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Solid organ transplantation has progressed rapidly over the decades from the first
experimental procedures to its role in the modern era as an established treatment for
end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas,
heart, and lung transplantation, is the definitive option for many patients, but despite the
advances that have been made, there are still significant challenges in meeting the demand
for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles,
including poor early outcomes like primary graft dysfunction and acute and chronic forms
of graft rejection. In an effort to address these issues, innovations in organ engineering and
treatment have been developed. This review covers efforts made to expand the donor pool
including bioengineering techniques and the use of ex vivo graft perfusion. It also covers
modifications and treatments that have been trialed, in addition to research efforts in both
abdominal organs and thoracic organs. Overall, this article discusses recent innovations in
machine perfusion and organ bioengineering with the aim of improving and increasing the
quality of donor organs.
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INTRODUCTION

Since the start of successful kidney transplantation in the 1950s followed by other solid organs,
transplantation has taken on a steadfast role in medicine as the definitive treatment to improve the
quality of life and prolong the survival of patients with end-stage organ disease [1–6]. In recent
decades, major advances in surgical technique, and pre-and post-operative management have
allowed for the prolonged survival of recipients. As the number and availability of transplants
have increased, the imbalance between organ supply and demand has grown to unprecedented levels
[7]. In 2024, the Organ Procurement and Transplantation Data showed over 113,000 patients waiting
for a transplant on the US all-organ waiting list [8], while the NHS Blood and Transplant reported
over 7,000 [9] potential recipients in the UK alone and Eurotransplant listed over 13,000 patients
currently active in eight European countries [10].

To address this disparity, an increase in the number of available donor organs is needed, which
could theoretically be accomplished through a variety of means, including increased organ donation,
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procurement, and recuperation of available grafts. Restoration
and regeneration of damaged donor organs is a particularly
promising path for recovering a greater number of donor
grafts, considering the high percentage that are
currently discarded.

Grafts considered for transplantation may be rejected for
several reasons. Factors such as the age of the donor, the
cause of death, and the resulting sequelae of damage to the
organ are often the primary reasons for rejecting the organ for
transplantation. In the evaluation of donor lungs, for example,
injury from trauma, infection, and aspiration may lead to acute
lung injury (ALI) and the resulting functional impairment may
preclude the organ from being chosen for
transplantation [11, 12].

Many of these once-rejected organs are now being
reconsidered in an effort to expand the donor pool. For
example, the limits of what constitutes an acceptable organ
have been raised with the introduction of expanded criteria for
donors, donors at increased risk, and donors with acute kidney
injury [13–17]. Despite these efforts, there are still organs being
discarded that could theoretically be recovered for use via
advanced techniques. The utilization of bioengineered organs
is an expanding and promising approach and the creation of
functional bioengineered organs could contribute to an
immunosuppression-free state [18]. This article reviews the
use of machine perfusion in several organs, exploring both the
clinical application of this technology and the bioengineering
techniques leveraged to increase the quality of donor organs.

MACHINE PERFUSION

Circulatory support of donor organs following organ retrieval has
been developed for several solid organs, with the advantage of
such ex vivo platforms being the ability to evaluate the
functionality of organs, prolong the preservation time between
explant and implant, and apply recovery therapies to the
target organ.

Since Alexis Carrel and Charles Lindbergh first described ex
vivo machine perfusion in 1935, reporting the successful
perfusion of the feline thyroid gland [19], significant efforts
have been made to assess organ function and prolong
preservation. In the 1970s animal models of the lung [20] and
Hardesty and Griffith’s publication on autoperfusion of
combined heart and lung transplants were highlighted [21].
Various liver-assisting therapies were researched during the
1960s and 1970s (cross-circulation, hemodilution and
plasmapheresis), but they were abandoned with the
development of orthotopic liver transplantation and
understanding of the possible immunologic implications [22].
Animal models utilizing cold perfusion, oxygenated blood or
plasma for kidney [23–25] and pancreas preservation continued
to develop in the early 1980s [26, 27]. In Lund, Sweden, ex vivo
lung perfusion (EVLP) was brought back by Steen et al. with the
first marginally viable lungs transplanted following
reconditioning [28–30]. This EVLP model was further
developed with the establishment of protocols for prolonged

evaluation by the Toronto group [31], which led to increasing
and expanding clinical application.

At their core, machine perfusion platforms consist of an organ
chamber in which perfusate flows through the graft using a pump
(either centrifugal or roller) via a circuit equipped with a
temperature control system and an oxygenation method. In
the case of lung machine perfusion called EVLP, the organ is
additionally ventilated with mechanical ventilation at settings
determined by the underlying protocol. In general, the flow of
perfusate allows for the delivery of oxygen and nutrients as well as
the removal of waste and toxins, while also providing the
opportunity to deliver therapeutic agents directly to the target.
Leukocyte filters may also be incorporated into the circuit,
although the efficacy of such an addition is under debate [32].

