.

We hypothesized that in patients with ILD who have
undergone SLTx, resistance (Rrs) would be increased, reactance
(Xrs) decreased, and Ax increased compared to those post-DLTx.
Thus, the aim of this study was to characterize resistance (R5 and
R5–19) and reactance (X5) and Ax in stable recipients and evaluate
the relationship between spirometry and oscillometry results
following SLTx and DLTx for ILD.

MATERIALS AND METHODS

A cross-sectional study of adult LTx recipients performed for
patients with ILD was undertaken at two Australia centers
(Sydney and Melbourne), between January-2020 and May-
2021. Patients attending routine clinic appointments were
approached and consented to participate in the study. The
study was initiated just prior to the COVID-19 pandemic
which limited data collection. ILD was defined by a consensus
clinical, physiological and radiological diagnosis. Donor and
recipient matching and surgical techniques were performed as
per standard clinical practice [23, 24]. Patients underwent
unilateral or bilateral thoracotomy for SLTx and DLTx,
respectively. For ILD recipients, lung donors for DLTx are
selected based on the predicted total lung capacity (TLC),

usually being between the recipients actual measured TLC and
their predicted TLC. Lung donors for SLTx are typically larger
than that of the recipients (i.e., oversized).

LTx recipients with stable allograft function, defined as
concurrent/baseline FEV1 ≥ 90%, were eligible for study
enrolment [25]. Baseline FEV1 was defined as the best FEV1

measurement achieved post LTx. Recipients with acute or
chronic lung allograft dysfunction were excluded [25]
therefore bronchoscopy and transbronchial biopsy data were
not included. Selected patient data were also used in Darley
et al.’s recent study “Airway oscillometry parameters in baseline
lung allograft dysfunction: Associations from a multicenter
study,” whose results have no implications on this study [26].
Study participants performed oscillometry followed by
spirometry during a single visit (Figure 1). Participants were
classified into two groups (SLTx and DLTx) and were matched
1:1 for age and gender. Chest radiographs performed as part of
standard clinical care within at least 6 months of the study visit
were used as a surrogate measure of lung volumes in the SLTx
group.

Lung Function
Oscillometry measurements were performed using the
tremoflo device (THORASYS® tremoflo® C-100 Airway
Oscillometry System) according to European Respiratory
taskforce recommendations [27]. Artefacts and tests that did
not meet quality control (three measurements per patient with
a R5 coefficient variation of <15%) were excluded [28].
Spirometry (Vmax Software, BreezeSuite) was performed as
per American Thoracic Society/European Respiratory Society
task force recommendations [29]. Standard oscillometry (R5,
R5–19, X5, AX) and spirometry (FEV1, FVC, FEV1/FVC)
parameters were reported. Z-scores for oscillometry and
%-predicted values for spirometry measurements were

FIGURE 1 | Flow diagram of inclusion and exclusion criteria for participant selection. Definition of abbreviations: ILD, Interstitial Lung Disease; CoV, Coefficient of
variation; SLTx-ILD, Single lung transplant for ILD; DLTx, Double lung transplant for ILD. *Defined as concurrent/baseline FEV1 ≥ 90%.
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calculated using published predictive equations [14, 30]. A
normal Z-score was determined by ±one standard deviation
from the mean (Z-score of ±1.64).

Chest Radiographs
Digital chest radiograph (CXR) measurements [lung height and
width (cm)]) were obtained from the allograft and native lung in
the SLTx recipients. CXR measurements were performed using
in-software Cerner Enterprise Web Viewer 3.0 calipers. Lung
height was measured from the mid-diaphragm to the lung apex
and width was measured from the inside of the chest wall across
the mid-height of the two diaphragms [31].

Modelling
Oscillometry measurements from patients with ILD and from the
DLTx group were used in a standard model of respiratory
impedance. ILD patients with an FVC measurement of <80%
to match spirometry of the LTx groups were included. Patients
with ILD (n = 25, male = 19) had a mean ± SD age of 72.2 ±
6.5 years and %-predicted FVC of 63.9% ± 10.6%.

