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Normothermic ex-situ heart perfusion (ESHP) enables assessment of hearts donated
after circulatory death (DCD) prior to transplantation. However, sensitive parameters of
cardiac function of DCD hearts on ESHP are needed. This study proposes a novel
approach using electrophysiological (EP) parameters derived from electrical mapping as
biomarkers of post-ischemic cardiac performance. Porcine slaughterhouse hearts (PSH)
were divided in two groups based on the type of warm ischemia (Group 1: 10 ± 1min with
animal depilation vs. Group 2: ≤5 min without depilation). Electrical mapping of the right
(RV) and left ventricle (LV) was performed on ESHP. Potential voltages, slopes and
conduction velocities were computed from unipolar electrograms and compared
between groups. Voltages were lower in Group 1 compared to Group 2 (RV: 3.6 vs.
15.3 mV, p = 0.057; LV: 10.8 vs. 23.6 mV, p = 0.029). In addition, the percentage of low-
voltage potentials was higher and potential slopes were flatter in Group 1. Voltages and
slopes strongly correlated with the visual contractile performance of PSH, but showed
weaker correlation with lactate profiles. In conclusion, unipolar potential voltages and
potential slopes were decreased in hearts with severe warm ischemia. As such, EP
parameters could aid transplantation teams in decision-making on transplantability of
DCD hearts.

Keywords: cardiac transplantation, ex situ heart perfusion, machine perfusion, electrophysiological mapping, graft
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INTRODUCTION

Normothermic ex-situ heart perfusion (ESHP) has been successful in enlarging the cardiac donor
pool using circulatory death donors (DCD) [1–4]. Nonetheless, DCD hearts suffer from serious
ischemia-reperfusion injury due to the inevitable functional warm ischemic time (WIT) prior to
cardioplegic flush. For this reason, the post-ischemic cardiac quality needs to be assessed in a near-
physiological beating state during ESHP.
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Currently, quality assessment is based on lactate trends,
together with measurements of coronary flow and aortic
pressure, and visual contractile assessment of the heart by the
transplantation surgeon. However, accuracy of lactate profiles for
assessment of DCD hearts is subject of debate [5] and animal
studies observed poor correlation between lactate levels and post-
ischemic contractile function [6–8]. Additionally, lactate profiles
could not reliably predict the need for mechanical circulatory
support post-DCD heart transplantation in clinical practice [9].
Hence, additional, sensitive and real-time parameters of cardiac
function are needed, especially in the setting of more marginal
donor hearts. To date, novel sensitive biochemical markers have
not been identified, and such markers need to be available as
point-of-care test for eventual translation to clinical practice.
Functional parameters, including ejection fraction, stroke volume
and dP/dt have shown stronger correlations with myocardial
performance [8], but cannot be assessed on the only clinical
device that is currently available due to the Langendorff perfusion
mode [10].

Electrical markers may provide rapid and real-time markers of
ischemic damage. In daily clinical practice, the impact of
myocardial ischemia on electrical function is detected by the
surface electrocardiogram. Electrical mapping can also be used to
detect effects of myocardial ischemia. This is defined as the
recording of the summation of electrical activity of
cardiomyocytes underlying mapping electrodes [11] and is
performed directly on the epicardial surface of the donor heart
on ESHP. As such, quantifiable electrophysiological (EP)
parameters derived from local electrograms (EGMs) can be
used to assess the electrical function of the ventricles and

detect local regions of ischemia. Ion homeostasis is disturbed
during ischemia [12] and does not return to pre-ischemic levels if
damage from ischemia is severe [13]. Hence, donor hearts with
severe injury from ischemia and reperfusion may present with
impaired electrical function. To test this hypothesis, the purpose
of this study was to investigate whether, and which, EP
parameters are potential markers of cardiac tissue vitality and
ischemic injury. Therefore, a high resolution electrical mapping
approach was performed during ESHP on beating porcine
slaughterhouse hearts (PSH) with good versus poor quality.
The resulting objective EP parameters may aid the
transplantation team in decision-making on transplantability
of (marginal) donor hearts.

