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Immune checkpoint inhibitor (ICI) therapy has enabled a paradigm shift in Oncology, with
the treatment of metastatic cancer in certain tumor types becoming akin to the treatment of
chronic disease. Kidney transplant recipients (KTR) are at increased risk of developing
cancer compared to the general population. Historically, KTR were excluded from ICI
clinical trials due to concern for allograft rejection and decreased anti-tumor efficacy. While
early post-marketing data revealed an allograft rejection risk of 40%–50%, 2 recent small
prospective trials have demonstrated lower rates of rejection of 0%–12%, suggesting that
maintenance immunosuppression modification prior to ICI start modulates rejection risk.
Moreover, objective response rates induced by ICI for the treatment of advanced or
metastatic skin cancer, the most common malignancy in KTR, have been comparable to
those achieved by immune intact patients. Non-invasive biomarkers may have a role in
risk-stratifying patients before starting ICI, and monitoring for rejection, though allograft
biopsy is required to confirm diagnosis. This clinically focused review summarizes current
knowledge on complications of ICI use in KTR, including their mechanism, risk mitigation
strategies, non-invasive biomarker use, approaches to treatment of rejection, and
suggestions for future directions in research.
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INTRODUCTION

The last decade has seen a paradigm shift in Oncology with the initial United States Food and Drug
Administration approval of immune checkpoint inhibitor (ICI) therapy in 2011 with Ipilimumab.
There are currently 10 ICI agents approved (Figure 1) with indications in over 85 malignancies [1].
The momentum has been sustained by the demonstrated efficacy of these agents in the treatment of
certain aggressive cancers [2]. Post-transplant malignancy represents a leading cause of death with a
functional allograft in kidney transplant recipients (KTR) after the first year post transplant [3]. Prior
to the era of immunotherapy, there was no significant improvement in cancer related outcomes over
three decades [3, 4]. Due to concerns of attenuated anti-tumor responses and increased risk of
toxicity related to allograft rejection, KTR were historically excluded from ICI clinical trials. Early
retrospective data affirmed initial concerns with kidney allograft rejection rates as high as 40%–50%.
More recently, small prospective trials have reported lower rates of 0%–12% [5–7]. This significant
discrepancy in outcomes between the early retrospective and recent prospective data has highlighted
the need for additional prospective studies to help guide decision making around maintenance
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immunosuppression for these patients. Although there is no
definitive data on frequency and grade of immune related
adverse events (irAEs), including recurrent glomerulonephritis
(GN), retrospective data suggest a decreased frequency of irAEs
in KTR [5, 8]. The initial hypothesis that immunotherapy is less
effective in immunosuppressed solid organ transplant recipients
(SOTR) has been challenged by the accruing data; most recently
by results from two small prospective trials that reported
objective response rates of about 50% in KTR – similar
response rates as seen in the general population [6, 7, 9–12].
This review aims to highlight current knowledge around the risks
associated with ICI therapy use in KTR, including their
mechanism, risk mitigation strategies, the role of non-invasive
biomarkers as well as our proposed approach to the management
of these patients.

IMMUNE CHECKPOINT INHIBITOR
THERAPY MECHANISM OF ACTION

Cancer immunotherapy as a category encompasses all therapies
whose anti-tumor mechanism is exerted via the activation and
expansion of the host immune response to tumor antigens [13].
Specifically, ICI’s enable amplified tumor-reactive T cell
responses by disabling intrinsic attenuation mechanisms which
lead to T cell exhaustion. Under normal physiologic conditions
“immune checkpoints” exist to regulate T cell responses and
prevent excessive activation. However, T cells infiltrating the
tumor microenvironment are subject to over-attenuation due
to tumor immune escape, allowing tumor cells to evade the host
immune response [14]. One of the mechanisms of tumor immune
escape is the constitutive expression of immune checkpoint
ligands, such as programmed cell death ligand 1 (PDL-1) on
tumor cells [14]. This allows peripherally circulating T cells
expressing programmed cell death protein 1 (PD1) to bind to
PDL-1 and become anergic. The PD1/PDL-1 immune checkpoint
pathway provides a mechanism for T cells to recognize “self”, as
multiple host cells express PDL-1 [15]. Broadly speaking, ICIs are
monoclonal antibodies that inhibit immune checkpoint receptors
expressed by T-cells from binding to their ligands, and thus
enable persistent T cell activation and proliferation. The immune

