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Immune cell metabolism plays a pivotal role in shaping andmodulating immune responses.
The metabolic state of immune cells influences their development, activation,
differentiation, and overall function, impacting both innate and adaptive immunity. While
glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells
mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different
metabolic programs shape immune cells. Modification of cell metabolismmay provide new
therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In
particular, the distinct metabolic patterns of effector and suppressive cell subsets offer
promising opportunities to target metabolic pathways that influence immune responses
and graft outcomes. Herein, we review the main metabolic pathways used by immune
cells, the techniques available to assay immune metabolism, and evidence supporting the
possibility of shifting the immune response towards a tolerogenic profile by modifying
energetic metabolism.
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INTRODUCTION

For many decades, transplant immunology has focused on the mechanisms of organ rejection and
developing strategies to prevent graft injury by blocking key activation pathways in the recipient’s
immune system [1]. Changes in the metabolism of the alloimmune cells have been regarded as the
downstream effect of their effector function. More recently, it has become apparent that changes in
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immune cell metabolism can, by themselves, drive immune cell
fate. The advent of novel technologies has allowed the collection
of detailed data to decipher the plasticity of the metabolic state of
immune cells [2]. These findings highlight the metabolic
pathways in immune cells as a potential novel therapeutic
approach to reprogramming immune responses and
preventing transplant rejection [3].

Herein, we review the current knowledge on the importance of
metabolic changes in immune responses, recent technologies to
study immune metabolism, and how targeting immune cell
metabolism could improve outcomes in SOT recipients.

CELLULAR METABOLIC PATHWAYS IN
IMMUNE CELLS

Cellular metabolism is divided into anabolism and catabolism
and both anabolic and catabolic reactions are essential for
immune cell function and survival.

Anabolic reactions involve chain biosynthetic reactions that
generates cell materials such as proteins and polypeptides from
amino acids, DNA, RNA, lipids from fatty acid (FA). Anabolism
require energy, typically provided in the form of adenosine
triphosphate (ATP) molecules. Fatty acid synthesis (FAS) is a
major anabolic reaction closely linked to immune cell function
changes, differentiation, and proliferation [4]. Catabolic reactions
involve the breakdown of complex molecules into simpler ones
resulting in the release of energy such as proteins becoming

amino acids or triglycerides breaking up into FA. Glycolysis and
oxidative phosphorylation (OXPHOS) are the two main
metabolic pathways that provide ATP for cells. Glycolysis
refers to glucose oxidation to obtain ATP. OXPHOS refers to
oxidation of nutriments within the mitochondria to generate
ATP. Catabolic reactions are essential to support the high
energetic requirements of immune cells, such as for cytokine
production, rapid proliferation, and migratory
activities (Figure 1).

Sugars
Glycolysis, the breakdown of glucose, occurs in the cytosol of cells
and is one of the primary catabolic processes contributing to the
production of ATP [5]. The efficacy of the process depends not
exclusively on oxygen availability and the mitochondrial capacity
of immune cells. Aerobic glycolysis is the primary metabolic
process contributing to energy generation in most immune cells.
This highly efficient multi-step process starts with glucose
molecule broken into two pyruvate molecules. In the presence
of oxygen, which is required to re-oxidize nicotinamide adenine
dinucleotide (NADH) to NAD+, pyruvate moves in the
mitochondria and is converted to acetyl-CoA via pyruvate
dehydrogenase. Acetyl-CoA enters in tricarboxylic acid (TCA)
cycle and undergoes OXPHOS, leading to the production of
32 ATP molecules. In the absence of oxygen, glucose is
metabolized in an anaerobic glycolysis process, through which
pyruvate is converted into lactate, which yields only 2 ATP
molecules. This process of lactate production can occur

FIGURE 1 | Metabolism and immune-metabolic pathways. ATP, adenosine triphosphate; αKG, α-ketoglutarate; TCA, tricarboxylic acid; NADPH, nicotinamide
adenine dinucleotide phosphate; PPP, pentose phosphate pathway.
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despite the presence of oxygen and fully functioning
mitochondria (Warburg effect). Lactate also increases the
NADH/NAD+ ratio. The pentose phosphate pathway (PPP) is
an alternative pathway for glucose metabolism that generates
nicotinamide adenine dinucleotide phosphate (NADPH) and
pentoses (5-carbon sugars), essential moieties for synthesizing
nucleotides. This pathway is crucial for effector functions of
innate immune cells, including removing apoptotic cells
including tolerogenic cells or activating and generating an
oxidative burst of neutrophils [6, 7]. 5’ AMP-activated protein
kinase (AMPK) is a metabolic sensor able to induce glycolysis
trough the mammalian target of rapamycin complex
(mTOR) pathway.