Lung Perfusion
In EVLP, the organ is both perfused and ventilated, which allows
for additional graft monitoring both through analysis of the
perfusate as well as through bronchoscopy and
bronchoalveolar lavage fluid collection. An important note
about the circuit specific to the lung is the need to
deoxygenate the perfusate to assess the organ’s functionality,
with the ratio of arterial oxygenation to a fraction of inspired
air (PaO2/FiO2) being an important clinical measure.

The two most commonly used commercially available
platforms for performing EVLP are the XPS™ system made by
XVIVO [33] and the portable Organ Care System™ (OCS)
produced by Transmedics [34]. Among these platforms, there
are also three commonly referenced protocols, including the
Lund protocol [28], the Toronto protocol [35], and the OCS
protocol [36]. These differ in several parameters including the
target perfusate flow (often calculated based on cardiac output),
whether the left atrium of the donor lung graft is open or closed,
and the composition of the perfusate. Regarding the perfusate, the
differences lie in the underlying base solution (STEEN vs. OCS),
and the use of red blood cells vs. acellular perfusate (Lund vs.
Toronto). The debate over the use of cellular versus acellular
perfusate continues, with some reports finding that cellular
perfusate achieves results approaching clinical standards and
superior lung preservation as well as a reduced incidence of
lung edema and improved compliance in a porcine model.
Despite these preclinical findings, human studies using EVLP
have focused on acellular perfusates with favorable results.

Pioneering investigations have established the efficacy and
utility of these systems in clinical applications. Starting in 2011,
the Toronto group demonstrated in the HELP trial that
transplantation with high-risk donor lungs maintained on 4 h
of EVLP could produce comparable results to conventional lungs
using their EVLP protocol [31]. The NOVEL trial which followed
a few years later in 2014 extended these findings to a multicenter
trial in 6 US centers with expanded criteria donors compared to
conventional lungs and again encouraged the use of EVLP [37].
In the 2016 DEVELOP-UK trial, the EVLP observational cohort
was terminated early, with lower survival rates, higher rates of
ECMO and early grade 3 primary graft dysfunction (PGD) in the
EVLP arm which utilized lungs not suitable for standard
transplantation [38]. Other reports subsequently have emerged
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that provide contrasting support for the continued use of EVLP,
including the 2018 INSPIRE and 2019 EXPAND trials using the
OCS system [36, 39]. The INSPIRE trial compared standard
criteria lung transplants maintained with EVLP versus cold
storage, with findings of reduced PGD grade 3 at 72 h in the
EVLP arm and meeting the primary safety endpoints. The
EXPAND trial was then expanded to include extended criteria
donors with primary endpoints of 30-day survival and absence of
grade 3 PGD. Although the performance goals of the study were
not met, the study group concluded that the use of EVLP allowed
the transplantation of organs that would otherwise have been
rejected. Similarly, supportive data for EVLP from a single-center
analysis in Vienna was published in 2017 reporting that in their
use of EVLP in standard donor lungs, EVLP use provided
evidence of functional results and operative outcomes
comparable to standard preservation, with the cited benefit of
safely extending preservation time [40].

Clinical EVLP systems have since evolved to be executed not
only by a transplant service’s own team (referred to as local in-
house EVLP) but also to be performed at an outside but
centralized instutution (sometimes called a centralized lung
evaluation system). This centralized version has recently
gained traction due to the development of Lung
Bioengineering’s dedicated facility in which remote EVLP was
performed for seven different United States-based lung centers
[41]. Such centralized EVLP may grow in popularity with the
advent of the first European centralized facility coordinating
EVLP between Sweden and Denmark [42].

Within these applications, the details of optimal parameters
are still being discussed and guidelines for optimal execution need
to be established. Ventilation methods are an additional point of
interest, particularly because of the known effects of harmful
ventilation causing ventilator-induced lung injury. Because
excessive pressure (barotrauma), alveolar collapse
(atelectrauma), and volume (volutrauma) can induce
iatrogenic damage to the graft, attention to the method of
ventilation is critical. The stress index which represents the
rate of change in compliance during tidal inflation has been
proposed as a means of assessing ventilation in EVLP, with high
indices corresponding to hyperinflation and low indices
corresponding to recruitment-derecruitment [43, 44].
Ventilation outside of the stress index window has been
reported to correlate with cytokine-driven inflammation and
longer time on mechanical ventilation, intensive care unit
(ICU) stays, and hospital stays [45]. Using an auxiliary device,
exhaled breath particles can also be collected from the mechanical
ventilation setup on EVLP, which has shown that greater
numbers of particles are correlated with higher tidal volumes
and volume-controlled ventilation [46]. Higher particle flow rates
using this methodology have been correlated with lung injury [47,
48] and with primary graft dysfunction in the transplant setting
[49]. Other studies have investigated airway pressure release
ventilation compared to conventional volume-controlled
ventilation in a porcine model to try an open lung approach
to ventilation, which reduced edema during EVLP and improved
PaO2/FiO2 ratios following 4 h of reperfusion after left lung
transplantation [50]. Negative pressure ventilation was trialed in

another porcine experiment with 12 h of ex vivo perfusion and
found to have lower levels of pro-inflammatory TNF-α, IL-6 and
IL-8 along with less edema during EVLP [51].