MATERIALS AND METHODS

Porcine Heart Procurement
The current study was performed on PSH from animals (age:
6 months, weight: ~95 kg) sacrificed for human consumption.
The protocols in the abattoir were consistent with the EC
regulations 1069/2009 regarding slaughterhouse animal
material for research. The procurement protocol of PSH has
been described before by others [14, 15], showing good
contractile function and reproducible outcomes if hearts are
procured before depilation of the animal’s skin [16]. However,
hearts from PSH that undergo depilation in a dehairing machine
are known to show poor cardiac function on ESHP [16]. To test
our hypothesis, pigs were divided into two groups based on
whether the heart was explanted before or after animal depilation.
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The pigs were electrically stunned, hung and exsanguinated,
during which 1.5–2 L of blood were collected and anticoagulation
was immediately added (25,000 IU heparin, 2 mg Tirofiban).
WIT was defined as the period from electrical stunning until start
of cold cardioplegic flush. Group 1 had a longer WIT of
approximately 10 min and animals were first washed in a
dehairing machine of 60°C before excision of the thoracic
organs via parasternal incision, as per standard protocol of the
local abattoir. Group 2 had a shorterWIT of ≤5min and the heart
was procured before depilation of the pig, after which the thoracic
cavity was closed and the animal continued in the standard
abattoir process.

Hearts were immediately topologically cooled in 0.9% saline
solution and the aorta was cannulated and clamped, in order to
rapidly administer St Thomas Cardioplegic Solution (2 L with
2500 IU/L heparin) in the coronary arteries. Subsequently, hearts
were transported on cold static storage to the laboratory (~50-
min drive). The period between administration of cardioplegia
and reperfusion on ESHP was recorded as cold ischemic time.

Ex-Situ Perfusion
Upon arrival at the lab, the ascending aorta and pulmonary artery
(PA) were cannulated, caval veins ligated, and a vent was
positioned in the left ventricle (LV), similar to the human
ESHP transplantation protocol [10, 17]. A Langendorff
perfusion system, consisting of a centrifugal pump, cardiotomy
reservoir (Medtronic EL404) and oxygenator (Sorin Group
Inspire 6F) was primed with a mixture of 500 mL gelofusin
((B. Braun, Melsungen, Germany) with 12.5 g mannitol, 250 mg
methylprednisolone, 20 mEq sodium bicarbonate and 10,000 IU
heparin) and 100 mL 20% albumin (Prothya Biosolutions,
Netherlands B.V.). After priming, 1,500 mL of blood were
added and the blood-priming solution mixture was heated to
35°C. The heart was reperfused by connecting the aortic cannula
to the perfusion system, resulting in active coronary perfusion
and spontaneous myocardial contractions. Cardioversion in case
of ventricular fibrillation was accomplished by administration of
1.0 g of magnesium sulfate and electrical defibrillation. Perfusate
exiting the PA cannula and LV vent was collected and
recirculated. Adenosine (Adenocor, Sanofi) was infused at
0.12–0.60 mg/h to ensure perfusion with an aortic pressure of
75–85 mmHg and coronary flow of ≥750 mL/min. A
maintenance solution (0.15 g/L calcium gluconate, 0.025 g/L
magnesium sulfate, 0.11 g/L sodium chloride, 1.0 g/L glucose,
12.5 IU/L insulin (ASPART Sanofi, Paris, France)) was infused at
10–30 mL/h to compensate for the heart’s uptake of electrolytes
and nutrients. Biventricular electrical stimulation was performed
if the heart rate was <70 beats per minute.

Blood Analysis
Arterial and venous blood samples were taken every 20 min to
monitor electrolyte (Na+, K+, Ca2+), metabolite (glucose,
bicarbonate, lactate) and blood gas (pH, pO2, pCO2) levels,
and corrected accordingly. Measurements were performed with
the i-STAT 1 analyzer (Abbott Point of Care Inc., Chicago, IL,
United States) using CG4+ and CG8+ cartridges. Calcium
concentrations were maintained low during initial reperfusion

to reduce ischemia-reperfusion injury [18], and corrected to
physiological levels afterwards. A baseline blood sample was
measured before connection of the heart. Lactate trends were
calculated as the slope of the difference in concentration between
the first and last arterial sample after reperfusion.