Amino acids
Glutamine is an essential substrate for immune cell metabolism.
This non-essential amino acid can be transformed into glutamate
and then into α-ketoglutarate (αKG), which like glucose-derived
acetyl-CoA, is an essential fuel for the TCA cycle [8]. The second
fate of glutamine-derived glutamate involves its transformation
into lactate and NADPH trough a truncated TCA cycle in which
succinyl-CoA is converted into succinate, fumarate and then
malate [9]. Outside the mitochondria, malate will be converted
into pyruvate and then lactate. Amino acids other than glutamine
have also been shown to play essential roles in immune
metabolism [10]. Tryptophane derived metabolites such as
kynurenine or kynurenic acid have also emerged as a major

pathway involved in regulatory T cells generation, in auto-
immune diseases and in tolerance [11].

Fatty acids
Fatty acids (FAs) can fuel cellular metabolism through FA
oxidation (FAO), another source of acetyl-CoA, which can
then be shuttled to the TCA cycle. This metabolic pathway is
of particular importance in adaptive immune responses [12].
AMPK is a metabolic sensor able to induce FAO.

TECHNIQUES TO STUDY IMMUNE CELL
METABOLISM

Different methods to measure cell metabolism have been used [13].
Each technique represents a different approach and has advantages
and limitations [14]. Table 1 summarizes the available tools to block
or activate the different metabolic pathways.

Global Oxygen and Acidification
Measurement
For the last decade, OXPHOS and glycolysis have been measured
using the Seahorse ® XF Analyzers (Figure 2A). This technique
infers the oxygen consumption rate (OCR) through measuring
the oxygen concentration in the supernatant of a cell culture over
time, a surrogate marker of OXPHOS [46, 47]. Similarly, it

TABLE 1 | Drug targets that modify the metabolism of immune cells.

Metabolism pathway Name Targeted molecule Effect on metabolism Origin

OXPHOS Oligomycin [15, 16] ATP synthase Inhibition Streptomyces diastatochromogenes
OXPHOS Rotenone [17] Mitochondrial Complex I Inhibition Roots
OXPHOS Antimycine A [18, 19] Mitochondrial Complex III Inhibition Streptomyces kitazawensis
OXPHOS Myxothiazol [20] Mitochondrial Complex III Inhibition Myxococcus fulvus

OXPHOS and FAO Metformin [21–23] AMP Kinase Complex I FAO Activation Galega officinalis
Inhibition
Increase

Glycolysis 2-DG [24–26] Hexokinase nhibition De novo synthesis
Glycolysis Galactose [27, 28] Pyruvate Inhibition Milk
Glycolysis 3-bromopyruvate [29] Hexokinase II Inhibition Escherichia coli
Glycolysis Ritonavir [30] GLUT1 and 4 Inhibition De novo synthesis
Glycolysis FX11 [31] LDHA Inhibition De novo synthesis
Glycolysis DCA [32] PDK2 Inhibition De novo synthesis
Glycolysis 4-CIN [33] Monocarboxylate transporter Inhibition De novo synthesis
Glycolysis TEPP-46 [34–36] PKM2 Inhibition De novo synthesis

Glutamine DON [37, 38] Glutaminase Inhibition Streptomyces
Glutamine BPTES [39] Glutaminase Inhibition De novo synthesis
Glutamine CK [40] Glutaminase Inhibition Escherichia coli

FAO Etomoxir [41, 42] CPT1a Inhibition De novo synthesis
FAO AICAR [43] AMP kinase Increase Escherichia coli

FAS C75 cerulenin, C75, orlistat, C93 [44] Fatty acid synthase Inhibition De novo synthesis
FAS TOFA [45] Acetyl CoA carboxylase Inhibition De novo synthesis