checkpoint pathways that are currently targeted include: 1) the
PD1 pathway with its ligands PDL1 and PDL2 which are
expressed on lymphoid, myeloid, epithelial cells and tumor
cells; 2) the cytotoxic T-lymphocyte antigen 4 (CTLA4)
pathway and its ligands CD80/86 which are expressed on
myeloid and lymphoid cells, and 3) the lymphocyte-activation
gene 3 pathway [15–18]. Figures 2, 3 depict the three-signal
model of T cell activation, and how the mechanism of action of
ICIs ties into this. This review will focus on the use of PD1/PDL-
1 and CTLA4 blockade in KTR as, to our knowledge,
LAG3 blockade has not yet been reported in SOTR.

There are multiple hypotheses regarding the mechanism by
which ICI use can trigger allograft rejection. Pre-clinical
studies using murine and porcine models exist which
identify the PD1/PDL-1 pathway as a mechanism of
peripheral tolerance, with its disruption linked to auto-
immunity and alloreactivity [19–23]. Other potential
mechanisms include activation of quiescent alloreactive and
effector memory T cells with ICI use illustrated by Dunlap
et al; tumor and allograft antigen homology leading to the
formation of cross-reactive T-cells as has been demonstrated
in 2 cases of myocarditis but yet to be demonstrated in SOTR;
and functional inhibition of regulatory T-cells via CTLA-4 and
PD-1 inhibition [24–26].

INCIDENCEOFALLOGRAFTREJECTION IN
KIDNEY TRANSPLANT RECIPIENTS – A
HISTORICAL PERSPECTIVE
Our understanding regarding risk of allograft rejection has been
evolving. Initially, rejection risk was reported as 40%–50%. This
estimation was based on the results of retrospective studies
published up until 2021 [5, 8]. Significant reduction of
immunosuppression prior to initiation of ICI was a
confounding factor, as demonstrated by Murakami et al.’s
multi-center analysis, where 65% of patients underwent
changes in maintenance immunosuppression prior to starting
ICI, of which 35% had a reduction in the total number of agents
[5]. However, discrepancies existed even within early
retrospective data with smaller case series reporting rejection

FIGURE 1 | Timeline of immune checkpoint inhibitor approvals by the United States Food and Drug Administration (FDA) from 2011 to 2023.
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in only 15% of patients despite decreased immunosuppression
[27, 28]. Due to the overall low biopsy rate in the retrospective
studies, patients may have been misdiagnosed with rejection
given multiple competing risks for acute kidney injury (AKI).
Three prospective studies followed which are presented in
Table 1. Carroll et al. enrolled seventeen KTR who were
continued on their baseline maintenance immunosuppression
through ICI therapy [7]. Two cases of biopsy-proven acute
rejection were reported out of seventeen included patients
(12%), with one patient suspected to have had pre-existing
subclinical rejection based on an elevated urinary chemokine,
C-X-C motif chemokine ligand 10 (CXCL10), prior to starting
therapy [7]. Subsequently, in the phase 1 CONTRAC-1 trial,
twelve KTR with advanced cSCC received the PD-1 inhibitor,
cemiplimab, while maintained on a mammalian target of
rapamycin inhibitor (mTORi) and prednisone mini-pulse with
each treatment cycle [6]. Selection of this maintenance
immunosuppressive strategy was based on reports from
retrospective studies suggesting a decreased incidence of

rejection with preserved anti-tumor activity when using the
combination of mTORi and prednisone [5, 30, 31].
Specifically, everolimus or sirolimus was used with a target
trough level of 4–6 ng/mL, and the prednisone mini-pulse
consisted of prednisone 40 mg day −1 through day 3 of
cemiplimab administration, followed by 20 mg daily days
4–6 and then 10 mg daily from day 7 onwards until the next
cycle [6]. The study did not exclude patients based on
immunologic risk as Carroll et al. had done [7]. They reported
no rejection episodes. Lastly, Schenk et al. published the results of
a prospective, multi-center phase I/II trial, in which eight
evaluable KTR with multiple advanced skin cancers received
PD-1 inhibitor monotherapy with nivolumab, and
subsequently had the option of transitioning to dual ICI
blockade with PD-1 and CTLA-4 inhibition with ipilimumab
and nivolumab (6/8) for progressive disease [29]. Maintenance
immunosuppression consisted of tacrolimus (trough target
2–5 ng/mL) and prednisone 5 mg daily. Of eight evaluable
patients, three experienced biopsy proven allograft rejection

