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Infectious complications, including widespread human cytomegalovirus (CMV) disease,
frequently occur after hematopoietic stem cell and solid organ transplantation due to
immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth
analysis of the impact of immunosuppressants on antiviral T cells is needed.We analyzed the
impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor
tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid
prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P)
combinations on antiviral T-cell functionality. T-cell activation and effector molecule
production upon antigenic stimulation was impaired in presence of T+P and triple
combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited
activation and cytokine production and PRE inhibited various aspects of T-cell functionality
including cytotoxicity. This was reflected in an in vitro infection model, where elimination of
CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE
and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE,
which was also reflectedwith double (T+P) and triple combinations. EBV- and SARS-CoV-2-
specific T cells were similarly affected. These results highlight the need to optimize immune
monitoring to identify patients whomaybenefit from individually tailored immunosuppression.

Keywords: CMV-specific T cells, immunosuppression, adoptive T-cell therapy, solid organ transplantation,
hematopoietic stem cell transplantation

INTRODUCTION

Infectious complications following hematopoietic stem cell and solid organ transplantation (HSCT,
SOT) are common due to immunosuppressive treatment for prevention of graft-versus-host disease
(GvHD) and allograft rejection. Persistent herpesviruses, such as human cytomegalovirus (CMV),
are particularly frequent pathogens. An association between CMV infection/reactivation, the
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development and severity of GvHD and graft injury has been
described in several clinical studies of HSCT and SOT [1–3]. Risk
factors include in vivo or in vitro T-cell depletion, HLA-
mismatched HSCT, the intensity of immunosuppression, and -
in the setting of SOT - the type of transplanted organ [4, 5].
Moreover, CMV-seronegative (CMV-) SOT recipients of a graft
from a CMV-seropositive (CMV+) donor (D+/R-) are at high-
risk, with incidences of CMV disease up to 50% [6, 7].

The two main strategies to prevent CMV infection or disease in
transplant patients are antiviral prophylaxis and preemptive therapy.
Especially in high-risk SOT recipients, the most common strategy is
antiviral prophylaxis, which is applied for up to 12 months after
transplantation. Despite effectiveness of antiviral prophylaxis, side-
effects such as nephrotoxicity or bonemarrow suppression can result
in discontinuation of prophylaxis and late-onset CMV disease after
end of prophylaxis [8]. In addition, drug resistances can limit the
efficacy of antiviral drugs [9–11]. In 2017/2018, letermovir was
approved for prophylaxis after HSCT. In a recent phase III clinical
trial comparing valganciclovir and letermovir prophylaxis in kidney
transplant recipients (D+/R-), similar incidences of CMV disease
were observed in both groups, with fewer side effects in patients
receiving letermovir [12]. Preemptive treatment comprises of regular
monitoring of viral load, allowing rapid therapy initiation upon
detection of an increase. By this, progression to CMV disease can be
prevented at an early stage of virus replicationwhile at the same time,
myelotoxicity associated with antiviral drugs is reduced [4, 13].

Mechanistically, a relationship between the magnitude of T-cell
responses, especially by CD8+ T cells, CMV clearance and restoration

of antiviral immunity was found [14]. In line, late-onset CMVdisease
andmortality have been correlated with the absence of CMV-specific
T cells [7, 15, 16]. In recent studies, lower incidence of late-onset
CMV disease was observed in liver transplant patients receiving
preemptive therapy compared to prophylaxis and this was
hypothesized to be due to enhanced CMV-specific T-cell
immunity [17, 18]. Assuming that preemptive treatment
potentially allows early immune reconstitution and the
establishment of cellular antiviral immunity due to controlled low-
level CMV replication, the restoration of endogenous antiviral
immunity may be sensitively disrupted or delayed by
immunosuppressive therapy.

Appropriate T-cell function relies on a variety of aspects and
these are targeted via different mechanisms by post-transplant
immunosuppressants. Reduction of immunosuppression as
tolerated is an alternative option to restore a functional antiviral
immune response. CMV disease after SOT typically occurs after
30–90 days [19–22]. At this point, patients are mostly treated by
maintenance therapy, e.g., triple combinations usually consisting of
a calcineurin inhibitor (CNI, e.g., tacrolimus) and a corticosteroid
(e.g., prednisolone), supplemented with a purine synthesis
inhibitor (e.g., mycophenolate mofetil, MMF) or a mechanistic
target of rapamycin inhibitor (mTORi, e.g., sirolimus, everolimus).
Of note, different clinical studies including the ATHENA study
showed that the use of an mTORi was associated with lower CMV
infection incidences compared to MMF-based regimens [23–29].