AICAR, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside; ATP, Adenosine triphosphate; BPTES, bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide; CPT1a, Carnitine palmitoyl-
transferase 1a; CK, L-2-amino-4-oxo-5-chloropentanoic acid; DON, 6-Diazo-5-oxo-L-Norleucine; DCA, dichloroacetic acid; FAO, Fatty acid oxidation; FAS, Fatty acid synthesis; FX11, 3-dihydroxy-6-
methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid; GLUT, Glucose transporter; PKM2, pyruvate kinase M2; LDHA, Lactate dehydrogenase-A; OXPHOS, Oxidative phosphorylation;
PDK2, Pyruvate dehydrogenase kinase 2; TEPP, thieno-pyrrole-pyridazinone; TOFA, 5-tetradecyloxy-2-furoic acid; 2-DG, 2-deoxyglucose; 4-CIN, α-cyano-4-hydroxycinnate.
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estimates the extracellular acidification rate (ECAR) by
measuring the changes in proton concentration in the
supernatant over time, and using it as a surrogate marker of
glycolysis [46]. OCR and ECAR can be assessed in parallel 96-well
plate to perform replicates and multiple conditions.

This approach requires prior cell purification and it is
unable to assess the metabolism at a single-cell level [48].
This method does not allow to perform simultaneous cell
phenotyping nor cell sorting. Cells needs to be incubated
from 12–18 h which can induce variability between wells in
the number of cells and results.

Single-Cell Energetic Metabolism by
Profiling Translation Inhibition (SCENITH)
The SCENITH method has recently provided an interesting
additional tool to assess immune metabolism at a single-cell level
using flow cytometry [49]. This method assumes that most of the
cell’s energy is employed for protein synthesis [50, 51]. By using the
ability of puromycin to incorporate into protein during synthesis and
our ability to detect it with an anti-puromycin antibody, the
SCENITH method utilizes the level of puromycin incorporation
as a marker of protein synthesis and thus, a surrogate marker of
cell global metabolic activity (Figure 2B). The advantages of this
technique include the possibility to study metabolism at a single cell
level, the simultaneous study of multiple cell subtypes, the lack of
sensitivity to metabolic modifications induced by the media, and the
requirement of only a low number of cells (~2000 cells) without
purification. An additional advantage is the possibility of assessing cell
phenotyping and other functions concomitantly [52]. The main
limitation of the SCENITH method is its reliance on protein
synthesis, which is only an indirect marker of cell metabolism,
and lacks relevance for cells with low levels of protein synthesis,
such as quiescent cells.

Flow Cytometry and Cytometry by Time
of Flight
By using a panel of key enzymes, flow cytometry can assess
metabolic state. The “Met-Flow” panel includes 10 metabolic
enzymes and transporters, including Hexokinase 1 for glycolysis,
Carnitine palmitoyl-transferase 1A for FAO, Glucose-6-
phosphate dehydrogenase [53]. This panel allows single-cell
and phenotypic analysis of cell metabolism and does not
require prior cell purification but the number of antibody
needed may be a challenge.

Cytometry by time of flight (CyTOF) is another technique that
can assess immune cell metabolism (Figure 2C). Instead of using
fluorescent-labeled antibodies as in regular flow cytometry, cells
are stained with antibodies conjugated to heavy metal isotopes
[54], increasing the capacity to multiplex and reducing spectral
overlap. About 110 metabolism-associated antibodies are
available [55]. Recent studies reported a subset of
41–45 antibodies to target the important regulators
(transporters, enzymes, signaling molecules, transcription
factors) of metabolic pathways [56, 57]. CyTOF main
limitation are the cost of the CyTOF equipment and the fact
that this technique does not allow to recover living cells after
analysis and thus only static measurement of single cells.

