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Delayed graft function (DGF) after kidney transplantation heralds a worse prognosis. In
patients with hyperoxaluria, the incidence of DGF is high. Oxalic acid is a waste product
that accumulates when kidney function decreases. We hypothesize that residual diuresis
and accumulated waste products influence the DGF incidence. Patients transplanted
between 2018–2022 participated in the prospective cohort study. Pre-transplant
concentrations of oxalic acid and its precursors were determined. Data on residual
diuresis and other recipient, donor or transplant related variables were collected.
496 patients were included, 154 were not on dialysis. Oxalic acid, and glyoxylic acid,
were above upper normal concentrations in 98.8%, and 100% of patients. Residual
diuresis was ≤150 mL/min in 24% of patients. DGF occurred in 157 patients. Multivariable
binary logistic regression analysis demonstrated a significant influence of dialysis type,
recipient BMI, donor type, age, and serum creatinine on the DGF risk. Residual diuresis
and glycolic acid concentration were inversely proportionally related to this risk, glyoxylic
acid directly proportionally. Results in the dialysis population showed the same results, but
glyoxylic acid lacked significance. In conclusion, low residual diuresis is associated with
increased DGF incidence. Possibly accumulated waste products also play a role. Pre-
emptive transplantation may decrease the incidence of DGF.
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GRAPHICAL ABSTRACT |

INTRODUCTION

Delayed graft function (DGF) after kidney transplantation has
been associated with donor, recipient and transplant related
factors [1–3]. However, DGF most probably is multifactorially
determined while the contribution of those factors varies in
different studies. DGF occurs in about 30% of recipients of a
deceased donor organ [2, 3] and 3.6% of recipients of a living
donor kidney [1]. DGF is associated with decreased short and
long term graft survival, partly due to an increased rejection risk
[4, 5]. This means that DGF should be prevented when possible.

Acute tubular necrosis (ATN) in DGF differs from native kidney
ATN in several ways, but the most striking is the prevalence of
polarizable crystals consistent with calcium oxalate in DGF [6].
Calcium oxalate deposition in the transplanted kidney heralds a bad
prognosis [7–9]. Experience with transplantation in patients with
primary or secondary hyperoxaluria demonstrated that this
population had higher rates of DGF, partially accompanied by
biopsy-proven calcium oxalate deposition, compared to the non-
hyperoxaluria population [10].

Primary hyperoxaluria is a group of autosomal recessive
genetic disorders of the glyoxylate metabolism (Figure 1)
[14, 15]. Oxalic acid is the end product of many metabolic
processes and cannot be metabolized in the human body.
Apart from oxalic acid, the nephrotoxic glyoxylic acid
concentration is high in all types of primary hyperoxaluria
[15]. In type 1 primary hyperoxaluria, glycolic acid is also
high, in type 2 glyceric acid concentration is high.

High plasma oxalic acid concentrations may also be caused by
several disorders associated with fat malabsorption (non-
inherited, secondary or enteric hyperoxaluria) and that may
lead to kidney injury and insufficiency as well [10, 16, 17].

Both primary and enteric hyperoxaluria may be associated
with kidney stone formation and with oxalate crystal deposition,
CKD and kidney failure [16, 18]. There is a high oxalate
nephropathy (recurrence) rate after kidney transplantation in
patients with primary and enteric hyperoxaluria [10, 15, 16, 19,
20]. Apart from crystal deposition, oxalic acid and its precursor
glyoxylic acid have been shown to cause inflammation and
tubulotoxicity [12, 13]. This means that kidney damage may
be caused without or before tubular crystal depositions occur.

Finally, high plasma oxalic acid concentrations may be caused
by kidney insufficiency and failure per se since the main excretion
pathway is glomerular filtration and tubular secretion [21,22]. As
urinary oxalic acid concentrations are unreliable in CKD stage
4 and 5, in analogy to primary hyperoxaluria, plasma oxalic acid
concentrations are used instead [23]. Oxalic acid is easily
removed by hemodialysis, but rebounds to pre dialysis
concentrations within 48 h [24]. Clearance of oxalic acid is
highest in the first hours of dialysis. Residual diuresis is
superior to dialysis in removing various (non-urea) solutes
and even clinically negligible residual kidney function has been
shown to provide non-urea solute clearance [25–29]. With
decreasing residual diuresis, accumulation of waste products
increases even further. This means that almost all pre-
transplant patients have high plasma oxalic acid concentrations.
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We hypothesize that DGF is associated with high pre-
transplantation concentrations of waste products, such as
oxalic acid and its precursors. Under unfavorable conditions,
these may lead to inflammation, tubular toxicity and in worse
cases even depositions in the transplanted kidney.