To support the restoration of antiviral immunity in SOT
recipients and thereby reduce the risk of viral infection or
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reactivation, in-depth analysis of the effects of immunosuppressive
drugs and combination regimens on antiviral T cells is required. In
this study, we analyzed the impact of mTORi sirolimus (S/SIR) and
everolimus (E/EVR), the CNI tacrolimus (T/TAC), the active
metabolite of the purine synthesis inhibitor MMF - mycophenolic
acid (M/MPA) - and the glucocorticoid prednisolone (P/PRE) [30]
on CMV-specific T cells. As combination regimens are often used
due to synergistic effects and lower single doses thereby minimizing
toxicities, we included double (T+S/E/M/P) and triple combinations

(T+S/E/M+P) in our study. Detailed assessment of CMV-specific
T-cell responses in vitro revealed that SIR, EVR and MPA selectively
inhibited T-cell proliferation, TAC slightly inhibited different aspects
of CMV-specific T-cell functionality and PRE had broad inhibitory
effects. Severe impairment was observed with triple combinations,
and this could not be compensated by mTORi harboring partial
beneficial effects on CMV-specific T cells. In line with that, T+P
impaired antiviral T-cell functionality more strongly than T+S/E/M.
These results, including evidence of a similar effect on T cells against

FIGURE 1 | IFN-γ ELISpot, activation and cytokine secretion of CMV_pp65-stimulated PBMCs under immunosuppression. (A) PBMCs were isolated from CMV+
donors, rested overnight and stimulated with CMV_pp65 on day 1 in presence and absence of indicated immunosuppressants on IFN-γ ELISpot plates. After 24h,
secreted IFN-γ was detected. Representative and summarized IFN-γ ELISpot results shown as spots per well (spw)/2.5 × 105 PBMCs, spot intensity and spot size,
normalized to untreated control (UT). (B–D) PBMCs were isolated from CMV+ donors, rested overnight and stimulated with CMV_pp65 on day 1 in presence and
absence of indicated immunosuppressants. After 24 h cells were harvested for flow cytometric analysis and cell culture supernatants were collected for multiplex
analysis. (B) Frequencies of CD69+ cells among CD4+ T cells (bar graph) and memory CD4+ T-cell subsets (heat map), normalized to UT. (C) Summarized frequencies of
CD69+ cells among CD8+ T cells and memory CD8+ T-cell subsets (heat map), normalized to UT. (B–C) Bar graphs show median and interquartile range Q1-Q3, each
symbol represents data from one donor (n = 12). (B–D) Heat maps show median values, normalized to UT (n = 12). Statistical significance (in comparison to UT) was
calculated using (A–C) Friedman test followed by Dunn’s multiple comparison and (D) 2way ANOVA followed by Dunnett’s multiple comparison. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. NC negative control (unstimulated), UT untreated, SIR/S sirolimus, EVR/E everolimus, TAC/T tacrolimus, MPA/Mmycophenolic acid, PRE/P
prednisolone, TN naïve T cells (CD45RA+/CD62L+), TCM central memory T cells (CD45RA−/CD62L+), TEM effector memory T cell (CD45RA−/CD62L−), TEMRA effector
memory T cell re-expressing CD45RA (CD45RA+/CD62L−).
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EBV and SARS-CoV-2, highlight the need to optimize monitoring of
immunocompromised patients or patients with viral infection/
reactivation by determining antigen-specific T-cell functionality to
further individualize immunosuppressive therapy.

MATERIALS AND METHODS

For description of methods please see Supplementary Material.

RESULTS

PRE and Triple Combinations Reduce
Antiviral T-cell Activation and Effector
Molecule Production
To analyze the impact of the different immunosuppressants on the
reactivity of CMV-specific memory T cells, PBMCs were isolated
from CMV+ healthy donors and subjected to IFN-γ ELISpot assay
using CMV_pp65 overlapping peptide pool for restimulation in
absence or presence of immunosuppressants (Figure 1A;
Supplementary Figure S1A). To account for inter-individual
differences (Supplementary Figure S1A), the data were
normalized to values obtained from untreated (UT; stimulated but
not treated with immunosuppressants) controls (Figure 1A). The
frequencies of reactive CMV-specific T cells were significantly
decreased upon treatment with PRE and T+S/E/M+P. SIR and
TAC slightly reduced detectable CMV-specific T-cell response. In
addition to the number of spots, correlating to the number of reactive
CMV-specific memory T cells, average spot intensities and sizes were
significantly reduced in presence of triple combinations. Since all
triple combinations severely impaired memory T-cell reactivity, we
analyzed the impact of double combination of immunosuppressants
(T+S/E/P) on the reactivity of CMV-specific T cells in a small donor
cohort, revealing significantly reduced number of spots in the
presence of T+P (Supplementary Figure S1B). Of note, EBV-
and SARS-CoV-2-specific T-cell responses were similarly affected
by immunosuppressive treatment (Supplementary Figures S1C,
S1D), with SARS-CoV-2-specific T cells being more susceptible.