FIGURE 2 | T-cell activation via the three-signal model. Cancer cells express tumor associated antigens which are captured by APCs. Signal 1: Antigen peptide
presented by APC onMHCmolecule binds to TC on -cell surface. Signal 2: Co-stimulation. The binding of CD28, expressed on T cells, to CD80/86 expressed on APC’s
describes one of the necessary co- stimulatory signals. Signal 3: Once signal 1 and 2 have been completed, signal 3 denotes cytokine production by T cells, which allows
ongoing T cell differentiation and proliferation. This includes the production of IL2 by T-cells leading to IL2-R stimulation on the surface of T cells. Il- Immune
checkpoints provide a negative feedback mechanism in the setting of T cell activation. In lymphoid tissues, CTLA-4 binds to CD80/86 with higher affinity than CD28,
leading to competitive inhibition of signal 2. In the peripheral tissue, PD-L1 which is expressed by epithelial cells (i.e., renal TEC, tumor cells) binds to PD-1, which is
expressed by peripherally circulating T cells, inducing T-cell exhaustion. Abbreviations: APC, Antigen presenting cell; MHC, Major histocompatibility complex I/ll; TC,
T-cell receptor; IL-2, Interleukin-2; IL2-R, Interleukin-2 receptor; CTLA-4, Cytotoxic -lymphocyte associated protein 4; PD-L1, Programmed cell death ligand 1; PD1,
Programmed cell death protein 1; TEC, Tubular epithelial cell; JAK-3, Janus Kinase 3.
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(38%); one on ICI monotherapy and two on dual ICI therapy,
though the third rejection happened after stopping all treatment,
including maintenance immunosuppression [29]. These results
suggested that a tacrolimus trough of 2–5 ng/mL and prednisone
5 mg daily may be insufficient to prevent organ rejection.

CHARACTERISTICS OF ICI ASSOCIATED
ALLOGRAFT REJECTION

Retrospective data suggest that allograft rejection tends to occur
early, with a median time to rejection of 3–4 weeks, and is
treatment refractory in 50%–80% of patients [5, 8, 32].
However, in a recent multi-center retrospective study
including 30 KTR and 1 lung transplant recipient (LTR),
Remon et al. noted a comparatively delayed median time to
rejection of 8 weeks [33]. This delay may be the result of less

aggressive maintenance immunosuppression reduction prior to
ICI start.

The data regarding treatment of ICI associated rejection is
limited by low sample sizes, and a significant heterogeneity in
treatment approaches. Acute cellular rejection (ACR), either
alone or in combination with acute antibody mediated
rejection (ABMR), has been reported in all biopsied cases to
date [5, 7, 8, 29, 32, 34, 35]. For the cases of biopsy proven
allograft rejection included the multi-center retrospective study
by Murakami et al., 50% consisted of ACR, and 50% consisted of
mixed ACR and ABMR, with nine of fourteen biopsied cases with
endothelialitis [5]. In the systematic review by Portuguese et al.,
which included nineteen cases of biopsy-proven rejection, 74%
were reported as ACR and 26% as mixed ACR and ABMR [8]. As
the 3 available prospective studies to date have small numbers of
patients, with only a few reported episodes of allograft rejections,
the data is mixed (Table 1).

FIGURE 3 | Immune checkpoint inhibitors including Anti CTLA-4, PDL-1 and PD-1 antibodies function by blocking the interactions between checkpoint proteins
and their receptors. This disrupts the counter-regulatory negative feedback mechanism that suppresses T-cell activity, leading to persistent T-cell activation and
proliferation, allowing T-cells to recognize and eliminate tumor cells. The tumor cells express LECtin, Gal-3, and FGL-1, which bind to LAG-3 expressed on the surface of
T-cells and provoke T-cell anergy. Tumor tolerance is also promoted by the infiltration of Tregs within the tumor microenvironment. These Tregs express higher
levels of CTLA-4, PD-1, LAG-3, and TIM-3, and they secrete elevated levels of IL-10 and TGF-ß, thus facilitating tumoral resistance. Abbreviations: CTLA-4, Cytotoxic
T-Lymphocyte Antigen 4; PDL-1, Programmed cell death ligand 1; PD-1, Programmed cell death protein 1; LSECtin, Liver sinusoidal endothelial cell lectin; Gal-3,
Galectin-3; FGL-1, Fibrinogen-like protein-1; LAG-3, Lymphocyte activation gene-3; Treg, Regulatory T-cell; TIM-3, T-cell immunoglobulin and mucin domain-
containing protein 3; TGF-ß, Transforming growth factor- beta; CD 80/86 and CD 28, Cluster of differentiation 80/86 and 28; IL-10, Interleukin-10.
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ICI ASSOCIATED ALLOGRAFT
REJECTION – RISK FACTORS