Residual diuresis was included in our study in order to exclude
the possibility that the effect of oxalic acid and precursors may
represent the effect of a whole collection of waste products that
have accumulated as a result of reduced residual diuresis. In that
case residual diuresis may be a better representative for the whole
collection of waste products.

PATIENTS AND METHODS

All patients referred for kidney transplant work-up between
September 2018 and January 2022 were asked to participate in
this study. Follow-up was until January 1st, 2023. The study
conforms with the principles outlined in the Declaration of
Helsinki. It was approved by the medical ethics committee of
Erasmus University Medical Center Rotterdam, and all patients
gave their written informed consent before inclusion (MEC 2018-
044). Participation comprised a 10 mL blood sample drawn on
the operation ward immediately before transplantation. Oxalic
acid and substrates in the metabolic pathway of oxalic acid
(precursors, see Figure 1); glyoxylic acid, glycolic acid and
glyceric acid concentrations were determined. Residual diuresis
(remaining urine volume) was based on the patient’s last reported
24 h urine volume submitted. Besides, a questionnaire on dietary
habits was filled in. Results of this food frequency questionnaire
will be described separately.

Kidney function related variables were collected. Recipient
variables studied were: age and gender, body mass index (BMI),
pre-transplant CRP, pre-transplant vPRA (% panel reactive
antibody), use of diuretics (yes versus no), pre-transplant
oxalic acid, glyoxylic acid, glycolic acid, glyceric acid
concentrations, cardiac disease, diabetes mellitus, vascular
disease, cerebrovascular event, previous kidney
transplantations (yes versus no), kidney function replacement
therapy (none/hemodialysis/peritoneal dialysis), and time
between start dialysis and current transplantation (months).
Donor and transplantation related variables were: donor type
(living versus donation after brain death (DBD) and donation
after cardiac death (DCD)), donor age, gender, serum creatinine,
BMI, hypertension, diabetes mellitus, HLA mismatches (A, B,
DR; 1–6), and cold ischemia period. Delayed graft function
(DGF) was defined as dialysis treatment in the first week after
transplantation.

To quantify the plasma organic acids (oxalic acid, glyoxylic
acid, glycolic acid and glyceric acid), blood was drawn and placed
on ice followed by centrifugation at 4°C without delay.
Heparinized plasma samples were de-proteinized by addition
of 75 µL 37% hydrochloric acid to 0.5 mL plasma followed by
centrifugation. The supernatant was stored at −70°C until
analysis. For quantification, a gas chromatography mass
spectrometry (GC-MS) method was used.

Data Analysis
Statistical analysis was performed using IBM SPSS Statistics 24.
Baseline characteristics and outcomes were described as counts
and percentages for categorical variables. For continuous
variables, medians and interquartile ranges (IQR) were given
for skewed continuous variables. Differences between continuous
variables were studied using Mann-Whitney-U test. Differences
between categorical variables were studied using Chi-square test.

Multivariable binary logistic regression analysis with
backward elimination was used to study the influence of
variables on the incidence of DGF, both in the total
population (N = 496) and in the selection of patients on
dialysis (n = 342). Kaplan Meier survival curves of the DGF
and non-DGF populations were performed.

Spearman correlation analyses were performed to obtain
correlation and 95%-confidence intervals between residual
diuresis and plasma oxalic acid concentrations and
residual diuresis and oxalic acid precursors. Correlation
analyses were also performed for oxalic acid and its
precursors and between precursors. Correlation values
lower than 0.5 were considered weak. A p-value <0.05 was
considered statistically significant.

RESULTS

512 patients consented and underwent a kidney transplantation.
In 16 patients concentrations of oxalic acid and/or its precursors
were missing. Results of 496 patients were available for analysis.
Table 1 shows patient characteristics, there were no missing

FIGURE 1 | Endogenous oxalic acid synthesis pathway [11]. In bold are
the substances whose concentrations were determined in this study. * known
to be nephrotoxic, tubulotoxic [12, 13]. GO, glycolate oxidase; AGTX, Alanine
glyoxylate aminotransferase; LDH, Lactic dehydrogenase.
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values in these 496 patients. Residual diuresis was 150 mL/day or
less in 121 patients (24%). Table 2 shows donor and
transplantation characteristics. There were 230 (46%) living

donor transplantations, 88 (18%) donation after brain death
transplantations and 178 (36%) donatio after cardiac death
transplantations.