To gain more insights into the affected T-cell populations,
PBMCs from CMV+ donors were stimulated with
CMV_pp65 for 24 h in absence or presence of
immunosuppressants, followed by analysis of
CD69 expression as indicator of activation (Figures 1B, C;
Supplementary Figures S2A, S2B). Frequencies of CD69+

T cells after antigenic stimulation varied between donors and
T-cell subsets (Fig. S2b) and were normalized to values obtained
from UT controls (Figures 1B, C). Activation of CD4+ T cells by
CMV_pp65 was significantly reduced in presence of T+E+P and
T+M+P (Figure 1B). Of note, within the different CD4+

memory T-cell subsets, activation was significantly reduced
in presence of all triple combinations. Moreover, in presence
of PRE, CD4+ effector memory T cells (TEM,
CD45RA−CD62L−) were significantly less activated. Slightly
reduced CD69 expression on CD4+ central memory T cells
(TCM, CD45RA−CD62L+) and TEM was detected in presence

of TAC and MPA. Similarly, activation of CD8+ T cells by
CMV_pp65 was significantly reduced in presence of triple
combinations and PRE (Figure 1C). The main affected CD8+

memory T-cell subsets were TEM and effector memory T cells
re-expressing CD45RA (TEMRA, CD45RA+CD62L−). In line
with the effect of PRE on CD4+ T cells, significant reduction of
CD69 expression among CD8+ TEM was observed in presence
of PRE. Of note, slightly increased activation of CD4+ and CD8+

TEM and TEMRA were observed in presence of SIR and EVR.
In a small donor cohort, T-cell activation was analyzed after
antigenic restimulation in presence of double combinations of
immunosuppressive drugs (T+S/E/M/P) and found to be
slightly reduced in presence of T+P (Supplementary Figure
S2C). Similar tendencies were observed for EBV- and SARS-
CoV-2-specific T-cell responses (Supplementary Figures S2D,
S2E). The activation of CD4+ and CD8+ SARS-CoV-2-specific
T cells was significantly reduced in presence of T+P
(Supplementary Figure S2E).

For a more comprehensive overview on the impact of
immunosuppression on the production of cytotoxic mediators,
multiplex cytokine assays were performed with supernatants of
CMV_pp65-stimulated PBMCs (Figure 1D; Supplementary
Figure S3). The raw values (Supplementary Figure S3) were
normalized to the values obtained from UT controls (Figure 1D).
While SIR and EVR induced slightly higher concentrations of, e.g.,
IL-6 and TNF-α, the secretion of pro-inflammatory effector
molecules was slightly reduced in presence of TAC, MPA and
significantly reduced in presence of PRE and T+S/E/M+P. To
confirm antiviral T cells as source of the measured effector
molecules, we analyzed the culture supernatants of T-cell-depleted
PBMCs (Supplementary Figure S4A) stimulated with CMV_pp65
(Supplementary Figure S4B). Effector molecules such as, e.g., IL-2,
TNF-α and IFN-γ were upregulated in PBMCs but not T-cell-
depleted PBMCs after restimulation. Analysis of the effects of dual
immunosuppression (T+S/E/M/P) on the secretion of effector
molecules (Supplementary Figure S5) revealed significantly
reduced secretion of different effector molecules by PBMCs after
stimulation with CMV_pp65 in presence of T+P (Supplementary
Figure S5B). Overall, similar patterns were observed after stimulation
under the influence of immunosuppression for EBV- and SARS-
CoV-2-specific T cells (Supplementary Figure S5B).

Taken together, PRE and triple combinations significantly
reduced activation and effector molecule secretion of CMV-
specific T cells. While all CD4+ memory T-cell subsets were
affected by triple combinations, effects on CD8+ T cells were
mainly attributed to TEM. Among the double combinations, T+P
had the most pronounced impact on antiviral T cells. Moreover,
immunosuppressive treatment resulted in impaired T-cell
responses towards EBV and SARS-CoV-2.