Heart Perfusion
Similar to the lung, the perfusion circuit of the ex vivo machine
can be altered to accommodate the specific needs of the heart,
including wires that allow for defibrillation and pacing. Currently,
the two systems in place for ex vivo heart perfusion (EVHP) are
the Heart Box™ (XVIVO) and the portable Organ Care System
(OCS) Heart™ (TransMedics). The main difference between
these systems is the use of normothermic perfusion in the
OCS Heart versus hypothermic preservation at 8°C in the
Heart Box. The reported benefits of EVHP in these systems
are notable not only for the clinical results obtained, but also
for the system’s ability to assess hidden cardiac pathologies [52]
and to find specific and sensitive markers of outcome [53].

In the 2014 trial of normothermic heart perfusion, standard
criteria donors were compared against conventional preservation
techniques, looking at the survival of the recipients over a 2-year
period [54]. During this time, survival rates were comparable in
the early 30-day post-transplant period, and surpassed cold static
storage at one and 2 years along with a reduction (although not to
a statistically significant degree) in primary graft dysfunction. In
the European-based PROTECT trial [55], EVHP was evaluated
for safety and was followed several years later by the PROCEED II
trial, a prospective, randomized non-inferiority trial in
10 different transplant centers [56]. Short-term clinical
outcomes were again comparable between groups at 30 days
and in a one-center follow-up to the 2-year mark, there was again
no significant difference in survival despite significantly longer
ischemic times in the EVHP group [57]. Separately from the
EXPAND lung trial, an EXPAND heart preservation trial
examined the utility of the system for extended criteria
donors, with primary endpoints of survival at 30 days and
absence of PGD at 24-h post-transplant [58]. In this study, the
perfusion was not compared to standard preservation techniques,
but did show high utilization of donor grafts, low rates of PGD,
and high survival rates. To further characterize its use in
unfavorable donors, Sáez et al. placed extended criteria donor
hearts on machine perfusion, describing their single-center
experience using the system and reporting improved short-
term outcomes, although this was not directly compared to
standard criteria [59]. In the same group, patients who were
bridged to transplantation using left ventricular assist devices
were compared to those whose donor organ was preserved with
EVHP versus standard cold storage [60]. Recipients whose grafts
had received machine perfusion had lower rates of mechanical
circulatory support and decreased need for blood transfusion
with longer out-of-body graft time, although ultimately there was
no significant difference in overall survival [60]. Another
examination of extended criteria transplants supported by
EVHP compared to conventional storage showed that there
was an effective increase in the number of transplants possible
given the recovery of organs using the system, and that the
survival of the donor hearts was comparable in terms of both
hospital length of stay and survival [61]. A long-term follow-up
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report of normothermic EVHP from the Berlin group followed
recipients 4 years post-transplantation and showed high survival
rates, supporting the use of the platform [62]. Other notable
smaller studies include the case report of prolonged out-of-body
time of 10 h using machine perfusion [63], as well as a case series
from St. Vincent’s in Australia demonstrating distant
procurements on donation after cardiac death (DCD) with
favorable results [64]. This group also demonstrated favorable
lactate profiles during EVHP in their porcine DCD model, in
which they also reported that following orthotopic
transplantation, only those previously placed on EVHP were
able to be weaned from cardiopulmonary bypass support [65].

The hypothermic alternative to EVHP has been trialed in both
porcine and human cardiac transplantation. In a study of porcine
DCD procurement, following normothermic regional perfusion,
cold storage was compared to hypothermic machine perfusion,
finding that contractility was only found with hypothermic
EVHP along with a lower need for inotropic support and
signs of myocardial damage [66]. A trial of hypothermic
EVHP was run by the Australian St. Vincent’s group, with a
demonstration of 13 transplants, in which one patient required
post-operative VA-ECMO and no postoperative mortality was
observed at 30 days [67]. In the first prospective trial of
hypothermic EVHP by the Lund group, standard criteria
donors were compared in both modalities, showing improved
mortality and cardiac-related adverse events in the machine
preservation arm [68]. The HOPE trial followed with a
multicenter investigation of the system in donor hearts with
both short and long preservation times, up to 8 h and 47 min.
When compared to comparator data retrieved from the
International Society of Heart and Lung Transplantation
(ISHLT), the EVHP group demonstrated improved 30-day
survival and low rates of PGD development [69].

Liver, Kidney, and Pancreas Perfusion
The machine perfusion landscape in liver, kidney, and pancreas
transplantation has been similar to that of thoracic organ
transplantation. Attempts to improve donor organ viability,
functional assessment, and overall graft and patient outcomes
led to the rapid expansion of ex vivo hypo- and normothermic
machine perfusion (HMP, NMP) and in vivo normothermic
regional perfusion (NRP).

