
Normothermic Machine Perfusion
Reconstitutes Porcine Kidney Tissue
Metabolism But Induces an
Inflammatory Response, Which Is
Reduced by Complement C5 Inhibition
Eline de Boer1,2, Marina Sokolova1,2, Neeltina M. Jager3, Camilla Schjalm1,2, Marc G. Weiss4,
Olav M. Liavåg5, Hanno Maassen3,6, Harry van Goor6, Ebbe Billmann Thorgersen1,7,
Kristin Pettersen8, Dorte Christiansen8, Judith Krey Ludviksen8, Bente Jespersen4,
Tom E. Mollnes1,2,8,9, Henri G. D. Leuvenink3,4 and Søren E. Pischke1,2,10*

1Department of Immunology, Oslo University Hospital, Oslo, Norway, 2Institute of Clinical Medicine, University of Oslo, Oslo,
Norway, 3Department of Surgery, Division of Organ Donation and Transplantation, University Medical Center Groningen,
Groningen, Netherlands, 4Department of Medicine and Nephrology, Aarhus University Hospital, Aarhus, Denmark, 5Section for
Transplantation Surgery, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway, 6Department of
Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands,
7Department of Gastroenterological Surgery, Oslo University Hospital the Radium Hospital, Oslo, Norway, 8Research Laboratory,
Nordland Hospital, Bodø, Norway, 9Center of Molecular Inflammation Research, Norwegian University of Science and
Technology, Trondheim, Norway, 10Division of Emergencies and Critical Care, Oslo University Hospital Rikshospitalet, Oslo,
Norway

Normothermic machine perfusion (NMP) is a clinical strategy to reduce renal ischemia-
reperfusion injury (IRI). Optimal NMP should restore metabolism and minimize IRI induced
inflammatory responses. Microdialysis was used to evaluate renal metabolism. This study
aimed to assess the effect of complement inhibition on NMP induced inflammatory
responses. Twenty-two pig kidneys underwent 18 h of static cold storage (SCS)
followed by 4 h of NMP using a closed-circuit system. Kidneys were randomized to
receive a C5-inhibitor or placebo during SCS and NMP. Perfusion resulted in rapidly
stabilized renal flow, low renal resistance, and urine production. During SCS, tissue
microdialysate levels of glucose and pyruvate decreased significantly, whereas glycerol
increased (p < 0.001). In the first hour of NMP, glucose and pyruvate increased while
glycerol decreased (p < 0.001). After 4 h, all metabolites had returned to baseline.
Inflammatory markers C3a, soluble C5b-9, TNF, IL-6, IL-1β, IL-8, and IL-10 increased
significantly during NMP in perfusate and kidney tissue. C5-inhibition significantly
decreased perfusate and urine soluble C5b-9 (p < 0.001; p = 0.002, respectively), and
tissue IL-1β (p = 0.049), but did not alter other inflammatory markers. Microdialysis can
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accurately monitor the effect of NMP on renal metabolism. Closed-circuit NMP induces
inflammation, which appeared partly complement-mediated. Targeting additional immune
inhibitors should be the next step.

Keywords: normothermic machine perfusion, ischemia-reperfusion injury, renal metabolism, microdialysis,
inflammation

INTRODUCTION

The global shortage of suitable donor kidneys necessitates
transplant centers to accept suboptimal allografts which are
more susceptible to ischemia-reperfusion injury (IRI) [1–3].
As a consequence, a rise in incidence of clinical manifestations
of IRI such as delayed graft function (DGF), primary nonfunction
and rejection has been observed [3–5].

Normothermic machine perfusion (NMP) is a promising safe
and feasible ex situmachine perfusion technique [6, 7]. NMPmay
alter ischemia and reperfusion induced IRI. During NMP,
nutrients and oxygen are delivered to the graft, allowing the
continuation of cellular metabolism under near-physiological
conditions [8, 9]. Proof-of-concept studies using short-term
NMP in human kidney transplantations demonstrated its
potential to substantially mitigate IRI [10–12]. Additionally,
NMP could be used as a research platform to evaluate non-
systemic drug treatment. Yet, NMP itself might lead to
inflammation and possible injury, and reliable monitoring
tools to track ex situ renal metabolic tissue changes are absent.