In brief, the standard model obtained from oscillometry is
typically expressed with separate resistive (R) and reactive (X)
components (Figure 2). This model can be advanced to an
inhomogeneous airway model with two parallel pathways (one
for each lung) to examine resistance (Rrs) and reactance (Xrs)
from each lung independently [32]. The model was used to
determine the Rrs and Xrs contribution from a single lung in
both the DLTx and ILD groups by using the median R5 and X5

from each group (Supplementary Equations S1, S2). Modelling
of R5 and X5 for a SLTx recipient was derived by combining the
results from a single lung from each of the DLTx and ILD groups
(Figure 2). Further details are outlined in the Supplementary
Material.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
8.4.2 and IBM SPSS Statistics 26. Descriptive statistics were
summarized using mean with standard deviation or median
with interquartile range for continuous variables for
parametric and non-parametrically distributed data,
respectively; and frequency (%) for categorical variables.
Results were compared using the two-sample t-test for
continuous variables and the chi-square test for categorical
variables. Relationships between oscillometry and spirometry
were assessed using Spearman’s correlation. Statistical
significance was set at a 2-sided level of 0.05.

GUIDELINES

The study was approved by the St Vincent’s Hospital Human
Research Ethics Committee (2019/ETH12765) and the Alfred
Health Human Research Ethics Committee (HREC 50035).

RESULTS

A total of 45 stable recipients after LTx for ILD were recruited
(23 SLTx and 22 DLTx recipients). Baseline demographics
(Table 1) between the SLTx and DLTx groups were similar
with regards to recipient gender (87.0% versus 77.3% males)
and recipient and donor age [median (IQR) age for recipients:
63.0 (57.0–67.0) versus 63.0 (58.0–66.3) years and mean ± SD age
for donors: 44.6 ± 12.9 versus 49.9 ± 18.1 years, for SLTx and
DLTx, respectively]. Recipient height, weight and BMI, donor-
recipient height difference and donor smoking history were
similar between SLTx and DLTx groups. Concurrent FEV1/

FIGURE 2 | Inhomogeneous models with separate parallel pathways for each lung. Definition of abbreviations: ILD, Interstitial lung disease; Tx, Transplant; Rrs,
Respiratory Resistance; Xrs, Respiratory Reactance. (A)Model of the single lung transplant group. This model contains separate parallel pathways with a single ILD lung
and a single transplanted lung. (B)Model of the double lung transplant group. This model contains two parallel pathways of a single transplanted lungs. (C)Model of ILD
group. This model contains two parallel pathways of a single ILD lungs. ILD Rrs and Tx Rrs are the mean resistance from a single lung from the ILD and Double lung
transplant groups respectively. ILD Xrs and Tx Xrs are the mean reactance from a single lung from the ILD and Double lung transplant groups respectively.

Transplant International | Published by Frontiers December 2023 | Volume 36 | Article 117584

Sim et al. Oscillometry Post Lung Transplant



baseline FEV1% were also similar between the two groups
[median (IQR) 96.0 (92.5–101.0)% versus 98.3 (94.5–100.0)%
for SLTx and DLTx, respectively], indicating lung function
stability and no evidence of chronic allograft dysfunction. The
duration post-LTx was significantly shorter in the SLTx
compared to the DLTx group [median (IQR) 1.0 (0.7–1.9)
versus 1.6 (1.0–2.7) years (p < 0.05), for SLTx and DLTx,
respectively]. Donor height was significantly taller in the SLTx
compared to the DLTx group (mean ± SD 176.0 ± 6.7 versus
167.0 ± 11.0 cm) (p < 0.01). CXR measurements in the SLTx
group demonstrated smaller height (169.2 ± 26.9 cm) and width
(89.3 ± 13.0 cm) in the native lung compared to the allograft
(207.0 ± 31.4 cm and 127.0 ± 22.0 cm, for height and width,
respectively) (p < 0.01). Most CXRs (18/23 patients) were
performed on the same day or within a month of lung
function measurements. Three patients in the SLTx group had
bronchial complications—two with left bronchial stenoses

requiring stent insertion at four and 6 months prior to lung
function measurements. One patient had a left anastomotic
stricture.