Epicardial Mapping
High-resolutionmapping of the heart was performed 60min after
reperfusion when the heart was stabilized on ESHP. The
epicardial surface was systematically mapped by moving a
custom-made 120-electrode array (electrode diameter 0.6 mm,
inter-electrode distance 2 mm) over the RV and LV (Figure 1),
comparable to our mapping approach during human cardiac
surgery [19]. A steel wire was wrapped around the aorta as
indifferent electrode. Five seconds were recorded at every
mapping position, with a total recording time of
approximately 5 min.

Recordings were sampled with a rate of 2 kHz, filtered with
bandwidth 0–500 Hz, analog-to-digital converted (16 bits) and
stored on hard disk. Color-coded local activation time (LAT)
maps were created by annotating the steepest negative deflection
of each unipolar potential to study abnormalities in myocardial
conduction [19]. Conduction block was determined as a
difference in conduction time of ≥12 ms between two adjacent
electrodes and the prevalence of conduction block was calculated
as percentage of all conduction times. Local effective conduction
velocity (CV) was computed from LATs of neighboring
electrodes using discrete velocity vectors [20]. In addition,
color-coded maps were created visualizing unipolar
extracellular potential voltages (peak-to-peak amplitudes) and
slopes at each electrode [19]. Low-voltage was defined as the 5th

percentile of all peak-to-peak amplitudes from the RV and LV
respectively, and rounded to the nearest integer.

Contractile Assessment
Videos were recorded of all hearts and three transplant surgeons
of the Erasmus MC who use ESHP in clinical practice were asked
to independently assess visual contractility of the hearts. The
surgeons were blinded for group assignment. They scored
contractility of the whole heart, LV and RV on a scale of 1–5.
In addition, they judged whether hearts were suitable for
transplantation based on visual contractile performance and
hearts were deemed suitable for transplantation if at least
2 surgeons agreed.

Data Analysis
Median unipolar potential voltage, potential slope, and
conduction velocity and the amount of low-voltage potentials
and conduction block were calculated from the EGMs of the LV
and RV from each PSH. LV and RV data were separated because
of intrinsic differences in electrophysiological properties between
both chambers [21], and the fact that the LV is unloaded during
Langendorff perfusion. For these EP parameters, a median was
calculated as a summary measure per PSH. These data were then
presented as median (range) per group and a Mann-Whitney U
test was performed to test for differences between groups. Blood
gas and contractile data were tested for normality using QQ-plots
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and a Shapiro-Wilk test. Continuous variables were presented as
mean ± standard deviation if normally distributed and as median
(range) otherwise. Categorical variables were reported as number
(percentage). An unpaired t-test or Mann-Whitney U test was
performed, as appropriate. A p-value of ≤0.05 was considered
statistically significant. A Pearson correlation test was performed
to assess the degree of correlation between lactate, visual
contractile assessment, and EP parameters. A correlation
coefficient of <0.3 was considered as weak
correlation, ≥0.3 – <0.7 as moderate correlation, and ≥0.7 as
strong correlation. One-way analysis of variance testing was
performed to test for differences across different ventricular
regions of the heart. Statistical testing was performed using
SPSS software (version 28.0.1.0 (142)). Line plots were created
using Graphpad Prism (version 10.2.3 (403)). Correlation plots
were created using R (version 4.3.1).

RESULTS

All hearts (n = 8) were successfully resuscitated and cold ischemic
times were similar in Group 1 (n = 4) and Group 2 (n = 4) (104 ±
5min vs. 111 ± 6min, p = 0.157). All hearts required defibrillation
after reperfusion, but hearts in Group 2 were easier to restart.
Biventricular electrical stimulation was performed in all hearts to
compensate for low heart rates, but 2 hearts in Group 2 failed to
capture LV pacing resulting in only RV pacing. The blood levels

of electrolytes, glucose and pH during 2 h of perfusion are
presented in Figure 2. Sodium, calcium and glucose
concentrations, and pH were similar between groups. Low
calcium levels were corrected earlier in Group 1, but
concentrations were similar after 1 h of perfusion. Potassium
concentrations were significantly higher in Group 1, compared to
Group 2 (Figure 2).

All hearts showed a decreasing lactate trend after start of ESHP
(Figure 3) without statistically significant difference betweenGroups
1 and 2 (−24 ± 6 μM/min vs. −36 ± 14 μM/min, p = 0.173). In
addition, lactate concentrations (Group 1: 9.0 ± 1.5 mM vs. Group 2:
8.0 ± 1.5 mM, p = 0.371) and arteriovenous differences in lactate
concentration (Supplementary Table S3) were not different
between groups at the time of electrical mapping.