TAC, MPA, PRE and Triple Combinations
Inhibit Cytokine Production by CD4+ and
CD8+ T-cell Subsets Upon Antigenic
Stimulation
To further discriminate between CD4+ and CD8+ T cells, we
performed intracellular cytokine staining of PBMCs stimulated
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with CMV_pp65 in absence or presence of immunosuppressants
and triple combinations thereof (Figure 2; Supplementary
Figure S6). The data were normalized to values obtained from
UT controls (Figure 2; Supplementary Figure S6B, S6C).
Frequencies of IFN-γ+, TNF-α+, and IL-2+ cells within CD4+

T cells were significantly reduced by triple combinations
(Figure 2A). Moreover, IFN-γ+ cells within CD4+ T cells were

significantly reduced by TAC and the frequencies of IL-2+ cells
within CD4+ T cells were significantly reduced by TAC and PRE.
In contrast, frequencies of IFN-γ+ cells within CD8+ T cells were
reduced by TAC, whereas triple combinations had no impact
(Figure 2B). TNF-α production by CD8+ T cells was slightly
reduced in presence of triple combinations, while IL-2 production
was significantly reduced by TAC, PRE and triple combinations.

FIGURE 2 | Cytokine profiling of CMV_pp65 stimulated PBMCs under immunosuppression. PBMCs were isolated from CMV+ donors, rested overnight and
stimulated with CMV_pp65 on day 1 in presence and absence of indicated immunosuppressants. After 24h, intracellular cytokine production was detected using
multicolor flow cytometry and secreted cytotoxic mediators were measured using a flow cytometry-based multiplex assay (LEGENDplex). (A,B) Bar graphs summarize
frequencies of IFN-γ+, TNF-α+ and IL-2+ cells among (A)CD4+ and (B)CD8+ T cells. The data are shown asmedian and interquartile range Q1-Q3 (n = 12). (C)Heat
maps summarize frequencies of IFN-γ+, TNF-α+ and IL-2+ cells among CD4+ (left) and CD8+ (right) memory T-cell subsets, normalized to untreated control (UT). Data are
shown as median (n = 12). Statistical significance (in comparison to UT) was calculated using Friedman test followed by Dunn’s multiple comparison. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001. NC negative control (unstimulated), UT untreated, SIR/S sirolimus, EVR/E everolimus, TAC/T tacrolimus, MPA/M mycophenolic acid,
PRE/P prednisolone, TN naïve T cells (CD45RA+/CD62L+), TCM central memory T cells (CD45RA−/CD62L+), TEM effector memory T cell (CD45RA−/CD62L−), TEMRA
effector memory T cell re-expressing CD45RA (CD45RA+/CD62L−).
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Inhibitory effects on CD4+ T cells were primarily focused on
TEM (IFN-γ, TNF-α, IL-2) and TEMRA (TNF-α) (Figure 2C).
Moreover, significantly reduced IFN-γ and IL-2 production by
CD4+ TEM was observed in presence of TAC. Among CD8+

memory T-cell subsets, reduction of TNF-α and IL-2 production
was comparable to CD4+ T-cell subsets.

Taken together, SIR and EVR mostly preserved the release of
pro-inflammatory cytokines by CMV-specific memory T cells,
which is in contrast to TAC, PRE and triple combinations.
Moreover, impairment of IFN-γ production by
immunosuppressive treatment was mostly restricted to CD4+

T cells, while IL-2 production was strongly reduced in CD4+ and
CD8+ T cells.

MPA and Triple Combinations Inhibit
CMV-specific T-cell Proliferation
To analyze the impact of immunosuppression on proliferation of
CMV-specific memory T cells, we isolated CMV_pp65-specific
T cells by IFN-γ cytokine secretion assay (CSA). The cells were
labeled with CellTrace Violet (CTV) proliferation dye and
expanded on irradiated autologous PBMCs (feeder cells) in

presence or absence of immunosuppressants and combinations
thereof for 4 days (Figure 3; Supplementary Figure S7). The data
were normalized to values obtained from untreated controls
(Figure 3; Supplementary Figures S7B, S7C). Presence of
MPA, T+S+P and T+E+P resulted in significantly reduced
proliferation of T cells (Figure 3A). Among CD4+ T-cell
subsets, treatment with T+E+P and T+M+P resulted in
significantly reduced proliferation of TEM (Figure 3B).
Proliferation of CD8+ TEM was significantly reduced in
presence of all triple combinations and CD8+ TCM
and TEMRA proliferation was significantly reduced in
presence of T+E+P.

Taken together, treatment with MPA and triple combinations
resulted in significantly impaired proliferation of CMV-
specific T cells.