Metabolomics
Metabolomics encompasses methods to detect and measure the
cell metabolite levels and modifications (mass spectrometry
combined with chromatography or ion mass, protein weight,
ionization, and magnetic resonance) [58]. Carbon-labeled tracers
can be added to mass spectrometry to specifically interrogate
metabolic enzyme activities. Isotope tracers allow to quantify
metabolomic flux on top of metabolic concentrations [59]. Mass
spectrometry allow to detect and quantify even low concentration
metabolites. Metabolites are detected according to their mass and

FIGURE 2 | Principal methods to assess metabolism in immune cells: measurement of oxygen (OCR) and the extracellular acidification rate (ECAR) in the
supernatant (A), measurement of cell metabolism by single-cell energetic metabolism by profiling translation inhibition (SCENITH) (B), Cytometry Time Of Flight (C) and
metabolomics assessment by mass spectrometry (D) OCR, oxygen consumption rate, ECAR, extracellular acidification rate.
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charge. Classical separation techniques are liquid or gas
chromatography. These methods require the least amount of
material (about 200 cells without purification) and can target
specific metabolites or all the metabolome (Figure 2D). Because
of unbiased analysis, it also allows the discovery of new or
uncharacterized metabolites. Limitations of this technique are
the potential impact of the handling (medium and storage) on
metabolite levels, the impossibility of combining with phenotypic
analyses, the cost of the equipment and the variability resulting of
the metabolites quenching and purification that can change
rapidly the level of metabolites.

HOW METABOLISM AFFECTS
IMMUNE CELLS

Cellular metabolism does not only constitute a way to provide
energy for immune cell survival and function, but it also regulates
immune cell signaling pathways [60]. Metabolites have emerged
as critical regulators of immune cell survival, differentiation,
activation and function [5]. The metabolic network and its
plasticity shape the fate and functions of both innate and
adaptive immune cells [61].

Innate Immune Cells
Myeloid Cells: Dendritic Cells and Macrophages
Activation of DC through Toll-like receptors (TLRs) is a crucial
step for DC activation, maturation, as well as antigen processing
and presentation. TLR engagement is associated with an
increased level of glycolysis and a decreased level of OXPHOS
[62–64]. Interestingly, DC can switch to OXPHOS metabolism
when deprived of glucose due to competitive glucose uptake by
T cells in the context of antigen presentation and T cell activation.
Notably, glucose deprivation increases the capacity of DC to
present and stimulate T cells [65].

An increase in glycolysis is critical in the initial phase of DC
proliferation and differentiation, but then specific inflammatory
or tolerogenic metabolic reprogramming follows [66]. This has
been illustrated through SCENITH and CyTOF analyses of DC
metabolism which show an increase of AMPK pathway and a
decrease of mTOR pathway in tolerogenic DC as compared to
inflammatory DCs [67]. Tolerogenic DC have been show to
highly increase the ECAR level in the presence of glucose, to
produce more lactate and have a higher lactate dehydrogenase
activity as compared to other DC, suggesting a strong glycolytic
profile of those cells [68].

In addition, many studies demonstrate that tumors promote
specific metabolic pathways and nutriment uptake as compared
to innate immune cells to reduce their effector functions and
escape immuno-surveillance [69].

Different metabolic profiles characterize macrophage subsets.
Pro-inflammatory macrophages (M1) have a higher succinate
dehydrogenase in the TCA cycle which results in an increase of
succinate which stabilize Hypoxia Inducible Factor 1 α (HIF1α)
and in turns, promotes and sustain glycolysis activity [70].
Conversely, anti-inflammatory macrophages (M2) exhibit
enhanced FAO and OXPHOS activity with an intact TCA

cycle. Interestingly, increasing glutamine concentration in vitro
culture medium drives mouse macrophage polarization into
M2 profile, proving support to the notion that it is possible to
orient the immune response through metabolism modifications
[71]. αKG, a product of glutaminolysis, acts as a sensor of pro-
anti-inflammation signals in mouse macrophages and can
promote M2 polarization, but the role of glutamine in human
macrophage is unknown [71].

Natural Killer Cells
The NK cell metabolic profile and effector functions depend on
the context and the microenvironment. Cytokine-driven NK cell
activation is associated with increased mitochondrial OXPHOS
and glycolysis [72]. The relationship betweenmetabolism andNK
cell function was shown in tumor models, in which reduced
availability of glucose and amino acids (leucine, arginine,
glutamine) results in NK cell function impairment [73, 74].
Tryptophane pathway induction by indole 2,3-diamine oxygen
(IDO) in tumors results in NK cell apoptosis to promote survival
of cancer cells [75].