Electrical Mapping
Electrical mapping on the RV and LV resulted in a total
of >69,000 unipolar potentials. The data per individual
heart were provided in Supplementary Tables S1, S2.
Unipolar potential voltage was lower in Group 1 compared
to Group 2, for both the RV (3.6 mV(2.5–12.8) vs. 15.3 mV
(11.8–17.0), p = 0.057) and LV (10.8 mV(4.7–17.8) vs.
23.6 mV(19.4–24.2), p = 0.029) (Table 1). In addition, the
median percentage of low-voltage potentials (RV: 1 mV, LV:
2 mV) was higher in Group 1 (RV: 10.6% (0.3–17.2) vs. 0.3%
(0.1–0.5), p = 0.114; LV: 7.7% (0.6–23.0) vs. 0.4% (0.1–1.8), p =
0.200). Also, slopes of potentials were lower in Group 1 (RV:

FIGURE 1 | Schematic overview of right (RV) and left ventricular (LV) mapping locations and electrophysiological parameters. The rectangles represent the
electrode array positioned at different locations at the LV (blue) and RV (green). Each mapping electrode consists of 120 electrodes that measure the electrical activity of
the cardiomyocytes beneath the electrode. This results in 120 unipolar electrograms per mapping location, from which local activation times (LAT) and potential (voltage
and slope) and conduction (velocity and block) characteristics can be calculated. Ao, aorta; IED, inter-electrode distance; IVC, inferior vena cava; P, pacing
stimulus; PA, pulmonary artery; RA, right atrium.
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−0.2 V/s (−0.1 to −1.0) vs. −1.2 V/s (−0.5 to −1.4), p = 0.057;
LV: −0.3 V/s (−0.2 to −1.8) vs. −1.1 V/s (−1.1 to −1.6), p =
0.343) but these differences did not reach statistical
significance. Median conduction velocity and amount of
conduction block did not differ between groups (Table 1).

Figure 4 presents exemplary colour-coded voltage maps of the
posterior wall of the RV from both groups. The red/orange
colours in Group 1 indicate lower potential voltages,
compared to higher potential voltages represented by green/
blue colours in Group 2. In addition, histograms showed
lower voltages in Group 1 (Figure 4). Differences between the
anterior, lateral and posterior regions of the ventricles are
represented in Supplementary Figure S1, without a clear
preferential location for lower potential voltages.

Contractile Performance
Cardiac visual contractile performance was scored 1.5 ± 0.5 in
Group 1 and 3.0 ± 1.0 in Group 2 (p = 0.042), thus showing
worse cardiac function in the hearts procured after depilation.
All hearts in Group 1 were deemed unsuitable for
transplantation unanimously, and 2/4 hearts in Group 2 were
considered transplantable. Exemplary videos of contractile
performance of PSH in both groups are presented in the
Supplementary Material.

Correlation
Lactate levels and visual contractile assessment were correlated
to EP characteristics of the RV and LV (Figure 5;
Supplementary Figure S2). Weak to moderate correlations

FIGURE 2 | Potassium, sodium, calcium, glucose and pH levels in venous perfusate samples of Groups 1 and 2 during 2 hours of perfusion. Points are plotted as
median values with interquartile ranges and asterisks mark significant differences between the two groups.
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were observed between lactate and EP parameters (Figure 5). In
comparison, correlations were stronger between EP parameters
and contractility of the RV and LV (Figure 5). Median potential
voltage of the RV significantly correlated with the contractility
of the RV and median potential slopes significantly correlated
with the visual contractile performance of the heart and RV. For
the LV, strong significant correlations were observed between
the visual contractile performance and potential voltages,
slopes, low-voltage and amount of conduction block
(Figure 5). Supplementary Figure S2 also showed a
significant correlation between the lactate trend and visual

contractile performance of the heart and LV, but not with
the lactate levels at start and 1 hour after reperfusion.

DISCUSSION

Key Findings
This is the first study to measure and identify EP markers for the
assessment of graft quality of hearts preserved on normothermic
ESHP for cardiac transplantation. Unipolar potential voltages and
potential slopes were decreased in hearts with extensive ischemic
injury in a porcine DCD model. Voltage measured from unipolar
EGMsmight be an additional marker of graft viability. As such, EP
parameters assessed by high-resolution epicardial mapping could
serve as valuable bioelectrical markers, in addition to other
metabolic and hemodynamic parameters, of the functional
status of DCD hearts on ESHP.