PRE and Triple Combinations Impair
CMV-specific T-cell Activation and
Cytotoxicity
For measurement of the cytotoxic capacity of CMV-specific
T cells under immunosuppression, CMV_pp65-specific

FIGURE 3 | Proliferation analysis of purified CMV-specific T cells under immunosuppression. PBMCs were isolated from CMV+ donors, labeled with CellTrace™
Violet (CTV) and rested overnight, followed by magnetic enrichment of CMV-specific T cells using Cytokine Secretion Assay and CMV_pp65 stimulation. Afterwards, the
T cells were expanded on irradiated autologous PBMCs in presence or absence of indicated immunosuppressants, followed by flow cytometric analysis. (A)Histograms
showing CTV signals of CMV-specific T cells from a representative donor after 5 days of expansion (upper graph). Bar graph shows summarized mean fluorescent
intensities (MFIs) of CTV from proliferating T cells on day 5, normalized to untreated control (UT) (lower graph). (B) Bar graphs show summarized MFIs of CTV from
proliferating CD4+ (left) and CD8+ (right) T cells on day 5, normalized to untreated control (UT) (upper). Heat maps show summarized MFIs of CTV from proliferating CD4+

(left) and CD8+ (right) memory T-cell subsets on day 5, normalized to untreated control (UT) (lower). (A,B) Bar graphs show median and interquartile range Q1-Q3, each
symbol represents data from one donor (n = 5). Heat maps show data as median values (n = 5). Statistical significance (in comparison to UT) was calculated for each
T-cell subset using Friedman test followed by Dunn’s multiple comparison. *p < 0.05, **p < 0.01, ***p < 0.001. UT untreated, SIR/S sirolimus, EVR/E everolimus, TAC/T
tacrolimus, MPA/M mycophenolic acid, PRE/P prednisolone, TN naïve T cells (CD45RA+/CD62L+), TCM central memory T cells (CD45RA−/CD62L+), TEM effector
memory T cell (CD45RA−/CD62L−), TEMRA effector memory T cell re-expressing CD45RA (CD45RA+/CD62L−).
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memory T cells were isolated as described before and expanded
on feeder cells for 12 days, followed by co-culture with CTV-
labeled autologous CMV_pp65-loaded PBMCs in presence or
absence of immunosuppressants. Unloaded PBMCs served as
negative control. After 4 h, the cells were harvested for flow
cytometric analysis of target cell death and T-cell activation

(Figure 4; Supplementary Figure S8). The data were
normalized to values obtained from UT controls (Figure 4;
Supplementary Figure S8). While no unspecific cytotoxicity
of T cells co-cultured with unloaded PBMCs was observed
(Supplementary Figures S8A, S8B), frequencies of dead (7-
AAD+) PBMCs were increased when peptide pool-loaded and
co-cultured with T cells, and this effect was dose-dependent
(Figure 4A; Supplementary Figure S8B). At both ratios,
T+M+P resulted in reduced cytotoxicity of T cells towards
loaded PBMCs. Moreover, at the 5:1 ratio, treatment with
T+E+P significantly reduced cytotoxicity. Slightly reduced
cytotoxicity was observed in presence of MPA, PRE and triple
combinations at both ratios. In line, frequencies of CD69-
expressing CD8+ T cells and memory subsets were
significantly reduced under treatment with PRE (5:1), T+S+P
(1:1 and 5:1) and T+E+P (1:1 and 5:1) (Figure 4B;
Supplementary Figures S8C, S8D).

Taken together, PRE and triple combinations resulted in
comparable inhibition of cytotoxicity and activation after co-
culture with autologous CMV_pp65-loaded PBMCs.

PRE and Triple Combinations Inhibit
Real-Time Cytotoxicity Towards CMV-
Infected Fibroblasts
To evaluate long-term effects of immunosuppressive treatment, we
measured real-time cytotoxicity of CMV-specific T cells towards
partially HLA-matched CMV-infected or CMV_pp65-loaded
human foreskin fibroblasts (HFF) using xCelligence Real Time
Cell Analyzer (RTCA) (Figure 5). Fluorescence microscopy
confirmed the successful infection, indicated by expression of a
green fluorescent protein (GFP) signal in the CMV-infected cells
(Figure 5A). Direct comparison of growth curves for HFF cells
only and HFF cells plus T cells showed reduced cell indices in
presence of T cells for all three target cell conditions (Figure 5B).
PRE and all triple combinations markedly inhibited cytotoxicity as
indicated by higher cell indices. Area under the curve (AUC) values
(Supplementary Figure S9A) were normalized to the AUC values
obtained from the respective UT control (Figure 5C). While
slightly higher normalized AUC values were measured in co-
cultures treated with PRE or triple combinations, these effects
were markedly stronger in co-cultures with CMV-infected HFF
cells compared to the other two conditions.

Supernatants of these co-cultures were analyzed with respect
to secreted cytotoxic mediators (Supplementary Figure S9B).
Specific upregulation of IL-6, sFasL and IFN-γ was observed in
co-cultures with CMV-infected HFF cells and this was slightly
reduced in presence of PRE and triple combinations.