TABLE 1 | Patient characteristics.

Total population N = 496 no DGF n = 339 DGF n = 157 p-value no DGF versus DGF

Recipient characteristics
Gender male n (%) 300 (60.5) 197 (58.1) 103 (65.6) 0.068
Age (years) median (IQR) 62 (51; 69) 60 (49; 68) 64 (55; 70) 0.008
BMI median (IQR) 27 (24; 31) 26 (23; 30) 30 (25; 34) <0.001
CRP mg/L median (IQR) 3 (1; 8) 3 (1; 6) 5 (2; 12) <0.001
Medical history
Cardiac event n (%) 89 (17.9) 51 (15.0) 38 (24.2) 0.010
Cerebrovascular accident n (%) 60 (12.1) 38 (11.2) 22 (14.0) 0.227
Vascular event n (%) 43 (8.7) 22 (6.5) 21 (13.4) 0.011
Diabetes mellitus n (%) 167 (33.7) 88 (26.0) 79 (50.3) <0.001

Residual diuresis in mL/day median (IQR) 1000 (200; 2000) 1500 (500; 2000) 250 (0; 875) <0.001
Use of diuretics, yes n (%) 184 (37.1) 128 (37.8) 56 (35.7) 0.365
Dialysis n (%) <0.001
No 154 (31.0) 152 (44.8) 2 (1.3)
PD 105 (21.2) 78 (23.0) 27 (17.2)
HD 237 (47.8) 109 (32.2) 128 (81.5)

Time between last dialysis and transplantation (days)
PD only median (IQR) 0.39 (0.21; 0.71) 0.39 (0.23; 0.90) 0.35 (0.20; 0.59) 0.217
HD only median (IQR) 1.34 (0.80; 1.95) 1.33 (0.98; 2.09) 1.32 (0.64; 1.77) 0.035

Time on dialysis in months median (IQR) 15(0; 30) 6.8 (0; 21.8) 28 (16; 44) <0.001
Hyperoxaluria, non-renal cause n (%) 20 (4.0) 7 (2.1) 13 (8.3) 0.002
Oxalic acid in μmol/L median (IQR) 33 (18; 57) 25 (14; 48) 46 (32; 64) <0.001
Glycolic acid in μmol/L median (IQR) 5.7 (5.0; 6.7) 5.5 (4.8; 6.4) 6.0 (5.3; 7.0) <0.001
Glyoxylic acid in μmol/L median (IQR) 2.0 (1.4; 2.8) 1.8 (1.2; 2.5) 2.3 (1.7; 3.3) <0.001
Glyceric acid in μmol/L median (IQR) 2.6 (2.2; 3.1) 2.4 (2.1; 2.8) 2.9 (2.5; 3.4) <0.001
vPRA median (IQR) 4 (0; 5) 4 (0; 5) 4 (0; 22) 0.055
vPRA n (%) 0.163
<4 229 (46.2) 166 (49.0) 63 (40.1)
4–84 230 (46.4) 150 (44.2) 80 (51.0)
≥85 37 (7.5) 23 (6.8) 14 (8.9)

First kidney transplantation n (%) 421 (84.9) 297 (87.6) 124 (79.0) 0.010

IQR, interquartile range; HD, hemodialysis; CAPD, continuous ambulatory peritoneal dialysis; vPRA, virtual panel reactive antibodies.

TABLE 2 | Donor and transplantation characteristics.

Total population N = 496 no DGF n = 339 DGF n = 157 p-value no DGF versus DGF

Donor characteristics
Donortype <0.001
Living donor n (%) 230 (46.4) 220 (64.9) 10 (6.4)
DBD n (%) 88 (17.7) 57 (16.8) 31 (19.7)
DCD n (%) 178 (35.9) 62 (18.3) 116 (73.9)

Age donor years median (IQR) 58 (48; 67) 56 (48; 65) 62 (51; 69) 0.003
Donor gender male n (%) 253 (51.0) 159 (46.9) 94 (59.9) 0.005
Donor BMI median (IQR) 26 (23; 29) 26 (23; 29) 26 (24; 29) 0.445
Donor comorbidity
hypertension n (%) 155 (31.3) 99 (29.2) 56 (35.7) 0.091
Diabetes mellitus n (%) 23 (4.6) 12 (3.5) 11 (7.0) 0.073