T cells
Naive T cells
Metabolic program and T-cell activation are closely linked [8].
Before T Cell Receptor activation (TCR), naïve T cells are
quiescent and have low ATP requirements. In their naïve
state, their principal source of ATP is OXPHOS fueled by the
oxidation of pyruvate and FAO, with a low glycolysis-based
metabolism [8]. TCR engagement results in the activation,
proliferation, and differentiation of the naïve T cells into
effector, memory, and central memory T cells. This is
paralleled by the transcription of key metabolic enzymes
including the glucose transporter GLUT1 and the acetyl-CoA
carboxylase 1 (ACC1) translation [76].

Activated T cells
T cell activation leads to major metabolic changes that favor
glycolysis over OXPHOS [77].

Upon activation, CD8+ T cells undergo a first metabolic shift
consisting of shuttling pyruvate to lactate metabolism [78],
followed by a full switch from anaerobic to aerobic glycolysis
[79]. The increase in glycolysis activity in activated CD8+ T cells is
underpinned by an increase of glycolytic enzymes and an
expression of glucose transporters such as GLUT1 [80].
Glycolysis inhibition results in cytokine and proliferation
impairments in activated CD8+ T cells [81].

Effector CD4+ T cells, T helpers 1 (Th1), T helpers 2 (Th2), and T
helpers 17 (Th17) cells are highly dependent on aerobic glycolysis,
which is under HIF1α - mTOR regulation [82]. Although OXPHOS
is more efficient in producing ATP, glycolysis gives the cells an
advantage by rapidly providing the required energy for effector
functions and proliferation. Interestingly, aerobic glycolysis is not
needed for T cell activation, but it is strictly required for T effectors
functions such as cytokine production (IL-2, IFN-γ mRNA
translation and secretion) [77]. After TCR engagement and
CD28 co-stimulation, the glucose uptake is increased by the
upregulation of the cell surface glucose transporter GLUT-1 [83].
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Interestingly, pharmacological blockade of glycolysis impairs Th1 and
Th17 survival and function [84].

OXPHOS is also increased in activated CD4+ T cells even
though the ratio OXPHOS/glycolysis is lower during T cell
activation than in naïve CD4+T cells. The energy provided by
OXPHOS seems to be mainly required during the first step of
T cell activation, acting as an impulse [77]. CD4 T cells deficient
for the mitochondrial complex III-derived Reactive oxygen
Species (ROS) cannot activate and proliferate upon antigen
presentation [85].

Amino acids are fundamental for activated T cells. Glutamine,
a non-essential amino acid, constitutes an important energy
source through glutaminolysis in activated T cells [86]. This is
illustrated by the increase of glutamine transporters in activated
T cells, and the reduced proliferation and cytokine secretion by
T cells during glutamine starvation [87, 88]. Leucine have also
been described to be of significant importance in the proliferation
and differentiation of T cells trough [89].

T cell proliferation requires lipid synthesis to generate cell
membranes for daughter cells. Blocking ACC1, a major enzyme
for FAS, impairs Th1, Th2, and Th17 proliferation [90].
Interestingly, during Th17 cell development, but not regulatory
T cells, FAS depends on ACC1, and blockade of this glycolytic-
lipogenic pathway selectively impaired TH17 generation [90, 91].

Memory T cells
Memory T cells have a metabolic profile close to that of naïve
T cells (lower glycolysis compared to OXPHOS) but with notable
differences: they have a higher mitochondrial mass and a higher
spare respiratory capacity which allow them to respond faster in
case of antigen re-exposure [92]. Glycolysis in memory T cells is
higher than in naïve T cells despite the similar ratio of glycolysis/
OXPHOS [93]. As in regulatory T cells (Treg), FA constitute the
principal fuel of OXPHOS for memory T cells [92]. FA come
preferentially from de novo synthesis via the glycolytic-lipogenic
pathway via mitochondrial citrate transformation and not from
exogenous FA uptake, as in Tregs [94, 95].