Taken together, CMV-specific T cells were unable to eliminate
CMV-infected fibroblasts under immunosuppression with PRE
or triple combinations, and this was accompanied by decreased
effector molecule production.

Summary
Spider web graphs including all assay read-outs were created for
each immunosuppressant in comparison to UT controls
(Figure 6). While all triple combinations conferred

FIGURE 4 | Cytotoxic capacity and activation of CMV-specific T cells
under immunosuppression. PBMCs were isolated from CMV+ donors and
rested overnight, followed by magnetic enrichment of CMV-specific T cells
using Cytokine Secretion Assay and CMV_pp65 stimulation. The T cells
were expanded on irradiated autologous PBMCs for 11 days and
subsequently co-cultured with CTV-labeled autologous CMV_pp65-loaded
PBMCs in different effector-to-target ratios and in presence or absence of
indicated immunosuppressants. After 4 h their cytotoxic capacity was
analyzed using flow cytometry. Unloaded PBMCs served as negative control.
(A) Bar graphs show the frequencies of dead (7-AAD+) target cells, normalized
to untreated control (UT). (B) Bar graphs show the CD69 expression (MFI)
among CD8+ T cells, normalized to untreated control (UT) (upper). Heat maps
show the CD69 expression (MFI) among CD8+ memory T-cell subsets,
normalized to untreated control (UT) (lower). (A,B) Bar graphs show median
and interquartile range Q1-Q3, each symbol represents data from one donor
(n = 4). Heat maps show data as median values (n = 5). Statistical significance
(in comparison to UT) was calculated using Friedman test followed by Dunn’s
multiple comparison. *p < 0.05, **p < 0.01, ***p < 0.001. UT untreated, SIR/S
sirolimus, EVR/E everolimus, TAC/T tacrolimus, MPA/M mycophenolic acid,
PRE/P prednisolone, TN naïve T cells (CD45RA+/CD62L+), TCM central
memory T cells (CD45RA−/CD62L+), TEM effector memory T cell (CD45RA−/
CD62L−), TEMRA effector memory T cell re-expressing CD45RA
(CD45RA+/CD62L−).
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homogenously and broadly attenuated CMV-specific memory
T cells, divergent effects of single immunosuppressants were
observed. SIR and EVR slightly inhibited T-cell proliferation
while mostly sparing activation and cytokine secretion. MPA
selectively inhibited T-cell proliferation more profoundly. In
contrast, TAC slightly inhibited different aspects of CMV-
specific T-cell functionality and PRE had broad inhibitory
effects on CMV-specific T cells.

DISCUSSION

The influence of post-transplant immunosuppressants on CMV
susceptibility and on antiviral T cells is of high importance for
choosing preventive and therapeutic measures, since T cells are
required for the final control of CMV replication [31].
Appropriate T-cell function relies on different aspects such as
proliferation, cytokine secretion and cytotoxicity [32] and these

FIGURE 5 | Cytotoxic capacity of CMV-specific T cells towards CMV-infected fibroblasts under immunosuppression. PBMCs were isolated from CMV+ donors
and rested overnight, followed by magnetic enrichment of CMV-specific T cells using Cytokine Secretion Assay and CMV_pp65 stimulation. The T cells were expanded
on irradiated autologous PBMCs for 11 days and subsequently co-culturedwith uninfected, CMV-infected or CMV_pp65-loaded Human Foreskin Fibroblasts (HFF) in an
effector-to-target ratio of 1:1 and in presence or absence of indicated immunosuppressants for 7 days using an xCELLigence RTCA S16 Real Time Cell Analyzer.
(A)Microscopic image of the different target cells prior to co-culture. (B)Realtime impedance-based growth curves of HFF cells cultured alone (HFF cells only) or together
with CMV-specific T cells in presence or absence of indicated immunosuppressants. Black arrows indicate time of T-cell addition. (C) Bar graphs display the AUC of
growth curves shown in (B), normalized to untreated control (UT). UT untreated, SIR/S sirolimus, EVR/E everolimus, TAC/T tacrolimus, MPA/Mmycophenolic acid, PRE/
P prednisolone.
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aspects are targeted via different mechanisms by post-transplant
immunosuppressants. Usually, for early prevention of allograft
rejection and perioperative lowering of maintenance
immunosuppressants following SOT, an induction therapy is
applied. In this phase, different T cell-depleting agents are
used. However, most CMV diseases following SOT typically
occur after 30–90 days [19–22]. At this point, mostly a switch
to maintenance therapy has been made by using triple
combinations [33, 34]. Of note, immunosuppressive regimens
differ regarding choice of immunosuppressants and dosages
between the transplanted organs and centers. Of note, in case
of resistant/refractory CMV disease, treatment options include
secondary antiviral drugs and individual change of
immunosuppression [35]. In case of insufficient antiviral T-cell
immunity, adoptive transfer of virus-specific T cells can restore a
long-lasting endogenous antiviral immune defense [36, 37]. In
this study, we screened commonly used immunosuppressive

drugs and combinations thereof with respect to different
aspects of T-cell functionality in vitro.