Donor creatinine (μmol/L) median (IQR) 72 (59; 83) 73 (63; 83) 66 (53; 84) 0.006

Transplantation characteristics
HLA A, B, DR mismatches 0.362
0–3 296 (59) 200 (59) 96 (61.1)
4–6 6200 (40.3) 139 (41.0) 61 (38.9)

HLA mismatches median (IQR) 3 (3; 6) 3 (2; 5) 3 (2; 4) 0.660
Cold ischemia time (min) 389 (120; 707) 136 (111; 493) 693(534; 797) <0.001

IQR, interquartile range; DBD, donation after brain death; DCD, donation after cardiac death; HLA, Human leukocyte antigen.
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Table 3 shows the concentrations of oxalic acid, glycolic acid,
glyoxylic acid, and glyceric acid in the total patient population,
the pre-dialysis population and in the population on dialysis.
Only 1.2% of the patients had pre-transplant oxalic acid
concentrations within the normal range. All glyoxylic acid
concentrations were above the upper limit of normal. Glycolic
acid and glyceric acid concentrations were within the reference
range in 87% and 22% of cases respectively. Patients on dialysis
had significantly higher oxalic acid, glycolic acid, glyoxylic acid
and glyceric acid concentrations compared to pre-
dialysis patients.

Delayed graft function occurred in one-third (n = 157; 32%) of
the population. There were 339 patients without DGF. In 84% of
patients without DGF, serum creatinine at day 7 was at least
halved compared to pre-transplant serum creatinine (Figure 2).
Only 3 patients had an increase of serum creatinine on day

7 compared to day 0. One of them had a surgical complication
with temporary increase in serum creatinine on day 7.
Consequently, two patients without the diagnosis DGF that
had an increase in serum creatinine on day 7, but adequate
residual diuresis, ruling out the necessity for dialysis. Tables 1, 2
show that there are large differences between the populations
with versus without DGF. The influence on the DGF risk of all
variables shown in Tables 1, 2 was tested in binary logistic
regression analysis. In univariable analysis, recipient variables
with significant effect on DGF risk were: age, BMI, CRP, cardiac
event, vascular disease, diabetes mellitus, residual diuresis,
dialysis type, dialysis vintage, oxalic acid, glyoxylic acid and
glyceric acid concentration, and number of previous kidney
transplants. Donor variables with significant influence in
univariable analysis were: donor type, age, gender, and cold
ischemia time. In multivariable analysis, after backward

TABLE 3 |Median values of oxalic acid, glycolic acid, glyoxylic acid and glyceric acid in the total study population and subgroup population on dialysis and not on dialysis.

Normal
values

Total study population
(N = 496)

Subgroup population not on dialysis
(n = 154)

Subgroup population on dialysis
(n = 342)

p-Value

Oxalic acid in µmol/L
median (IQR)

2.5–7.0 33.1 (18.0; 56.6) 14.5 (11.3; 21.0) 45.8 (30.1; 65.0) <0.001

Glycolic acid in µmol/L
median (IQR)

3.6–7.6 5.7 (5.0; 6.7) 5.0 (4.5; 5.6) 6.0 (5.3; 7.0) <0.001

Glyoxylic acid in µmol/L
median (IQR)

0.2–0.4 2.0 (1.4; 2.8) 1.3 (1.0; 1.8) 2.3 (1.7; 3.3) <0.001

Glyceric acid in µmol/L
median (IQR)

1.3–2.1 2.6 (2.2; 3.1) 2.2 (2.0; 2.5) 2.8 (2.4; 3.3) <0.001

IQR: interquartile range.
p values measured with Mann-Whitney U test for the difference between the subgroups of patients on dialysis and patients not on dialysis.

FIGURE 2 | Ratio of serum creatinine on day 7 after transplantation and serum creatinine on day of transplantation in patients without delayed graft function
(n = 339).
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elimination, categorical variables that remained in the model with
a significant influence on the DGF risk were: donor type, and
dialysis type. Besides, recipient BMI, donor age, donor serum
creatinine, and glyoxylic acid concentration were significantly
and directly proportionally related to the DGF risk, while residual
diuresis and glycolic acid concentration were inversely
proportionally related the DGF risk (Table 4). There was no
interaction between any combination of residual diuresis,
glyoxylic acid, and glycolic acid. There was no interaction
between donor type and glyoxylic acid concentration, glycolic
acid concentration, dialysis type, residual diuresis, and
recipient BMI.

The same analysis was performed in the population restricted
to patients on dialysis (n = 342). Glyoxylic acid concentration
failed significance, but all other variables with a significant
influence in the total population also had a significant
influence in the population on dialysis (Table 5).