The concept of NMP was developed in the 1960s when it was
initially studied for kidney preservation. Its development over the
years has expanded its application to the liver [70], significantly
improving outcomes by lowering graft injury, and discarded organs
and increasing the mean preservation time compared to
conventional static cold storage (SCS) techniques. Similarly, HMP
was conceptualized in the 1960s. Significant advances in HMP
technology were made in the 1990s through the pioneering work
of Belzer and Southard [71], who developed the University of
Wisconsin (UW) solution for the preservation of the liver,
kidney, and pancreas.

A systematic review and meta-analysis by Jakubauskas et al.
compared outcomes between NMP and HMP in liver
transplantation versus static cold storage (SCS). Their study
demonstrated the role of machine perfusion in reducing graft

injury and decreasing the rate of liver graft rejection, early
allograft dysfunction (EAD) and non-anastomotic biliary
strictures compared to SCS [72].

Machine perfusion in kidney transplantation showed a similar
significant improvement in graft outcomes. The international
randomized controlled trial by Moers et al. demonstrated a
decrease in delayed graft function and an improvement in graft
survival rates when utilizing HMP as opposed to SCS alone [73].

Ex vivomachine perfusion has also been utilized in the field of
solid pancreas transplantation for quality assessment of discarded
organs [74] and to improve preservation capacity, both the ability
to resuscitate organs and to reduce delayed graft function [75].

ORGAN ENGINEERING ON
MACHINE PERFUSION

As previously mentioned, the discrepancy between the availability of
donor organs and the number of potential recipients waiting for a
graft demands the development of novel therapies and treatments to
bridge this gap. While ex vivo perfusion itself can help to evaluate
marginal organs that would otherwise be discarded or facilitate the
transplantation of more distantly procured grafts, there are many
rejected damaged donor organs that could be retrieved. The addition
of different therapies to the machine perfusion circuit presents an
opportunity to recover a greater number of grafts. Advantages
include highly specific temporal and spatial control of treatment
delivery along with the avoidance of potential systemic effects.

Gene Therapy
Following the adoption of viral-based vectors, gene therapy has
been pursued for its potential in immunomodulation and
mitigation of the inflammatory response often seen in the
events surrounding transplantation.

In cardiac transplantation, early rat models using adenovirus
vectors carrying LacZ demonstrated that transfection could occur
with minimal effect on graft survival, but the results were
tempered by short gene expression lasting only weeks [76, 77].
Subsequent efforts have demonstrated that the hypothermic ex
vivo platform can be a reliable conduit for vector delivery, with
further development of adenovirus vectors of LacZ in both
porcine and rat models and a need for continuous perfusion
beyond single injections [78–80]. Further testing in rabbit models
of normothermic EVHP demonstrated transfection using similar
vector-gene combinations [81, 82]. Notably, the Duke group
produced a porcine model in which luciferase was transfected
and investigated the components of the platform that promoted
or hindered successful transfection [83] in a 5 day post-
transplantation model. This group additionally reported on a
recombinant adeno-associated virus carrying luciferase that
showed high efficiency and expression for 30 days without off-
target effects or signs of rejection [84].

Within the heart, targets mainly aimed at immunomodulation
have been identified and successfully delivered in animal models,
including constructions of interleukin-10 or transforming growth
factor-beta 1 (TGF-β1), in which transplanted grafts have shown
higher vector concentrations as well as prolonged graft survival
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and inhibition of allograft rejection [85, 86]. Other vectors have
included the delivery of a CTLA4 gene with a demonstration of
localized immunosuppression in rats [87] and liposome-based
delivery of IL-4 and IL-10 to rabbits with significantly increased
survival and reduced rejection [88].

In the lung, gene therapy has also gained momentum for its
potential for immune regulation. An important decision point is the
route of administration: intravenous delivery is theoretically better at
targeting the endothelium while the endotracheal route can target
the epithelium. Several studies have investigated these routes of
delivery, with the endotracheal route often being preferred [89, 90].
In earlier studies performed on rat transplantation by the Toronto
group, the feasibility of gene transfection was explored using six and
12 hour ex vivo transfusions, although importantly this was done in
cold preservation prior to the advent of modern EVLP [91]. In
further developments of the model, human IL-10 within this
adenovirus vector was studied, again with six or 12 h of ex vivo
incubation with a reported improvement in post-transplant organ
function [92]. The IL-10-containing vector was further examined in
porcine and human lungs, now placed on modern EVLP systems,
with endotracheal administration of treatment [93]. In the porcine
model, following transplantationwith a 4 h follow-up, cytokines IL-6
and IL-1β were significantly decreased in the transfected group and
the rejected human organs, there was no observed deterioration in
function on EVLP. The group compared delivery of the viral vector
using an ex vivo model with an in vivo model, and in both cases
transplanted the lung to assess post-transplant function. The ex vivo
group showed improved lung function compared to the in vivo
group, with the authors hypothesizing that this methodology led to
less inflammation associated with vector delivery to explain the
improved function [94]. In a prolonged 7-day survival model, the
same therapy was applied, demonstrating continued IL-10
expression through day 7 in addition to a lack of systemic
toxicity, and improved lung function on day 7 in the treated
group compared to the control conditions [95]. Of note,
transfection with an IL-10-carrying vector has been shown in
rodent models of transplantation without the use of EVLP and
has shown decreased rates of histologically scored acute rejection
[96], lower levels of inducible nitric oxide synthase [97], as well as
improved gas exchange and decreased IL-2 expression [98].