We observed that PRE and combinations containing PRE
attenuate IFN-γ secretion, which is in harmony with earlier
findings [38]. PRE, the active metabolite of prednisone, is a
glucocorticoid with broad immunomodulatory effects
including interference with different pro-inflammatory genes
and non-genomic cytosolic molecule interferences [39, 40].
IFN-γ is crucially involved in the defense against CMV and it
may foreshadow the outcome prior and post transplantation [41,
42] and determines the prognosis of critically ill patients as well
[43]. It was recently demonstrated that addition of
methylprednisolone to regimens featuring TAC and MMF
worsened the T-cell response in liver transplant recipients
[44]. We did not observe significant decreases of IFN-γ
secretion by the other tested immunosuppressive drugs, which
is in concordance especially for SIR and EVR [45]. Of note, an

FIGURE 6 | In vitro profiles of commonly used post-transplant immunosuppressants in context of antiviral T-cell immunity. Spider web graphs summarizing the
impact of the respective immunosuppressants on CMV-specific T cells as measured by the indicated assays and in comparison to untreated controls. Values used for
the diagrams are (clockwise starting from the top): IFN-γ ELISpot (spot numbers), activation status (frequencies of CD69+ CD4+ and CD8+ T cells), intracellular cytokine
staining (cumulative frequencies of IFN-γ+/TNF-α+/IL-2+ CD4+ and CD8+ T cells), multiplex cytokine profiling (concentrations of pro-inflammatory molecules),
proliferation (CD3+ T cells), cytotoxicity (4 h) (frequencies of dead target cells), activation (4 h) (CD69-MFIs of CD8+ T cells), realtime cytotoxicity (area under curve). UT
untreated, SIR/S sirolimus, EVR/E everolimus, TAC/T tacrolimus, MPA/M mycophenolic acid, PRE/P prednisolone.
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additive effect was revealed for triple combinations, exceeding the
inhibitory potential of PRE. Additionally, PRE and triple
combinations led to decreased expression of CD69, which is
regulating T-cell differentiation and metabolism [46].

SIR and EVR are mTORi and interfere with a variety of
cascades, including pathways essential for T-cell proliferation
[47–50]. Despite their chemical difference, distinct
pharmacokinetic characteristics and mTOR complex affinities
have been summarized, creating the interest of detailed side-by-
side comparisons [51]. Interestingly, clinical studies showed that
mTORi-based regimens are associated with lower CMV infection
incidences compared to MMF-based combinations [23–29, 52].

We extended the range of surveyed molecules using intracellular
cytokine staining to measure IL-2 and TNF-α production, which are
both known to play an important role in the anti-viral response [53,
54]. For the CNI TAC, which leads to a decreased activation of the
nuclear factor of activated T cells (NFAT) and a lower production of
pro-inflammatory stimuli [55–57], one of its main effects - the
depletion of IL-2 - was reflected in our study. Furthermore, we found
an inhibition pattern of TAC, PRE and triple combinations that was
focused on TEM and TEMRA, which are known for secreting high
amounts of cytokines [58].

Together with the production of pro-inflammatory molecules,
recruitment and proliferation is required for T-cell mediated organ
rejection [59] and therefore targeted by immunosuppressants. Here,
MPA, the active metabolite of MMF, stood out in our study. As a
purine synthesis inhibitor targeting the inosine-5′-monophosphate
dehydrogenase (IMDPH), it is relatively lymphocyte specific, due to
the compromised de novo pathway of guanosine nucleotides
(lymphocytes cannot use salvage pathway of purine synthesis)
and a high affinity to their IMDPH isoform. This leads to
inhibited human T- and B-cell proliferation [60]. MPA has a
high growth-arresting profile [61], which we conferred to be as
effective as from the investigated triple combinations. Other groups
described that its function extends beyond the antimetabolite
pathway inhibition [62, 63], which was partly supported by our
experiments, where it showed accompanying decreased cytokine
release. For this, PRE and triple combinations showed severe T-cell
impairment. Moreover, under triple combinations, slightly
decreased cytotoxic capacity was observed, alongside reduction of
T-cell activation.