The data we have to date suggests that significant reduction in
baseline immunosuppression is a risk factor for ICI associated
allograft rejection though the ideal degree of immunosuppression
remains to be defined [5, 8, 36]. Prospective evidence suggests
that maintaining patients’ prior baseline immunosuppression, or
using a dynamic steroid and mTORi reduces the risk of rejection
[6–8]. However, despite the encouraging objective response rate
noted in these small studies, there remains the concern that
maintaining higher degrees of maintenance immunosuppression
may blunt the anti-tumor efficacy of ICI. Specifically, high dose
steroids have been associated with decreased progression free
survival in non-transplant patients with non-small cell lung
cancer (NSCLC) [37]. To definitively answer this question,
prospective studies comparing allograft and cancer outcomes
with different immunosuppressive strategies are needed.

Other risk factors for ICI associated allograft rejection
suggested by retrospective data include a prior history of
allograft rejection, anti-PD1 therapy or dual ICI therapy, and
low dose corticosteroids (<10 mg per day) [5, 8, 24, 31, 35, 36, 38,
39]. Notably, the prospective studies reported by Carroll et al. and
Hanna et al. did not exclude patients with a prior history of
rejection, and yet low rejection rates were seen [6, 7]. However,
Carroll et al. did account for immunologic risk in a different
fashion by excluding patients with a donor specific antibody
mean fluorescence intensity (DSA MFI) greater than 4,000 [7].
Schenk et al. excluded all patients with any existing DSA or a
history of allograft rejection within 3 months prior to enrollment
and noted a higher rejection rate [29]. To date, no clear
relationship between cancer type and risk of allograft rejection
has been established; adequately powered studies are needed to
address this question.

ICI ASSOCIATED ALLOGRAFT
REJECTION – OPTIMIZING
IMMUNOSUPPRESSION
An immunosuppressive strategy with at least 2 agents and a
prednisone dose greater than or equal to 10 mg daily is
supported by the current body of evidence. The use of
mTORi as maintenance immunosuppression has been
associated with a decreased rejection risk in retrospective
studies, and further supported by the absence of rejection in
the CONTRAC-1 study over a median follow up period of
6.8 months, though those patients were on higher doses of
prednisone [5, 8, 27, 38]. There are clinical scenarios in which
transition to mTORi is either not tolerated by patients due to
drug-related toxicities, or not feasible due to the presence of: 1)
healing wounds 2) proteinuria with a urine protein to creatinine
ratio >0.5 g/g, or 3) high immunologic risk especially within the
first 6 months post-transplant [40–42]. In these situations, there
is minimal data to guide decision making. The available data
would suggest continuing patients on their prior maintenance
immunosuppression, as per Carroll et al. [7] Alternatively,
pursuing dual maintenance immunosuppression with
prednisone 10 mg daily, and tacrolimus with a trough level
5–7 ng/mL can be considered [29]. Two small, single center
retrospective studies demonstrated low rates of rejection with
tacrolimus use, either as monotherapy or dual therapy with
corticosteroids; when available, the reported achieved
tacrolimus trough levels were greater than 4 ng/mL [27, 28].
It is also notable that 70% of patients included in Carroll et al.’s
study had maintenance immunosuppressive regimens
containing a calcineurin inhibitor (CNI) [7]. Moreover, three
prior reviews demonstrated a protective effect with CNI use,
though the data analysis was done for all SOTR and not KTR
alone [8, 35, 36].

TABLE 1 | The 3 published prospective trials to date on the use of immune checkpoint inhibitor therapy in kidney transplant recipients.