In a follow up period of almost 5 years, the survival curve
shows significantly worse results in patients with DGF compared
to those without DGF (p < 0.001; Figure 3).

The relationship between residual diuresis and oxalic acid and
its precursors was studied using Spearman’s correlation. It
showed a significant, moderate correlation between oxalic acid
and residual diuresis (N = 496; r = −0.529; p < 0.001). Correlation
of residual diuresis with glycolic acid (r = −0.287; p < 0.001); with
glyoxylic acid (r = −0.258; p < 0.001); and with glyceric acid
(r = −0.260; p < 0.001) was weak but significant.

The relationship between oxalic acid and its precursors was
studied using Spearman’s correlation. Correlation of oxalic acid
with glyoxylic acid (r = 0.685; p < 0.001); and with glyceric acid
(r = 0.570; p < 0.001) was significant. Correlation of oxalic acid
with glycolic acid (r = 0.472; p < 0.001) was weak, but statistically
significant.

Because glyoxylic acid significantly increased the DGF risk and
glycolic acid decreased that risk in our multivariable regression
analysis, their relationship was studied. Correlation of glyoxylic
acid and glycolic acid was weak, but statistically significant (r =
0.370; p < 0.001). The scatterplot showed a dichotomy: In the
extremes of the graph patients had either high glyoxylic acid or
high glycolic acid concentrations, not both (Figure 4).

DISCUSSION

Our study shows a significant effect of residual diuresis on the
incidence of DGF after kidney transplantation: this holds true for
the total population, but also, after exclusion of pre-dialysis
patients, for the population on dialysis. Most probably, the
association between low residual diuresis and DGF is the
result of the accumulation of more or less toxic waste
products that were not adequately removed via dialysis when
residual diuresis decreased. Our study confirms that DGF is
associated with decreased long-term graft survival [1, 5, 30].

There are two studies on the incidence of DGF after kidney
transplantation, that also describe a significant influence of residual
diuresis [30, 31]. Chaumont et al. studied the incidence of DGF in
their center and concluded that perioperative saline loading and
higher residual diuresis attributed to a lower risk [30]. Jahn aimed at
risk factors for DGF and 1 year graft failure and concluded that
residual diuresis influenced the DGF risk [31]. In patients on
peritoneal dialysis [27, 32] and hemodialysis [33], patient survival
has been shown to be negatively influenced by low residual diuresis.
Besides, in dialysis patients, decreasing residual kidney function is
associated with serious comorbidities [33–41]. This means that the
pre-transplant patients with low or absent residual diuresis, are the
less vital patients compared to those with significant residual diuresis
volume. The cause of comorbidities is probably associated with
accumulation, toxicity and/or deposition of toxic waste products, left
behind as a result of failing diuresis [25, 28, 29, 42, 43]. Sudden
excretion of these products by the newly transplanted kidney might
cause inflammation, toxicity and possibly even depositions, that lead
to kidney injury, and to impaired kidney function or even inhibition
of the onset of donor kidney function.

TABLE 4 | Multivariable binary logistic regression analysis on delayed graft
function, using backward elimination. Total population N = 496, events = 157.

Exp(B) 95% C.I.for EXP(B) Sig

Lower Upper

Donor type (living) <0.001
DBD 6.695 2.635 17.015 <0.001
DCD 33.580 14.379 78.422 <0.001

Dialysis type (none) <0.001
Hemodialysis 37.621 7.229 195.786 <0.001
Peritoneal dialysis 11.532 2.192 60.659 0.004

Recipient BMI (kg/m2) 1.099 1.041 1.160 0.001
Residual diuresis (per 100 mL) 0.939 0.900 0.979 0.003
Donor age (years) 1.030 1.009 1.053 0.006
Donor creatinin (µmol/L) 1.010 1.002 1.018 0.010
Glycolic acid (µmol/L) 0.884 0.800 0.976 0.015
Glyoxylic acid (µmol/L) 1.120 1.022 1.227 0.015
HLA mismatches 0.819 0.664 1.009 0.061
Donor gender (male) 0.583 0.321 1.056 0.075
Constant 0.000 0.000

TABLE 5 | Multivariable binary logistic regression analysis on delayed graft
function, using backward elimination. Dialysis population n = 342,
events = 155.