Gene therapy in the lung has also been pursued with other
targets, notably with the delivery of small interfering double-
stranded RNA (siRNA) via lentiviral vectors targeting the class-
II-trans-activator and β2-microglobulin, which ultimately
reduced MHC-1 and II transcription in lung endothelial cells
in a porcine model [99]. This mechanism leveraged by Figueiredo
et al. allows for the evasion of the transfected cells from immune
system activation, a valuable attribute when transplanting a
donor organ into a recipient.

Gene therapy in kidney transplantation offers a novel
approach to addressing common post-transplant complications
such as rejection, ischemia-reperfusion injury (IRI), and the
nephrotoxic effects of immunosuppressive drugs. By targeting
the genetic foundations of these issues, gene therapy has the
potential to significantly improve transplant outcomes. Bogacz
et al. investigated the correlation between tacrolimus dose and
genetic variation for IL-10 and its effect on therapeutic outcomes

in kidney transplantation patients, revealing the potential
influence of IL-10 polymorphism on immunosuppressive drug
dosage and the risk of acute graft rejection [100]. In cold-IRI
mouse models, the anti-IL-2 immune complex was found to
attenuate ischemia-reperfusion injury (IRI) after kidney
transplantation by increasing renal regulatory T cells [101].

In the pancreas, gene therapy can introduce encoding for
immunomodulatory proteins (e.g., interleukin-10, TGF-beta) to
create a local immunosuppressive environment. An example is
the role of the VEGF gene in modifying isolated pancreatic islets
for transplantation. VEGF has anti-apoptotic and angiogenic
effects that are critical for islets under hypoxic stress during
transplantation. Studies reveal that islets modified with the VEGF
gene display have improved viability and more effective glucose
regulation post-transplantation compared to non-modified
islets [102].

Gene therapy in liver models in the context of transplantation
remains limited [103–105]. Lorvellec et al. and the UCL group
designed an in vitro whole liver [106].The “Bioreactor grown
Artificial Liver Model” (BALM) concept is a custom-designed 3D
culture of human induced pluripotent stem cell-derived hepatocyte-
like cells (hiHEPs) on a decellularizedmouse liver scaffold. Adenoviral
and lentiviral vectors introduced by intravascular injection have
demonstrated that BALM has the potential to serve as a substitute
for some in vitro and in vivo therapeutic testing methods.

It is of course important to consider the effects of the therapy
delivered to the target organ and whether there are any unintended
consequences. Potential risks of gene therapy include the possibility
of certain types of cancer in the long term, including the suspension
of Bluebird Bio’s clinical trial of LentiGlobin gene therapy for sickle
cell disease due to cancer diagnoses in two recipients 5 years after the
treatment [107]. Although the lentiviral vector may not have been
the direct cause of cancer, there are still concerns about how well we
really understand the long-term sequelae of the treatments we
deliver. This highlights the need for studies that not only look at
the immediate consequences of gene therapy in transplantation, but
also at whatmight occur to treated organs years down the line. Other
hypothetical concerns include how gene therapy could potentially
activate the immune system, which would be of great concern in
immunosuppressed transplant recipients, and whether there are off-
target effects, which would ideally be mitigated by the use of
therapies in an ex vivo setting where the therapy was applied
directly to the target organ. Of course, it is critical to note that
gene therapy is not a panacea for all transplantation troubles. Often,
the disease processes that emerge are complicated and multifactorial
and it is unlikely that any one target identified by gene therapy will
provide a universal answer to transplantation-related complications.
It is likely that multimodal therapies will be needed in order to truly
optimize grafts for transplantation.

Mesenchymal Stromal Cells (MSCs)
Cell therapy has emerged as a form of treatment for damage
owing to ischemia-reperfusion injury (IRI) and acute lung injury
due to the properties exhibited by mesenchymal stromal cells
(MSCs). This cell population has been shown to act on
inflammatory pathways and play a role in
immunomodulation, with multi-targeted effects and has been
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studied for its paracrine effects leading to tissue regeneration.
Bone marrow-derived MSCs have been linked to increased levels
of IL-10 to promote anti-inflammation [108] as well as the
secretion of immunomodulatory growth factors [109]. A
further advantage is the lack of co-stimulatory CD40, CD40L,
CD80, and CD86 which confer a lack of immunogenicity toMSCs
[110], making them a suitable therapy for immunosuppressed
and sensitive recipients.