Lactate Metabolism
The lactate levels of PSH in the current study all showed a
decreasing trend, which makes it impossible to distinguish
which hearts were suitable for transplantation based on these
curves (Figure 3). Furthermore, contractile performance of
certain hearts was very poor (Supplementary Video S1) and
these hearts were indisputably rejected for transplantation. As
such, a decreasing lactate trend alone was not a sensitive marker
of graft performance in our PSH model of DCD ESHP. This is in
accordance with animal studies [6–8] and clinical outcomes [9].

Hyperkalemia
Potassium concentrations were significantly higher in Group
1 compared to Group 2. Hyperkalemia was associated with
reduced cardiac function in other ESHP studies [22, 23] and is
believed to be the result of prolonged ischemia [24–26] and the
slaughtering and dehairing in the abattoir [14]. An acute decrease in
pH due to electrical stunning during the slaughter process as
previously reported [14] was not observed in this study.

FIGURE 3 | Arterial lactate trends per heart during 2 hours of ex-situ
perfusion for Groups 1 and 2. The first sample after connection and
reperfusion of the heart was taken at 20 min. All hearts showed a decreasing
lactate trend after reperfusion.

TABLE 1 |Outcomes of electrophysiological parameters measured 60min after reperfusion between two groups with different types of ischemia. Data expressed asmedian
(range).

Group 1 (N = 4) Group 2 (N = 4) P-value

Right ventricle
Number of potentials 3,736 (3,142–5,016) 3,045 (2,628–4,854) 0.343
Voltage (mV) 3.6 (2.5–12.8) 15.3 (11.8–17.0) 0.057
Low voltage (%)
<1.0 mV

10.6 (0.3–17.2) 0.3 (0.1–0.5) 0.114

Slope (−V/s) 0.2 (0.1–1.0) 1.2 (0.5–1.4) 0.057
Conduction velocity (cm/s) 78.7 (32.1–94.5) 82.3 (80.1–86.0) 1.000
Conduction block (%) 10.3 (2.9–15.6) 6.2 (4.3–14.9) 0.686

Left ventricle
Number of potentials 4,923 (3,942–5,588) 5,402 (4,182–5,825) 0.486
Voltage (mV) 10.8 (4.7–17.8) 23.6 (19.4–24.2) 0.029
Low voltage (%)
<2.0 mV

7.7 (0.6–23.0) 0.4 (0.1–1.8) 0.200

Slope (−V/s) 0.3 (0.2–1.8) 1.1 (1.1–1.6) 0.343
Conduction velocity (cm/s) 90.2 (26.4–105.3) 89.3 (74.6–93.0) 0.886
Conduction block (%) 8.9 (4.0–19.0) 4.8 (3.1–5.4) 0.343
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Hyperkalemia causes electrical changes in the cardiac action
potential (increased resting potential, slower upstroke, and
reduced duration) [26, 27] which is reflected in the EGM
morphology. An increase in resting potential due to hyperkalemia
might contribute to the observed decrease in potential voltage in our
study [24]. A reduced conduction velocity as expected in
hyperkalemic conditions was not observed in Group 1 [27]. We
contend that cardiac mapping can offer additional insights beyond
perfusate potassium measurements alone, particularly since
electrogram changes due to tissue damage may still be detected
even after hyperkalemia is resolved.

Electrophysiological Markers of
Ischemic Damage
Lower RV and LV unipolar potential voltages were observed in
Group 1, compared Group 2 (Table 1). In addition, a clear
difference in the number of low-voltage potentials was
observed between both groups, although not reaching
statistical significance due to relatively high voltages in one
heart in Group 1 (Supplementary Tables S1, S2). Next,
unipolar voltage and the amount of low-voltage potentials
were strongly correlated to the contractility of the heart,
especially the LV. As such, a lower unipolar potential voltage
corresponds with more injury from ischemia and reperfusion.
Likewise, low-voltages of <1.0mV for the RV and <2.0mV for the
LV seem to be a sensitive marker of severe injury caused by
ischemia and reperfusion.