Lung Function
FEV1 and FVC were significantly lower in the SLTx group
compared to the DLTx group (Table 1). Mean ± SD FEV1-%
predicted was 70.0 ± 14.5 versus 93.5% ± 26.0% (p < 0.01) and
FVC-% predicted was 70.5 ± 16.8 versus 90.7% ± 12.8% (p < 0.01),
in SLTx and DLTx groups, respectively. Oscillometry
demonstrated that R5 in both SLTx and DLTx groups were
within normal limits (median Z-score <1.64). However, X5

and Ax were abnormal in the SLTx group (median Z-scores
of −2.26 and 2.22 for X5 and Ax, respectively) and within normal
limits in the DLTx group (Table 2).

Oscillometry showed similar measurements in resistance (R5 and
R5–19) between both groups. Median (IQR) R5 was 3.06 (2.67–3.83)

FIGURE 3 | Tukey boxplot comparing the oscillometry indices of (A) R5, (B) R5-19, (C) X5, (D) Ax in 23 SLTx and 22 DLTx patients. Outliers are marked with dots
outside the boxplots. Definition of abbreviations: SLTx, Single Lung Transplant; DLTx, Double Lung Transplant; R5, resistance at 5Hz; R5-19, Resistance between 5Hz
and 19Hz; X5, Reactance at 5Hz; Ax, Reactance Area.
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versus 3.06 (2.48–3.84) cmH2O.s/L (p = 0.94) and R5-19 was 0.66
(0.45–1.08) versus 0.36 (0.08–0.74) cmH2O.s/L (p = 0.11) in the
SLTx and DLTx groups, respectively. Reactance (X5) was

significantly lower and Ax significantly higher (i.e., more
abnormal) in the SLTx group compared to the DLTx
group. Median (IQR) X5 was −1.88 (−2.89 to −1.39) versus −1.22

TABLE 1 | Baseline recipient and donor demographics of single and double lung transplant groups.

Patient characteristics SLTx (n = 23) DLTx (n = 22) p-value

Recipient age (years) 63.0 (57.0–67.0)* 63.0 (58.0–66.3)* 0.78
Recipient height (cm) 172.0 (10.6) 171.0 (8.2) 0.60
Recipient weight (kg) 80.3 (12.7) 77.0 (15.7) 0.44
Recipient BMI (kg/m2) 26.9 (3.9) 26.5 (5.1) 0.61

Gender (n, % total)
Males 20 (87.0%) 17 (77.3%) 0.46
Females 3 (13.0%) 5 (22.7%)

Duration Post-transplant (years) 1.0 (0.7–1.9)* 1.6 (1.0–2.7)* <0.05

Allograft side
Left 8 22 -
Right 14 22 -

Types of ILD
Idiopathic pulmonary fibrosis 14 18 -
Hypersensitivity pneumonitis 5 1 -
Connective tissue disease-ILD 1 0 -
Combined pulmonary fibrosis emphysema 1 1 -
Nonspecific interstitial pneumonia 1 1 -
Lymphoid interstitial pneumonia 1 0 -
Niemann-pick type B 0 1 -

Donor age (years) 44.6 (12.9) 49.9 (18.1) 0.28
Donor height (cm) 176.0 (6.7) 167.0 (11.0) <0.01
Donor-recipient height difference (cm) 5.9 (4.0) 8.0 (5.4) 0.17

Donor smoking history (n, % total)
No 9 (39.1%) 14 (63.6%) 0.20
Yes 11 (47.8%) 6 (27.3%)
Not reported 3 (13.0%) 2 (9.1%)

Spirometry post-LTx

Concurrent FEV1/baseline FEV1 (%) 96.0 (92.5–101.0)* 98.3 (94.5–100.0)* 0.45
FEV1-% predicted 70.0 (14.5) 93.5 (26.0) <0.01
FVC-% predicted 70.5 (16.8) 90.7 (12.8) <0.01
Concurrent FEV1/FVC 0.80 (0.098) 0.80 (0.080) 0.81

All data are reported as mean (SD) or median (IQR)*. Definition of abbreviations: SLTx, Single Lung Transplant; DLTx, Double Lung Transplant; BMI, body mass index; FEV1, forced
expiratory volume in one second; FVC, forced vital capacity.