Study title Immune checkpoint inhibitors in
kidney transplant recipients [7]

CONTRAC-1 [6] Nivolumab + tacrolimus + prednisone ± ipilimumab for
kidney transplant recipients with advanced

Cutaneous cancers [29]

Authors, Year Carroll et al., 2022 Hanna et al., 2024 Schenk et al., 2024
Patient Number 17 12 8
Tumor Group Any advanced cancer otherwise meeting

ICI indication
Advanced cSCC Advanced Skin Cancers

ICI Type 16 patients on Anti-PD1 therapy
1 patient on Anti-PDL1 therapy

Cemiplimab (Anti PD1) Initial Nivolumab (Anti PD1) in 8/8 patients
Transition to Nivolumab + Ipilimumab (anti-CTLA4) in 6/
8 patients

Maintenance
Immunosuppression

Maintain prior baseline maintenance
immunosuppression

mTORi and dynamic
prednisone tapera

Tacrolimus (trough 2–5 ng/mL) and Prednisone 5 mg daily

Rejection 2/17, 11.7% 0/12, 0% 3/8, 37.5%
Allograft Biopsy Findings 2 cases of ACR N/A 1 case of ACR, Mixed Rejection (ACR + ABMR) × 2
Extra-Renal Immune Related
Adverse Events

1/17, colitis 1/12, colitis 2/8, arthralgia, maculopapular rash

Objective Response Rate 53% 45% 25%

aPlease see text for dosage details. Abbreviations: ICI, immune checkpoint inhibitor; ACR, acute cellular rejection; cSCC, cutaneous squamous cell carcinoma; mTORi, Mammalian Target
of Rapamycin Inhibitor; ABMR, antibody mediated rejection.
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ALLOGRAFT REJECTION - TREATMENT

Treatment would ideally be targeted to the histopathologic lesion
identified on allograft biopsy. Multiple different approaches to
therapy including pulse dose corticosteroids, thymoglobulin,
intravenous immunoglobulins, infliximab and plasma
exchange to remove circulating ICI have been reported,
though no specific treatment approach has consistently
demonstrated improved allograft outcomes [5, 7, 29, 35]. The
use of lymphodepleting therapies in the treatment of allograft
rejection requires careful consideration in the setting of active,
advanced malignancies. Allograft irradiation has been trialed for
patients with treatment-refractory rejection with limited
responses though this may be an option for KTR on ICI
wanting to avoid additional immunosuppression and risk
tumor progression [43]. It is possible that early recognition of
allograft dysfunction and prompt initiation of therapy may
improve outcomes, though definitive data is lacking.
Ultimately, mortality in this patient population has been
attributed to malignancy progression, rather than to organ
rejection [5, 8].

ADDITIONAL IMMUNE RELATED
ADVERSE EVENTS

The incidence of irAE’s in non-transplant patients on ICI therapy
has been reported to be as high as 60%–85% [44, 45]. While irAE
can affect any organ system, the most common manifestations in
non-transplant patients include rash, arthralgias,
endocrinopathies such as hypothyroidism, and colitis [46].
Acute tubulointerstitial nephritis can occur in the native
kidney, with an estimated incidence of in 1.4%–3% for
patients on ICI monotherapy, and up to 5% on ICI dual
therapy, with glomerulopathies seen even less frequently [47–51].

A question that has previously arisen is whether we may be
mis-identifying hypersensitivity reactions in the allograft,
i.e., acute tubulointerstitial nephritis (ATIN), as T cell
mediated rejection (TCMR). Both Banff Grade 1 acute TCMR
and ATIN consist of a lymphocyte-predominant
tubulointerstitial infiltrate [52]. While gene expression
profiling confirmed the presence of significant molecular
overlap between ICI-ATIN and ICI-TCMR, the most
frequently upregulated transcripts were different suggesting
different pathophysiologic mechanisms [53]. The highest
frequency expressed genes in ICI-TCMR were associated with
interferon signaling, T cell and Natural Killer cell functions, and
TNF superfamily members, while in ICI-ATIN they were
associated with allergic response components (IgE, mast cells
and eosinophils) consistent with hypersensitivity responses [53].
The authors also identified an interferon alpha induced
transcript, interferon-alpha inducible protein 27, that could
serve as a potential biomarker for ICI-TCMR [53]. Moreover,
there exist clinical differences between ICI-ATIN and ICI
associated allograft rejection suggesting different underlying
mechanisms. Median time to occurrence of ICI-ATIN is
reported as 12–16 weeks, as compared to 3–4 weeks for