In lung transplantation, EVLP has provided a platform for MSC
delivery. At the University of California, San Francisco, cells applied
during ex vivo perfusion were shown to restore endothelial
permeability in damaged lobes of human lungs and improve
alveolar fluid clearance [111]. Improved alveolar fluid clearance
was also observed with the treatment of cell culture medium
conditioned with MSCs without the cells themselves. Further
studies of rejected human lungs within this group also showed
improvement in alveolar fluid clearance with 5 × 106 cells instilled
into the lungs on EVLP [112]. In studies of cells isolated fromhuman
umbilical cord tissue by the Toronto group, administration of MSCs
aimed at ameliorating prolonged cold ischemia in previously healthy
donor lungs was performed first with the intent of determining ideal
cell concentrations following a comparison of intrabronchial vs.
intravascular routes of administration [113]. As a result,
intravascular administration was found to be superior given the
higher airway pressures associated with intrabronchial doses, as well
as the identification of a suitable dose equivalent to 5 × 106 cells per
kg in the porcine model. In a longer cold storage experiment with
24 h of cold ischemia followed by 12 h of EVLP, MSCs showed
decreased apoptosis and reduced pulmonary edema after
transplantation consisting of 4 h of reperfusion [114]. In an effort
to leverage the immunomodulatory effects of MSCs, cells were
engineered to produce anti-inflammatory IL-10 and were given
to human lungs rejected for transplantation under 12 h of EVLP
[115]. In this study, there were no significant differences in
pulmonary vascular resistance, oxygenation capacity, and
compliance compared to control lungs, which was attributed to
an acidic lung microenvironment and heterogeneity of injury across
human organs. Umbilical cord-derived MSCs were also examined
during rat EVLP by Pacienza et al., indicating that intravascular
infusion showed better lung compliance in addition to a reduction in
neutrophil-relatedmarkers, supporting an anti-inflammatory role of
the cell treatment [116].

In the heart, ex vivo perfusion has only been studied with the
application of MSC-conditioned medium, rather than the stromal
cells themselves. In an investigation of hypothermic perfusion in rats,
a conditioned medium was associated with the downregulation of
proinflammatory cytokines following transplantation and was
hypothesized to protect against myocardial IRI [117]. In a later
study by the same group, the conditioned medium was tested in
brain-dead donors, showing improved systolic function after
preservation and reduced cell apoptosis [118]. In normothermic
EVHP, the conditionedmedium as studied by the Guangzhou group
showed that oxidative stress, inflammation, and apoptosis were
mediated by the treatment and that warm ischemic injury was
improved [119].When the same group transplanted the conditioned
hearts, spontaneous contraction and left ventricular systolic diameter
improved in the treated group and lower levels of plasma cytokines

were detected [120]. Compared towhole-cell treatment, these studies
offer an opportunity to explore the conditionedmedium as a therapy
in and of itself, which may have advantages over MSC
administration in terms of both time and cost savings.
Interestingly, MSCs have been studied in the treatment of
ischemic and non-ischemic cardiomyopathy and have even been
labeled as cardioprotective, implying an avenue for further
investigation in the transplantation setting [121–127].

In the kidney, MSC therapy has also been studied for its
potential to repair damage from ischemia, which was tested in a
human kidney model of ex vivo perfusion. MSC treatment
showed reduced inflammatory cytokines and increased
adenosine triphosphate and growth factors [128]. In a rat
model, kidney grafts were treated with MSCs or with
extracellular vesicles released by the MSCs, both of which were
associated with improved metabolism and ion transport and
Gregorini et al concluded that both forms of treatment
protected the kidneys from reperfusion damage [129]. In later
work by Pool et al, porcine kidneys were treated with MSCs
during normothermic machine perfusion and labeling of bone
marrow-derived MSCs showed that the cells rapidly decreased in
the circulating perfusate over time and that a small portion was
intact and appeared within the glomeruli [130]. The authors
noted that the study demonstrated that the cells can reach and
reside in the kidney, but that the infusion rate must be high
enough to visualize within the capillaries. The group then also
reported that with normothermic perfusion, MSC treatment at
these sufficiently high cell infusion rates reduced injury markers
and induced the release of immunomodulatory cytokines during
ischemia-reperfusion injury [131]. MSC treatment was further
followed in a transplantation model by Lohmann et al. with the
finding that while MSC treatment was safe and well tolerated
within their autotransplant cohort, there were no significant
effects of the therapy within the 14 days post-transplantation
[132]. An important question within this line of work is the dose
tolerance of the kidneys to large amounts of MSCs, which was
investigated by the same group through their porcine model
comparing doses of ten million and one hundred million MSCs
injected into the renal artery [133]. The lower dose was well
tolerated, while the high dose resulted in tissue inflammation and
glomerular and tubular damage. A balance must be struck
between administering doses of cell therapy that are both
effective and not so high as to cause damage themselves.