TABLE 2 | Oscillometry data in the single and double lung transplant groups and ILD group.

SLTx n = 23 DLTx n = 22 p-value ILD n = 25 Model data (single lung)

R5 (cmH2O.s/L) 3.06 (2.67–3.83) 3.06 (2.48–3.84) 0.94 3.41 (2.85–3.69) 3.23
Z-score 0.61 (−0.18 to 1.29) 0.11 (−0.79 to 1.27) 0.54 0.002 (−0.60 to 1.29) —

Z-score >1.64, n 3 4 — 4 —

R5-19 (cmH2O.s/L) 0.66 (0.45–1.08) 0.36 (0.08–0.78) 0.11 0.81 (0.63–1.20) —

X5 (cmH2O.s/L) −1.88 (−2.89 to −1.39) −1.22 (−1.87 to −0.86) <0.01 −2.24 (−2.74 to −1.97) −1.73
Z-score −2.26 (−3.76 to −0.83) −0.36 (−1.44 to 0.37) <0.01 −2.52 (−3.53 to −1.42) —

Z-score <−1.64, n 14 4 — 16 —

Ax (cmH2O/L) 13.00 (9.73–18.50) 7.58 (3.55–13.50) 0.01 17.0 (13.65–22.22) —

Z-score 2.22 (1.52–2.68) 1.17 (0.44–2.25) 0.01 2.21 (1.62–2.68) —

Z-score >1.64, n 17 9 — 19 —

All data are reported as median (IQR)* Definition of abbreviations: SLTx, Single Lung Transplant; DLTx, Double Lung Transplant; ILD, interstitial lung disease; R5, resistance at 5 Hz; R5–19,
Resistance between 5 and 19 Hz; X5, Reactance at 5 Hz; Ax, Reactance Area.
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(−1.87 to −0.86) cmH2O.s/L (p < 0.01) and Ax was 13.00
(9.73–18.50) versus 7.58 (3.55–13.50) cmH2O/L (p = 0.01) in the
SLTx and DLTx groups, respectively (Table 2; Figure 3). Z-score
comparisons of oscillometry measurements between SLTx and
DLTx groups were similar to that observed with raw values
(Table 2).

There were significant associations between oscillometry
parameters (R5, R5–19, X5 and Ax) and FVC in the SLTx
group [R5 (rs = −0.47, p = 0.02), R5-19 (rs = −0.45, p = 0.03),
X5 (rs = 0.72, p < 0.01) and Ax (rs = −0.70, p < 0.01)]. In the DLTx
group, significant correlations with FVC were only demonstrated
between X5 (rs = 0.65, p < 0.01) and Ax (rs = −0.52, p = 0.01).
Similar correlations were observed when comparing FEV1 with
oscillometry indices for both SLTx and DLTx groups.

Modelling
The derived single lung values of R5 and X5 for DLTx and ILD
groups are displayed in Table 2. There was close agreement
between the inhomogeneous oscillometry model predicted R5

(3.23 cmH2O.s/L) and X5 (−1.73 cmH2O.s/L) with the measured
R5 (3.06 cmH2O.s/L) and X5 (−1.88 cmH2O.s/L) in the SLTx
group.

DISCUSSION

Our multicenter cross-sectional study is the first study, to our
knowledge, to report oscillometry measurements in stable
single (SLTx) and double (DLTx) lung transplantation
recipients, exclusively in patients with ILD as their native
lung disease. Our novel findings demonstrate that resistance
(R5 and R5–19) measured by oscillometry was similar between
SLTx and DTLx recipients despite FEV1 and FVC being
significantly lower in the SLTx group. Furthermore,
reactance at 5 Hz (X5) and Ax were significantly worse in
the SLTx recipients compared to the DLTx recipients. These
findings were replicated using a simple mathematical model
based on real-life data obtained from DLTx recipients and
patients with ILD. Our data, suggests that the differences in
respiratory mechanics after SLTx and DLTx may be
predominantly attributed to changes in the elastic properties
rather than airway caliber.