Exp(B) 95% C.I.for
EXP(B)

Sig

Lower Upper

Donor type (living) <0.001
DBD 6.031 2.385 15.248 <0.001
DCD 36.257 15.215 86.398 <0.001

Dialysis type (HD) 0.336 0.172 0.657 0.001
Recipient BMI (kg/m2) 1.119 1.057 1.184 <0.001
Residual diuresis (per 100 mL) 0.993 0.989 0.997 0.001
Donor creatinin (µmol/L) 1.012 1.004 1.020 0.004
Donor age (years) 1.027 1.006 1.049 0.013
Glycolic acid (µmol/L) 0.889 0.804 0.983 0.021
Glyoxylic acid (µmol/L) 1.087 0.993 1.191 0.071
Constant 0.001 0.000

DBD, donation after brain death; DCD, donation after cardiac death; HD, hemodialysis.
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Our study also shows that oxalic acid and its direct precursors
glyoxylic acid, glycolic acid and glyceric acid are examples of waste
products that accumulate when the kidney fails. In many pre-
transplant patients, plasma oxalic acid concentrations are
comparable to those of patients with primary hyperoxaluria. The
glycolic acid concentrations are above the upper normal value in
only 13% of cases (Table 3). Recently a small scale study showed
normal glycolic acid concentrations in the dialysis population [44].

There was a significant and relevant correlation between
oxalic acid concentration and glyoxylic and glyceric acid
concentrations implicating that when high oxalic acid
concentrations are found in pre-transplant patients, relatively
high glyoxylic and glyceric acid concentrations may be expected.
Highest concentrations of oxalic acid, glyoxylic acid, glycolic acid
and glyceric acid were found in dialysis patients compared to pre-
dialysis patients.

FIGURE 3 | Kaplan Meier curves on graft survival censored for death in patients with and without delayed graft function (p < 0.001).

FIGURE 4 | Scatterplot showing the relationship between pre-transplant glyoxylic acid concentration and glycolic acid concentration.
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Both oxalic acid and its direct precursor glyoxylic acid are
known for their tubulotoxicity, [12, 13, 45]. Although
concentrations of both oxalic acid and glyoxylic acid
significantly influenced DGF risk in univariable binary logistic
regression analysis, in multivariable analysis only glyoxylic acid
remained in the model and significantly influenced the DGF risk.
This effect was independent of the effect of residual diuresis,
emphasizing the individual toxic effect of glyoxylic acid. Glycolic
acid on the other hand exerted a protective effect. Glycolic acid is
not toxic. There is an inverse relationship between glyoxylic acid
and glycolic acid as shown in Figure 4. The “protective” effect
may be the result of shifting to non-toxic glycolic acid instead of
toxic glyoxylic acid (Figure 1). On the other hand, in the
restricted dialysis population glyoxylic acid failed significance,
possibly as a result of lower numbers of patients included. When
residual diuresis was removed from the model, the influence of
glyoxylic acid became significant (p = 0.017), indeed suggesting
that residual diuresis is a surrogate marker for at least glyoxylic
acid, but probably also for many other toxic waste products.

A limitation of our study is that residual kidney function was
not available in patients with residual diuresis, thus residual urine
volume was used as a representative instead. Residual urine
volume was based on the patient’s last 24-h urine collection
submitted. Last collection may have been a few months before
transplantation as 24-h urine collection must be submitted every
3 months for clinical care. Dialysis patients are aware of their 24 h
urine production as it determines their fluid restriction.

Another limitation is the definition used for DGF, which is the
most commonly used: dialysis in the first week after transplantation.
However, fluid overload as the indication for dialysis may not be set
in patients with preserved residual diuresis. When assessing
transplant function on day 7 post-transplantation, there were
only 2 patients without the diagnosis DGF that had an increase
in serum creatinine, but adequate residual diuresis, ruling out the
necessity for dialysis. All other patients without DGF had a decrease
in serum creatinine. Without dialysis, even a small creatinine
decrease of 10% is supposed to be the result of function of the
transplanted kidney. This means that the definition for DGF turns
out to be adequate in our population.

Preservation of residual diuresis, even after start dialysis, is
useful and gains attention nowadays. Dietary and
pharmacological interventions are defined to ensure optimal
native kidney function preserving care [46]. Besides, on top of
Kt/V there should be more attention for removal of other waste
products, because high concentrations have a negative effect on
graft function. This means that more intensive or optimal dialysis
treatment, could have a beneficial effect on the prevention of DGF
after transplantation. Besides, our study adds an argument to
stimulate pre-emptive transplantation in patients who still have
adequate diuresis and relatively low concentrations of waste
products and thus are in relatively good condition.
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