rejection [5, 8, 47, 54–56]. Prior or concurrent extra-renal
irAEs have been shown to be associated with an increased risk
of ICI-ATIN, but the same association has not been noted for
rejection [5, 39, 55]. Additionally, ATIN-associated drugs, such as
proton pump inhibitors, nonsteroidal anti-inflammatory drugs,
and antibiotics have been associated with an increased risk of
developing ICI-ATIN in native kidneys in multiple systematic
reviews [57–60]. Conversely, a significant association between ICI
associated kidney allograft rejection and ATIN-associated drug
use was not seen in the largest retrospective study to date [5].

Interestingly, in SOTR a lower incidence of extra-renal irAEs
has been documented. Portuguese et al. identified a 13.4%
incidence of extra-renal irAEs in their systematic review, of
which pneumonitis was the most common (37.5%), followed
by dermatitis (31%), colitis (25%) and hepatitis (12.5%) [8].
Looking at KTR alone a 25% incidence of irAEs was reported
in a 69 patient retrospective study, and a systematic review
similarly reported a 24.5% incidence [5, 35]. When looking at
severe irAEs that lead to ICI discontinuation, a 21% incidence was
reported in a multi-center cohort of 31 SOTR, of which 30 were
KTR and 1 was a lung transplant recipient [33]. Prospective
studies have revealed similarly low incidences (Table 1) [6, 7, 29].

A question that remains unanswered is the risk of recurrent
glomerulonephritis (GN) in KTR on ICI therapy. To our
knowledge, no publications on the topic exist to date. In
reviewing our single center data at Mayo Clinic Rochester, of
21 patients started on ICI therapy, 9 had end stage kidney disease
secondary to a glomerulopathy, and of these, one patient
experienced recurrent membranous nephropathy which
responded to tacrolimus (Table 2) [61].

The occurrence of irAEs in the immune-intact population has
been correlated with improved anti-tumor efficacy with multiple
retrospective studies demonstrating an improved median overall
survival, and one study showing an improved objective response
rate (ORR) and progression free survival [62, 63]. Presumably,
there is a correlation between the amplitude of the tumor-
directed T cell response and the off-target occurrence of irAEs.
Despite continuation of maintenance immunosuppression in
SOTR and an associated decreased incidence of irAEs, the
ORR for certain tumor types, such as advanced cutaneous
squamous cell carcinoma (cSCC) and melanoma, has been
comparable to that seen in the immune intact population [8].

TABLE 2 | Description of the immune mediated causes of end stage kidney
disease included in Mayo Clinic Rochester’s single center retrospective study
on ICI use in KTR.

Number of cases Glomerulopathy [61]

2 IgA nephropathy
1 IgA vasculitis
1 Primary focal segmental glomerulosclerosis
1 AA Amyloidosis
2 Anti-neutrophil cytoplasmic antibody associated vasculitis
1 PLA2R positive membranous nephropathy
1 Chronic GN of unclear etiology

Abbreviations: IgA, Immunoglobulin A; PLA2R, Phospholipase A2 receptor; GN,
glomerulonephritis.
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FIGURE 4 | Immunoediting process represented by the dynamic interplay between the tumor micro-environment and the immune system in three phases. Phase I
(Elimination): The host immune system initially recognizes the cancer cells as foreign (immune surveillance). Cytotoxic -cells and natural killer cells target tumor cells.
Phase I (Equilibrium): A subset of tumor cells develop immune evasion mechanisms (reduced immunogenicity), but there is an overall balance between immunemediated
tumor suppression and tumor outgrowth. Phase IIl (Tumor escape): Tumor cells evade the immune system’s surveillance and proliferate uncontrollably. This results
in clinically apparent tumor, recurrence and/or metastases. Maintenance immunosuppression impedes initial immune surveillance. This reduces selective pressure on
tumor cells which is necessary for the development of mechanisms that allow tumor immune evasion. As a result, tumors that develop in immunosuppressed individuals
may be more likely to maintain their initial immunogenicity.

TABLE 3 | Objective response rate by tumor group in retrospective cohort studies focusing on kidney transplant recipients alone, and a systematic review.