AMPK is a regulator of FAO and glycolysis and the inability to
generate memory T cells in AMPK-deficient mice is associated
with deficient mitochondrial FAO [21]. Similarly, AMPK
deficient CD8+ T cells are enable to generate memory CD8+

T cells [96–99]. In summary, metabolism signature of memory
T cells remains uncertain while they exhibit an elevated profile of
glycolysis and OXPHOS.

Exhausted T cells
In the context of persisting antigen and TCR stimulation, effector
T cells progressively modify their phenotype to slowly become
exhausted T cells, a low functional state phenotypically
characterized by specific markers including programmed-death
1 (PD-1) [100]. In case of a high energy demand (glycolysis)
sustained over time, glucose deprivation progressively drives a
metabolic modification on effector T cells. These modifications
are driven by the PD-1 pathway [101], resulting in a decrease in
T cell glucose uptake and in OXPHOS [102], while FAO is
upregulated [103].

Regulatory T cells
The metabolic profiles described above for other CD4+ T cells do
not seem to apply to regulatory T cells (Treg), whose energy
demands are not met through glycolysis but through OXPHOS
and FAO [104].

Their independence from aerobic glycolysis has been shown in
vivo in GLUT-1 deficient mice [105]. GLUT-1 deficiency was
associated with impaired growth, proliferation, and survival of
mature effector T cells, but did not affect either natural or induced
Treg generation and expansion. The rate of glycolysis in Tregs is
similar to that of naïve T cells but lower than in Th1 and
Th17 cells [104, 105]. Inhibition of glycolysis using
dichloroacetate increases Treg differentiation and promotes IL-
10 production and FOXP3 expression [106]. Similarly, blocking
glycolysis with 2-DG promotes Treg differentiation at the expense
of Th17 [82].

In contrast, blocking OXPHOS results in Treg differentiation
impairment [84]. In Treg, OXPHOS is fueled through FAO,
blocking FAS has been shown to promote Treg generation,
and FAO activity associates with an increase in AMPK
activity. Adoptive transfer of modified OXPHOS or FAO
deficient Tregs, resulted in a reduction of graft survival
compared to wild-type [107]. Consistently, dysfunction of
mitochondrial proteins (complex III, transcription factor A) is
associated with Treg loss of function [108, 109].

B cells
Activation of B cells trough B cell receptor (BRC) increases
glucose and amino-acid uptake [110, 111]. However, glucose is
not used for glycolysis, but for PPP and nucleotide synthesis
[112]. OXPHOS and TCA cycle are augmented in activated
B cells, but they are fueled by other source of energy than
glucose, such as FAs [112, 113].

Following antigen activation, naïve germinal center B cells
migrate into the follicle, where somatic hypermutation and
antibody affinity maturation occur. During this process,
B cells display a significant increase in OXPHOS
activation [114].

Thereafter, B cells are transformed into short-lived plasma
cells outside the lymphoid follicle and then into long-lived plasma
cells and memory B cells inside the follicle. In plasma cells, the
production of antibodies requires a high production of glutamate
from glutamine pathway and a lower rate of glycolysis [115].
However, T-dependent long-lived plasma cells are characterized
by a higher glucose and amino-acid uptake as compared to short-
lived plasma cells [116].

IMMUNOMETABOLISM IN SOLID ORGAN
TRANSPLANTATION

As the metabolism impacts the development and function of
immune cells, alterations in metabolic pathways can modulate
immune cell differentiation and subsequently affect the balance
between pro-inflammatory and regulatory cells, and thus
influence transplantation outcomes (Figure 3).
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Modulation of Immune Metabolism in SOT
Few but very promising studies in murine transplant models
highlight the impact of metabolic reprogramming on the
alloimmune response [14].

In 2015, Lee et al. were able to modulate the alloimmune
response in a fully mismatched murine model of skin and heart
allograft transplantation by targeting metabolic pathways [117].
The authors showed that glycolysis inhibition using 2-DG and
metformin hindered proliferation and cytokine production in
activated T cells. Combination of 2-DG with the glutamine
inhibitor 6-diazo-5-oxo-l-norleucine (DON) resulted in an
even more important inhibition of alloreactive CD4+ T cell

proliferation and cytokine production, a decrease of acetyl-
CoA levels and associated lipid synthesis, and a reduction of
mTORC1 activation. The authors showed that in mice treated
with 2-DG, metformin, and DON, CD4+ T cell kept their ability
to differentiate into antigen-specific Foxp3+ CD4 T cells (Treg).
Finally, the triple anti-metabolic therapy (2-DG, metformin, and
DON), prolonged graft survival in a model of allogenic skin and
heart transplantation, while discontinuation of treatment led to
rapid graft rejection.