Resistance (R5 and R5–19) was not increased (i.e., not more
abnormal) in the SLTx compared to DLTx recipients. This may
be due to patients in our study having stable disease as indicated
by the preserved spirometric ratio and concurrent/baseline
FEV1 being greater than 90% [25] and thus suggesting the
absence of spirometric obstruction and acute or chronic lung
allograft dysfunction. Chronic allograft dysfunction is
commonly due to bronchiolitis obliterans (BO) [33] with the
underlying pathology being fibroproliferative airway plugging
[34]. Airway plugging may lead to a reduction in airway caliber
and an increase in airway resistance. As resistance was similar
between SLTx and DLTx recipients, allograft dysfunction due to
BO seems unlikely. This is supported by our cohort being
spirometrically-stable. The underlying pathology in the native
single ILD lung typically affects the lung parenchyma rather

than the airways. However, airway epithelial cell proliferation
and expansion in a number of bronchioles can also occur in the
distal airways of those with ILD [35]. We speculate that changes
in the distal airways may increase airway caliber in the native
single ILD lung and thus explain the similarities in resistance
between the SLTx and DLTx recipients. Our results are
consistent with recent oscillometry studies demonstrating
normal resistance in ILD [19, 20]. However, data is
conflicting as other studies report resistance to be increased
or impaired in patients with ILD in those with more severe lung
restriction and lung function impairment [17]. Comparatively,
in our study, spirometry demonstrated that lung function
impairment was worse in our SLTx recipients compared to
DLTx recipients, yet resistance derived from oscillometry was
not. Comparisons with other studies are limited because
previous oscillometry studies examined ILD patients that did
not include LTx recipients.

In contrast to resistance, reactance (X5) was significantly
lower, and Ax was significantly higher (i.e., X5 and Ax were
more impaired) in the SLTx compared to the DLTx recipients.
These findings are consistent with previous studies showing
more abnormal reactance in patients with ILD compared to
healthy controls [17, 20] and in those with ILD and more severe
lung restriction [15]. Reduced lung volume due to the diseased
native ILD lung could account for X5 and Ax being more
abnormal as these parameters are dependent on lung volume
[36]. In the SLTx recipients the native ILD lung was significantly
smaller compared to the allograft, which we confirmed using
chest radiograph measurements. The allograft side may have
contributed to lung volume differences in the SLTx group
because left-sided allografts are typically smaller because of
the position of the heart. However, a majority of our SLTx
recipients underwent a right-sided LTx thus unlikely to
contribute to our results (Table 1). Differences in lung
volumes between the native lung and allograft in SLTx
recipients may lead to asynchrony and altered lung mechanics
during respiration. This phenomenon has not been
demonstrated in SLTx recipients with ILD, but asynchrony
can occur in SLTx recipients with emphysema. The native
emphysematous lung and allograft can inflate and empty at
different rates and subsequently lead to chest wall asymmetry
and mediastinal shift during respiration [12]. The reduced lung
volumes may therefore explain a more abnormal reactance. The
forcedmaneuver during spirometry versus tidal breathing during
oscillometry measurement needs to be taken into consideration,
however the impact on the resulting physiological measurements
remains elusive. Additionally, asynchrony in muscle forces,
which may result from diaphragm dysfunction, can develop
between the two sides of the chest after SLTx [37] and may
exacerbate chest wall asymmetry and alter chest wall and lung
mechanics. Studies assessing reactance measured via
oscillometry in patients with SLTx, respiratory muscle
dysfunction and/or chest wall deformities are lacking
therefore we can only speculate these mechanisms.