Study title A multi-center study on safety
and efficacy of immune

checkpoint inhibitors in cancer
patients with kidney transplant [5]

Immune-checkpoint inhibitors
in renal transplanted patients

affected by melanoma: A
systematic review [67]

Cemiplimab for advanced
cutaneous squamous cell

carcinoma in kidney
transplant recipients [28]

Immune checkpoint blockers
in solid organ transplant
recipients and cancer: the
INNOVATED cohorta [33]

Authors, Year Murakami et al., 2021 Rossi et al., 2021 Van Meerhaeghe et al., 2022 Remon et al., 2024
Patient Sample Size
by Tumor Type

cSCC – 24
Melanoma – 22

Melanoma – 32
Uveal Melanoma - 2

cSCC - 7 NSCLC – 11

Immune Checkpoint
Inhibitor Regimen
by Tumor Type

cSCC
Monotherapy: 87.5%
Dual Therapy: 12.5%
Melanoma
Monotherapy: 64%
Dual Therapy: 36%

Monotherapy: 100% Monotherapy: 100% Monotherapy: 73%
Dual Therapy: 27%

Objective Response
Rate by Tumor
Group

cSCC – 33%
Melanoma – 36%

23.5% 42.8% 45.5%

aThe NSCLC sub-group of the INNOVATED cohort consisted of KTR alone. Abbreviations: cSCC, cutaneous squamous cell carcinoma; NSCLC, Non-Small Cell Lung Cancer.
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TUMOR RESPONSE

In the CONTRAC-1 study, an ORR of 46% was shown for KTR
treated with cemiplimab for advanced cSCC [6]. Portuguese et al.
reported an ORR of 68.2% for SOTR receiving ICI for advanced
cSCC [8]. By comparison, the reported ORR in the immune-
intact population for advanced cSCC is 34%–50% [9]. With
regards to cutaneous melanoma, two recent reviews
demonstrated a similar ORR in SOTR receiving ICI therapy
(ORR 32%–36%) compared with the immune-intact
population (ORR on ICI monotherapy 30%–40%, and ORR
61% with dual CTLA4 and PD1 inhibition) [8, 38, 64]. The
theory of tumor-immune editing provides a potential explanation
for the similar ORR in immunosuppressed and immune intact
patients. This refers to the process by which an intact immune
system selects for the survival of less immunogenic cancer cells,
which subsequently go on to proliferate by evading both the
innate and adaptive host immune responses [65]. Tumor cells
proliferating in immunocompromised hosts may not undergo
tumor-immune editing to the same extent, potentially rendering
them more responsive to ICI (Figure 4) [66].

Looking at KTR alone, Table 3 highlights data regarding
objective response rates for cSCC, melanoma and NSCLC
from three recent retrospective studies and one systematic
review. This data seems to suggest that KTR have worse ORR
when looked at individually, compared to ORR data for all SOTR
analyzed cumulatively. Currently, prospective data establishing
ORR to ICI therapy in kidney transplant recipients with various
tumor types is limited, as seen in Table 1.

Special considerations with regards to tumor response exist. A
literature review which included 94 KTR on ICI found that those
with preserved allograft function maintained on CNI have worse
tumor response rates than those maintained on mTORi,
emphasizing the benefit of a transition to mTORi whenever
feasible [38]. This association is suggested in Schenk et al.’s
study in which an ORR of 25% was reported despite a low
degree of maintenance immunosuppression, suggesting that
the use of tacrolimus may impede ICI anti-tumor efficacy
[29]. This finding deserves further study as it remains unclear
if the difference in outcome is due to: 1) the CNI blunting ICI
anti-tumor efficacy, 2) patient selection factors, or 3) the intrinsic
anti-neoplastic activity of mTORi. Furthermore, it has not been
established if this effect is dependent on tumor type [66]. There is
mechanistic evidence suggesting that mTORi can promote the
maintenance of the anti-tumor effects of ICI therapy while
allowing for the preservation of allograft tolerance [68]. Using
peripheral blood immunophenotyping, Esfahani et al.
demonstrated that concurrent administration of anti-PD1
therapy and mTORi in a KTR with melanoma led to
tolerogenic changes including suppression of global T cell
activation and preservation of the regulatory T cell population,
while maintaining the circulating levels of a subset of tumor
directed T cells (interferon gamma producing CD4+ T cells and
cytotoxic CD8+ T cells) [68].