Such reduction in potential voltage following acute ischemia
(and reperfusion) was previously demonstrated in animal
experiments investigating the effects of coronary artery

occlusions [28, 29] and humans [30]. Additionally, potential
voltage is also known to be reduced in regions affected by
myocardial infarction [31, 32] where low voltage potentials
may indicate scarred myocardium in which the metabolism is
reduced and irreversibly damaged [32]. Hence, the current study
demonstrates that measurements of unipolar potential voltages
on DCD hearts are valuable to assess the amount of irreversible
myocardial injury caused by warm ischemia.

Similarly, slowing of conduction following coronary occlusion is a
well-known phenomenon [33], potentially leading to post-infarction
ventricular tachycardias [34, 35]. However, we did not observe more
conduction disorders in Group 1. Yet, conduction velocity and
conduction block seem to be less sensitive markers of ischemia-
reperfusion injury compared to potential voltage, at least in the acute
setting of DCD donation and subsequent reperfusion with ESHP.
Nevertheless, the advantage of our mapping approach is that it
quickly provides multiple EP parameters which could serve as
valuable adjunct in graft quality assessment. These features can
be easily visualized using color-coded voltage and conduction
maps (Figure 4), which makes it possible to detect local regions
of ischemic damage in the DCD heart, whereas lactate levels only
reflect the total performance of the donor heart.

Limitations
The cold ischemic time in our study was longer than the usual
duration for ESHP machine setup in clinical practice because of
the transport time from the abattoir to the laboratory. In addition,
the study was performed on slaughterhouse animals, which do
not allow for easy control of cardiac explantation conditions as
compared to laboratory animals. Animals in Group 1 were
exposed to skin depilation before cardiac explantation, which

FIGURE 4 | Exemplary voltage maps of Groups 1 and 2 of a mapping position on the right ventricular posterior (RVP) wall. Red and orange colours indicate lower
voltages in Group 1. The histograms of all deflections of the RV (n = 29,201) and LV (n = 34,626) show lower voltages in Group 1. “Reprinted from The Lancet, Vol 385,
Ardehali et al. [10]; Figure 1D, Copyright 2015, with permission from Elsevier.”
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does not resemble a clinical DCD scenario. Conversely, models
using coronary ligation to produce myocardial ischemia do not
reflect global ischemia from DCD procedures [36]. Depilation is
known to consistently reduce cardiac function on ESHP [16] and
can therefore be considered a reasonable alternative to induce
global ischemia, despite being a little drastic. In our study, EP
markers were isolated for functional assessment of hearts on
ESHP, which should be further validated in a more
clinical setting.

Another limitation is the sample size which reduces the study’s
power and may overstate the significance of findings. No
correction for multiple testing was performed, which could
have introduced the possibility of type I errors. The reported
p-values are intended to provide an indication of potential
differences between groups, rather than conclusive evidence of
significant effects.

Furthermore, EP parameters were only measured 60 min after
reperfusion and the experiment only lasted 2 h, which is shorter than
the duration for which hearts are typically perfused in the clinic. Yet,
measurements at multiple time points on ESHP might possibly
providemore insights in the effects of ischemia-reperfusion injury on
myocardial survival. Additionally, contractile performance was
assessed visually, which resembles the current clinical practice,
but lacks the precision and rigor of more objective methods, e.g.,
pressure catheters [5, 37] or ventricular balloons [38].

Future Perspectives
As a next step, evaluation of the approach of this study on human
hearts transported on ESHP for cardiac transplantation is
essential to identify reference values differentiating between
healthy and injured tissue [39]. Consequently, electrical
mapping and other novel assessment strategies might push the
boundaries of ischemic time and donor criteria to further enlarge
the cardiac donor pool in the future.

Conclusion
EP parameters derived from electrical mapping can aid in decision-
making on transplantability of donor hearts transported on ESHP.
Low-voltage potentials might be a sensitive marker of myocardial
ischemic damage and can be easily combined with other EPmarkers
including myocardial conduction characteristics. Furthermore,
electrical mapping can detect local regions of ischemia and the
output is visualized in a user-friendly manner to the transplantation
team. As such, the presented technique introduces novel, objective
EP biomarkers in addition to lactate profiles and visual contractile
assessments, andmay serve as novel additional diagnostic procedure
for assessing graft function, especially in marginal donors.
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