Our study included a simple model that incorporated
measurements from real-life ILD and LTx patients to support
our in vivo findings in SLTx recipients. The inhomogeneous
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model shows that in the SLTx group, the single transplanted lung
has low reactance while the non-transplanted lung has high
reactance (i.e., an increased X5) which corroborates our novel
findings. Agreement between the predicted X5 from the model
and the measured X5 in the actual SLTx group further ascertains
that the increased X5 measured in the SLTx group is indeed
attributed to the increased reactance in the native ILD lung.
While there is close agreement between the predicted and
measured median X5, the measured X5 was slightly more
abnormal (−1.73 versus −1.88 cmH2O.s/L, respectively). The
more negative X5 may be a reflection of more advanced
disease in the SLTx group before transplantation. Using the
ILD group’s single lung reactance in the SLTx model, we may
have underestimated the reactance in the single native ILD lung.
The results derived from this model replicates and provides
further evidence to support our in vivo findings in a small
number of ILD patients after single and double lung
transplantation.

Spirometry was significantly lower or more impaired in our
SLTx recipients compared to DLTx recipients as demonstrated in
other studies [9, 10]. Anthropometrics in the SLTx and DLTx
recipients were similar and thus unlikely to contribute to
differences in spirometry. Donor height was significantly taller
in the SLTx recipients however is unlikely to be relevant because
there was no difference in donor-recipient height matching
between the two groups, suggesting appropriate lung size
matching. The maximal spirometry measurement achieved is
typically lower in SLTx compared to DLTx recipients [10, 38] and
thought to be related to the remaining single diseased native lung.
The disease pathology in the native lung is also reflected in the
normal FEV1/FVC ratio in SLTx, consistent with that of
restrictive lung disease.

Limitations that must be acknowledged include the small
sample size in our study. The patient cohort was small, as we
only included patients with ILD as their native disease. Only
one other study has measured oscillometry in SLTx and DLTx
recipients however these authors assessed LTx recipients with
various forms of native lung diseases, with COPD comprising
the majority of their patient cohort [39]. Limiting our study
participants to one native disease, ILD, avoids confounding
factors from including various diseases. Furthermore, our
study groups were matched for age and gender and there
were no significant differences between recipient baseline
characteristics to confound our results. Differences in lung
volume likely contribute to our findings and additionally we
did not report lung volume measurements. As a surrogate we
showed that there was a significant difference in lung size
between the native and allograft lung in the SLTx group using a
standardized technique of chest radiograph measurements
[31]. The effect of significant differences between donor and
recipient height must also be acknowledged however,
optimum size matching was performed in accordance with
local guidelines. There was no significant difference in
smoking history between the two groups and the effect of

donor smoking is not known but donor smoking history must
also be acknowledged.

The time post-LTx was statistically significantly shorter in the
SLTx compared to the DLTx group, however it is clinically
insignificant since both groups should have achieved and
maintained their maximal spirometry at the time of
measurement during the study [9]. The specific effect of
relevant clinical parameters such as bronchial stenosis and/or
other bronchial or pleural complications were not examined in
this cross-sectional study and require further evaluation.
Furthermore, the trajectory of oscillometry measurements is
not established and will likely alter over time. Spirometry
declines more rapidly in SLTx than in DLTx recipients [9, 40]
and whether this also occurs in oscillometry is yet to be
determined.

CONCLUSION

In summary, in SLTx recipients, oscillometry measurement of
resistance is similar to that observed in DLTx recipients.
However, similarly to spirometry, reactance is more impaired
in SLTx compared to DLTx recipients. This is likely attributed to
changes in the elastance due to reduced alveolar volume in the
native ILD lung in SLTx recipients and may lead to asynchrony in
respiratory mechanics. Whether the breathing maneuver
performing during lung function testing impacts respiratory
mechanics is yet to be elucidated but “quiet” tidal breathing
may be a more attractive measurement compared to the forced
maneuver used in spirometry.

These cross-sectional findings highlight the physiological
complexities of LTx that are not completely understood. The
significance of normal resistance, yet abnormal spirometry and
abnormal reactance as a predictor of clinical outcomes, requires
reliable reference values and further longitudinal investigation.
Further study in LTx recipients with obstructive lung disease
would also improve our understanding. A better understanding
of the physiological changes after SLTx and DLTx is vital for
developing novel diagnostic and therapeutic approaches to
improve LTx outcomes.
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