FUTURE CONSIDERATIONS

Additional risk stratification tools would help guide decision
making around maintenance immunosuppression
optimization prior to ICI initiation. To this end, several
biomarkers have been proposed which have not yet been
widely clinically validated. A systematic review identified a
correlation between positive PDL-1 allograft staining in liver
transplant recipients (LTR) and one KTR and ICI associated
rejection [8]. All LTR with positive PDL-1 staining experienced
rejection (n = 6), and all those without did not (n = 8) [8]. PDL-
1 expression has been shown to represent a tolerogenic
mechanism in murine cardiac allograft models [19, 69].
Obtaining protocol renal allograft biopsies and staining them
for PDL-1 prior to ICI initiation may help risk-stratify patients
and help direct decisions around maintenance
immunosuppression. This strategy would also allow for the
identification and treatment of sub-clinical rejection prior to
ICI start. Notably, the patient with treatment refractory
allograft rejection described by Carroll et al. may have been
experiencing sub-clinical rejection prior to ICI start [7]. In
certain clinical situations, allograft biopsies may pose a higher
risk, and center-specific resource limitations may also exist.
Non-invasive biomarkers may be used to screen for sub-clinical
rejection prior to ICI start and once therapy is initiated. These
results could subsequently justify indication biopsies and early
therapeutic intervention. Urinary chemokines, C-X-C motif
chemokine ligand 9 (CXCL9) and ligand 10 (CXCL10), have
both been clinically validated as markers of sub-clinical ACR in
KTR who are not on ICI therapy [70–73]. Carroll et al. pre-
specified an exploratory endpoint utilizing CXCL10 and noted
rising levels in both of the patients who experienced allograft
rejection [7, 70]. Another non-invasive biomarker, donor-
derived cell-free DNA (dd-cfDNA), has been validated for
the detection of renal allograft rejection though not in the
context of ICI use [74–76]. Schenk et al. trended dd-cfDNA
every 2 weeks in their study, but only noted a clear temporal
association between dd-cfDNA elevations and allograft
rejection in one of three patients [7]. Additional prospective
studies to validate non-invasive biomarkers are needed.

From a therapeutic perspective, there is very limited data on
dual ICI use in KTR. A phase 2 prospective trial (NCT05896839)
is currently underway to determine tumor response and allograft
toxicity in patients with advanced cutaneous cancers on dual ICI
therapy with mTORi and prednisone maintenance
immunosuppression. Additional future considerations include
the use of targeted immunotherapies in KTR with solid organ
tumors to reduce the risk of allograft rejection, these include
chimeric antigen receptor T-cell therapy (CART) in which T cells
are engineered to target tumor specific antigens, or use of
oncolytic viruses. Recently, the ARTACUS trial demonstrated
encouraging results with a 34.8% ORR for the treatment of
advanced cSCC in 27 SOTR with intra-tumoral oncolytic
viruses, with no allograft rejections [77].
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CONCLUSION

Several clear conclusions can be drawn from the existing data: 1) KTR
can benefit ICI therapy, 2) KTR are at risk of rejection and treatment
related allograft loss while on ICI therapy but this risk can be reduced
with optimization ofmaintenance immunosuppression and potentially
with close follow up allowing early intervention, 3) extra-renal irAEs in
KTR have been documented less frequently than in the immune-intact
population though data on recurrent GN in the allograft is very limited.
While we lack high level evidence to direct optimal maintenance
immunosuppressive regiments, retrospective data suggests superiority
ofmTORi over CNI, but no prospective randomized controlled studies
comparing the two regiments have been performed. Patients would
ideally be risk-stratified prior to ICI therapy initiation. Protocol biopsies
and non-invasive biomarkers, such as urine CXCL9, CXCL10 or dd-
cfDNA, can be used to screen for sub-clinical rejection. Additional risk
stratification with PD-L1 staining of allograft biopsy tissue can be
considered. However, all of these interventions require additional
clinical validation in the setting of ICI use prior to widespread
application. Decisions around timing of ICI therapy initiation, and
treatment of allograft complications while on ICI therapy require a
patient-centered, multi-disciplinary approach. Transplant centers
would benefit from a unified protocol-based approach to the
management of KTR with malignancies, co-developed with
oncologists. Future research is needed directly comparing different

maintenance immunosuppression strategies in a balanced group of
patients to help us determine how best to optimize cancer and
allograft outcomes.
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