Extending the investigation of MSC therapy to the liver, several
studies have examined the efficacy of the therapy within this solid
organ. In a rat model, MSCs were administered during machine
perfusion following donation after cardiac death, with treatment
correlating with improved bile production and histologic findings
[134]. MSC treatment was shown by another group to ameliorate
injury due to oxidative stress and increase mitochondrial function
within their rat liver cohort [135], which was further extended in
other studies to demonstrate improved histopathology, hepatocyte
ultrastructure, and microcirculation-related indices [135, 136]. In a
porcine model, MSCs were shown to be retained in a machine-
perfused liver with the reported continuation of their paracrine
activity via increased human-specific IL-6 and IL-8 levels in porcine
blood [137].
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Cross-Circulation
Although the system does not employ a machine, the perfusion
method of cross-circulation is noteworthy for its novelty in the
development of methods to regenerate damaged donor lungs and
livers. Reported advantages of cross-circulation over machine
perfusion include longer recovery times and an increased
duration of extracorporeal support [138]. An early report of
cross-circulation in the lung appeared under the work of Dr.
Joel Cooper who reported cross-circulating aspirin-treated sheep
with non-treated sheep to examine the mixing of the circulating
blood volumes and to study the circulating elements [139]. More
recent work has emerged to establish a cross-circulation platform
as a means to rehabilitate damaged donor lungs. The Bacchetta
group first reported the use of cross-circulation to achieve
prolonged perfusion times in excess of 36 h, followed by a
porcine study in which lungs damaged by the aspiration of
gastric contents were then reconditioned using the platform
[138, 140]. To demonstrate the system’s ability to provide
prolonged support, porcine lungs were additionally maintained
in cross-circulation for 4 days, with preserved lung function and
decreased levels of several cytokines, including IL-1β, IL-8, and
IL-12 among others [141]. Gastric aspiration-damaged recipients
were also shown to help recover donor lungs subjected to
prolonged cold storage in a model that leveraged injury in
both the donor and recipient within cross-circulation [142]. In
a step closer to clinical application, rejected human lungs were
added to the xenogeneic circuit to show functional and
histological recovery under the platform [143, 144] with 24 h
of support. There are of course concerns about the immunogenic
response that might follow when exposing human lungs to a
xenogeneic recipient. Wu et al reported that in their established
cross-circulation model, porcine immune cells and
immunoglobulins can be found infiltrating human donor lung
tissue after 24 h of xenogeneic perfusion [145]. Similarly, in an
investigation by Glorion et al., immune cells from the porcine
host were found in lung cell suspensions, in bronchoalveolar
lavage fluid, and in histological examination of lung tissue [146].
The group also posited that cross-circulation could act as a
platform to investigate the immune processes that follow
transplantation without carrying out full transplantation and
could serve as a means to assess anti-inflammatory and
immunomodulatory drugs based on the response of the
porcine host.

Cross-circulation has also been investigated in porcine livers, as
early as 2001 when a group from Kyoto studied porcine liver
perfusion with baboon cross-circulation [147]. The group found
microthrombi formation in the perfused porcine livers and
macroscopic hemolysis in 3 out of 5 cases with a maximum
duration of 6 h of cross-circulation. In a publication from the
same year, Nara et al. in Hirosaki, Japan cross-circulated
hepatectomized dogs with donor pigs to test a semipermeable
membrane in their model of double filtration plasmapheresis
cross-circulation [148]. This model was further explored by the
group in their later work with a canine whole liver supporting a
porcine model of hepatic failure induced by lipopolysaccharide and
alpha-amanitin, which demonstrated improvements compared to
the porcine group not supported by the liver cross-circulation [149].

The group reported that the lack of immune-mediated reactions was
the result of a semipermeable membrane blocking the movement of
IgM, which they investigated in later work [150].

Bacchetta et al, who had previously investigated lung cross-
circulation also followed up with work on liver cross-circulation
in 2022, with a publication using a porcine host for an
extracorporeal porcine liver to show improvements in
synthetic function, metabolic activity, and histopathological
examination [151]. This effort was then replicated using
explanted human donor livers that were supported by
xenogeneic cross-circulation, which also demonstrated
improved histopathologic assessment at 24 h of support [152].

While other organs have not been investigated as extensively,
there are reports of cross-circulation being studied in heart
transplantation. In one model, standard ex vivo cardiac
perfusion in a porcine graft was compared to EVHP
supplemented with cross-circulation from a paracorporeal
support pig [153]. This was then further compared to a third
setup in which blood from the support animal was filtered into
plasma during cross-circulation. Cross-circulation was reported
in both set-ups to have high oxygen consumption and vascular
resistance, with the conclusion that it improved preservation
compared to standard EVHP. Cross-circulation was also used
to support EVHP for 72 h in a study by the Extracorporeal Life
Support Laboratory at the University of Michigan, which
supported ovine hearts with paracorporeal sheep. All cross-
circulated hearts were deemed suitable for transplantation by
the end of 72 h, while the control group, which was not cross-
circulated, all failed after 6–10 h of EVHP [154]. The group then
further explored porcine EVHP support in a publication showing
that EVHP could be maintained for 24 h with plasma exchange,
which they reported eliminated the need for a paracorporeal
animal [155].