Notably, the mTORi SIR and EVR showed a selective and
compared to MPA less profound inhibition of CMV-specific
T-cell proliferation. Our group showed earlier that SIR can
augment CMV-specific effector memory T cells while
inhibiting naive T cells [64], supporting the assumption that it
does not only have an isolated immunosuppressive effect.
Deciphering more mechanisms is a current topic, e.g., it was
recently found that for kidney transplants, mTORi prevented
CMV infection via αβ and γδ T-cell preservation [65]. Moreover,
CMV seems to utilize mTOR for its replication, e.g., in
macrophages [66]. Furthermore, for adoptive T-cell therapy,
advanced strategies are being developed to overcome
limitations due to immunosuppression, like the utilization of
gene knockouts for creating T cell drug resistance [67, 68]. This
displays an interesting approach besides providing evidence for
individual changes to more favorable drugs regimens.

To evaluate functional effects of CMV-specific T cells in
context of CMV infection, we established a real-time
cytotoxicity model using CMV-infected human fibroblasts in
which pp65 protein expression was reported as early as 1 h
and up to 24 h post infection [69]. Here, we observed that
PRE and triple combinations inhibited T cell-mediated
elimination of CMV-infected fibroblasts, confirming our
previous results. In a study by Jackson et al., CD8+ T cells
recognizing peptides derived from different CMV proteins
(pp65, IE-1) were effective in an in vitro virus dissemination
assay independent of their peptide specificity [70], therefore
indicating that the assay developed here can be utilized to
investigate T-cell responses against different viral antigens.
Such assays are of broad interest, e.g., for the investigation of
chimeric antigen receptor (CAR) T cells [71] and may be
beneficial for future projects studying virus-specific T cells as well.

Therapeutic drug monitoring is routinely applied for CNI/
mTORi and occasionally for MMF/MPA to prevent rejection and
toxicities. Hence, drug concentrations investigated in this study were
derived from known plasma levels to mimic a clinical situation
[72–75]. Immunosuppressive protocols vary between different
institutions and patients, desired ranges of combinatory
sustaining therapies may lie between 5–8 ng/mL of TAC, 3–8 ng/
mL EVR and 1–3.5 μg/mL MPA, for example, following liver
transplantation, which was represented in our study. In a recent
publication, 7.5–20mg/d administered PRE led to a median peak
plasma concentration of 0.271–0.921 μg/mL [76]. While the
concentration of PRE investigated in our study was above those
concentrations applied during maintenance therapy, it rather
correlates to early post-transplant oral dosage. Titration studies
should be conducted in the future to allow for further
conclusions on dose-dependent effects. However, the results of
our screening study may be useful for these further studies,
including clinical trials. Further experiments comparing
alloreactivity and antiviral responses side-by-side may be helpful
as well. In addition, a more detailed investigation of drug
interferences is of great interest, since both, TAC and SIR/EVR,
bind to the FK506 binding protein at first and thus may inhibit each
other [77]. Moreover, only recall responses of memory T cells but
not the activation of naïve T cells was analyzed, hence future studies
are needed to investigate the dose-dependent effects onmemory and
naïve T cells. In this study, we aimed at systematic analysis of the
impact of different immunosuppressive drugs on different aspects of
antiviral T-cell functionality. The impact of different
immunosuppressive treatment regimens in patients with different
transplantation history needs to be addressed in future studies.
Especially for SOT recipients at high risk, studies on the impact
of immunosuppressive drugs on the initiation of an anti-CMV
immune response via activation of naïve T cells are of great interest.

To conclude, we showed that immunosuppressants administered
after SOT or HSCT differentially affect CMV-specific T-cell
functionality. CMV-specific T-cell responses were strongly
impaired by triple combinations, while SIR, EVR and MPA
selectively affected T-cell proliferation. TAC slightly inhibited
activation and cytokine production. Further, PRE strongly
impaired CMV-specific memory T cells, which was also reflected
in the investigated triple combinations. While the focus of this study
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was on the impact of immunosuppressive treatment on CMV-
specific T-cell immunity, our data suggest that T-cell responses
towards other clinically relevant viruses such as EBV and SARS-
CoV-2 might be similarly–and in case of SARS-CoV-2 even more
profoundly–affected by post-transplant immunosuppressive
treatment. Based on our results on double combinations (T+S/E/
M/P), it can be assumed that the discontinuation of PRE in patients
receiving combinatory regimens such as T+S/E/M+P would be
beneficial to restore antiviral T-cell immunity. Taken together,
our data suggest potential beneficial effects of treatment with
mTORi whilst, if possible, TAC, MPA, PRE and triple
combinations should be used cautiously for patients at high risk
or suffering from CMV disease.
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