Immune metabolism may be modulated at the translational
level. Quiescent CD4+ T cells accumulate a large amount of non-
translated mRNA encoding key metabolic enzymes, which can be

FIGURE 3 | Immunometabolic balance in solid-organ transplantation andmetabolic interventions. FAO, Fatty acid oxidation; OXPHOS, Oxidative phosphorylation;
imDC, immature dendritic cells; mDC, mature dendritic cells; 2-DG, 2-deoxyglucose; DON, 6-Diazo-5-oxo-L-Norleucine; AG, aerobic glycolysis; Res, Resveatrol; PGC,
PPARγ-coactivator-1β; PDH, pyruvate deshydrogenase; SL, short-lived; LL, long-lived.
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rapidly translated to activate aerobic glycolysis and FAO [76].
The engagement of the TCR triggers the translation of key
proteins (GLUT1 and ACC1) for T cell activation and
differentiation. Therefore, therapeutics that interfere with
mRNA translation may affect alloimmunity by changing T cell
metabolism.

Nian et al. showed that advanced age negatively impacts
OXPHOS and glycolysis in naïve CD4+ T cells, and that
glutaminolysis becomes the major source of ATP production
later in life [118]. When the authors blocked OXPHOS with
oligomycin, only CD4+ T cells from young mice were able to
compensate for the metabolic loss with an increase in glycolysis.
Interestingly, DON (glutaminolysis inhibitor) was able to inhibit
IL-2, IFN-γ secretion, and cell proliferation in naïve CD4+ T cells
from aged mice but not in naïve CD4+ T cells from young mice,
which highlights the increasing reliance of naïve T cells on
glutaminolysis with age. This approach prolonged graft
survival and increased Tregs in a skin transplantation model
in old mice. The results of DON on CD4+ T cells from aged mice
were confirmed in human PBMC, suggesting its potential as a
new age-dependent metabolic-mediated immunosuppression
therapy [118].

Immune Metabolism Modulation in
Combination With Costimulation Blockade
In 2020, Lee et al. used the combination of their triple anti-
metabolic therapy (metformin, 2DG and DON) in association
with a co-stimulatory blocker (CTLA4-Ig) [119]. Their model
showed that CTLA4-Ig and metabolic inhibition have distinct but
synergic effects on immune cells. They first showed that
metabolic inhibition resulted in a higher inhibition of
proliferation and promotion of apoptosis than CTLA4-Ig.
Interestingly, in a model of skin allograft acute rejection in
mice, they also showed prolonged graft survival with anti-
metabolic drugs compared to CTLA4-Ig and controls. This
may be explained by the costimulation-independent activation
of memory T cells that CTLA4-Ig did not block. When metabolic
inhibitors were added to CTLA4-Ig, there was an additive

inhibiting effect on T cell proliferation, T-bet expression, and
cytokine secretion. Finally, CTLA4-Ig and metabolic inhibition
were synergic in preventing skin and heart allograft loss in their
mice transplantation model.

Moreover, CTLA4-Ig addition to metabolic inhibitors allowed
long-term acceptance of heart allograft, which was not possible
when anti-metabolic therapy was given alone [117].
Priyadharshini et al. proposed that a sequential with first
metabolism blockade (2DG) associated with CTLA4-Ig may
induce tolerance phase that could be maintained by adding
secondarily mTOR inhibitors. This strategy could specifically
increase the Treg and tolerogenic DC in the context of SOT [120].

CONCLUSION

Recent studies and newly developed technologies have paved the
way for modifying cell metabolism to influence the immune cell
response. A better understanding of metabolic pathways in
immune cells in the context of transplantation may offer the
possibility to modulate the alloimmune response by
reprogramming their metabolism to reshape specific immune
cell subsets toward tolerogenic profiles. Further insights into
metabolic dysregulation in SOT hold great promise to design
novel therapies to improve graft and patient outcomes.
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