FUTURE DIRECTIONS IN
BIOENGINEERING STRATEGIES

The development of bioengineered organs that could be produced
in the laboratory would be the ultimate step in alleviating the
problems caused by the shortage of donor organs. In the quest to
develop such a product, techniques have emerged to grow or
build organs. One such method uses organoids made by three-
dimensional cell cultures formed from patient-derived cells
designed to replicate in vitro the microarchitectural and
functional characteristics of their in vivo counterparts. One
advantage of building such models is the ability to further
study diseases and potential drugs and therapies on a platform
that closely resembles human physiology while reducing the need
for animal-based research. In the lung, for example, the advances
made in microfluidic organ-on-a-chip devices have been driven
by the study of specific disease processes such as those arising
from particulate exposure, pulmonary fibrosis, and acute
respiratory distress syndrome [156–158].

The study of human organ physiology and disease occurrence
through microfluidic devices can be extrapolated for use in
transplantation surgery in general. In transplantation, these
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could represent an avenue for patient-specific study of response
to immunosuppression in an effort to optimize regimens, and
minimize toxicity, adverse drug reactions, and side effects,
balancing these against the risk of rejection [159].

Another potential application is the detection of transplant
rejection, which remains a clinical challenge given the high rates
of both acute and chronic forms of immune-mediated rejection.
Madhvapathy et al. used rat models in which a wireless
electronics interface was connected to transplanted kidneys,
allowing for real-time monitoring of ultradian rhythms,
disruption of the circadian cycle, and organ temperature.
These patterns change once immunosuppression is
discontinued before creatinine elevation [160].

On top of leveraging advanced techniques to further study
transplant-related complications, bioengineering principles
could potentially be used to develop artificial organs. In
decellularization-recellularization experiments, cellular
material is removed during a decellularization process to
then be replenished with a new repopulation of cells during
the recellularization phase. Decellularization of living tissue
can be accomplished by chemical, enzymatic, physical, or
combined approaches to generate an extracellular matrix
scaffold that provides structural support for the future
regenerated organ. The most common materials used for
decellularization are a combination of detergents such as
sodium dodecyl sulfate (SDS) and Triton-X100 [161]. This
is an important step as retaining any cell membrane epitopes
would trigger a host response in vivo. [162] Once the
mechanical integrity has been established and
decontaminated, the acellular scaffold undergoes the process
of repopulation with organ-specific cells, thus reconstituting
the organ from a functional perspective.

For the liver, in vitro studies of drug-induced hepatotoxicity,
liver function and regenerative potential have advanced the
development of primary hepatocyte isolation and the
generation of two- and three-dimensional liver models,
spheroids, organoids, slice cultures and microfluidic models
[163, 164]. Decellularized human liver scaffolds have been
repopulated with human cell lines and resulted in liver
scaffold cubes that could be successfully xenotransplanted
subcutaneously into immunocompetent mice, without any
resulting immunogenic responses [165]. Other investigations
in animal models have shown that decellularization of the
whole organ liver is possible with preservation of the
macrostructure [166]. While decellularization has been
demonstrated using a variety of methodologies, there is no
consensus on the most advantageous approach nor have any
unified criteria been accepted [167].

Similarly, studies have reported successful recellularization of
kidney scaffolds with preservation of microarchitecture and ECM
components such as glycosaminoglycans (GAGs) [168–170].
After preloading of the vascular matrix with vascular
endothelial growth factor (VEGF) and angiopoietin 1,
pluripotent stem cell-derived endothelial cells can be delivered
with efficient adherence, proliferation, and survival [168].

The lung is a challenging organ to bioengineer given the
complexity of the cell population that constitutes it. Scaffold
generation has been approached both from the angle of using
human-derived acellular scaffolds and artificial scaffolds made
from synthetic polymers [171–173]. Because there are over
40 different cell types that make up the lung, recellularization
is a challenging task and a variety of sources including tissue-
isolated progenitor cells, differentiated pluripotent stem cells, and
mesenchymal stem cells are being investigated for their
potential [174–177].

While these methodologies have a long way to go before they
can be considered for clinical application, the progress being
made is promising for the advent of engineered organs to meet
the demand for transplantation.

CONCLUSION

As the definitive management for end-stage organ disease,
transplantation remains an in-demand procedure. While
surgical and perioperative techniques have progressed, there is
still a notable shortcoming, notably the mismatch between the
number of available organs and the need for grafts by potential
recipients on the waiting list. In order to bridge the gap between
supply and demand, new methods are needed for the
recuperation of suitable organs. Machine perfusion provides
an emerging platform for the recovery and regeneration of
organs that would otherwise be discarded. Advancements
made in gene therapy, applications of mesenchymal stem cells,
cross-circulation methodologies, and the advent of advanced
bioengineering principles have been covered in this review as
promising avenues for organ recovery. While many of these
approaches are in various stages of development and clinical
application, they represent important advances that can be
leveraged in the search for meaningful ways to increase
the donor pool.
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