The hallmark of ischemic injury includes a switch to anaerobic
glycolysis leading to increased local accumulation of toxic

metabolites [13]. Early detection of anaerobic metabolism
during reperfusion is crucial for enabling interventions to
optimize compromised grafts. Currently, there are no standard
renal metabolic evaluation guidelines, most NMP protocols
include estimations of the respiration status based on renal in-
and effluent calculations including perfusion dynamics, oxygen-
or glucose consumption, final glycolysis products, adenosine
triphosphate depletion or focus on mitochondrial evaluation
by measuring flavin mononucleotide [14, 15]. Real-time in
vivo metabolic monitoring of renal metabolism is warranted as
it offers the potential to improve nephron viability during NMP.
Although invasive, microdialysis is safe, clinically approved, and
importantly allows detection of reliable time-dependent
metabolic changes in the renal interstitial fluid by using a
small probe placed in the renal cortex [16, 17]. Studies on
microdialysis in renal grafts, have revealed time-dependent
increases in glycerol levels during static cold storage (SCS),
and increases in pyruvate levels during hypothermic machine
perfusion (HMP). None of the studies on microdialysis have
evaluated kidney metabolism during NMP [18–20].

Despite the promising results of NMP in organ preservation,
little is known about the inflammatory effect of NMP itself, which
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might add to tissue damage [21]. The complement system is
central in the innate inflammatory response and can be rapidly
activated upon contact with foreign (bio)material, damaged
cellular components, and blood-gas interfaces, all present
during NMP [22–25]. Furthermore, various studies using
animal models have demonstrated that complement activation
plays an important role as a mediator of kidney IRI [26, 27].
Pharmaceutical targeting of the central complement component
C5 seems promising, since C5aR1 and C6 blockade has been
shown to ameliorate IRI in mice models [28, 29].

This study evaluated the feasibility of microdialysis to monitor
renal cellular metabolism during NMP. The primary aim was to
investigate the impact of complement C5 inhibition on renal
inflammation during preservation.

MATERIALS AND METHODS

Animals
A total of 15 healthy Norwegian Landrace pigs (Sus scrofa
domesticus), aged 6 months (30.7 ± 1.6 kg) of either sex were
used. Exclusion criteria were: (i) haemoglobin <5 g/dL, (ii)
SaO2 < 90% while receiving conventional (0.3) FiO2, (iii)
mean arterial pressure (MAP) < 50 mmHg and/or heart
rate >150 bpm before cross-clamping of the aorta, and (iv)
death before kidney retrieval. The day before the experiment
the pigs were housed in the animal facility and provided food and
water ad libitum. All experiments were conducted by certified
researchers in concordance with the European Ethical Guidelines
for Use of Experimental Animals and the study was approved by
the Norwegian Food Safety Authority (Ref. number: 20/78106).

Surgical Procedure
Anaesthesia was induced with intramuscular ketamine
(60 mg/kg), atropine (1 mg), and droperidol (0.6 mg/kg).
Pentobarbital sodium (25 mg) bolus injections were
administered if needed for sedation and analgesia was
provided using morphine (bolus and continuous infusion
1 mg/kg/hour) until no reaction to sharp hoof-pinching was
elicited. After tracheostomy, controlled mechanical ventilation
(flow 3 L/min, TV 10 mL/kg, RR 18/min, PEEP 5 cm H2O, FiO2

30%) was established and anaesthesia was maintained by 1%
isoflurane. An indwelling urinary catheter, arterial pressure
monitoring, and a central venous catheter were inserted. Once
both kidneys and their vessels were isolated, two microdialysis
catheters (CMA 71, 100-kDa pore size, length of 30mm, M
Dialysis AB, Stockholm, Sweden) were inserted superficially
into the lateral renal cortex using a splitable introducer. These
catheters were perfused with Hydroxy-ethyl-starch 130/0.4
(Voluven®, Fresenius Kabi, India) through microinjection
pumps (CMA 107, M Dialysis AB) at a velocity of 1 μL/min.
After 1 h stabilization, sodium heparin (10.500 IE) was given,
whole blood was collected and the aorta cross clamped prior to
kidney retrieval. Both kidneys endured in situ warm ischemia
time when systemic blood pressure dropped <50 mmHg of
approximately 10–15 min. Once retrieved, the kidneys were
immediately flushed with ice-cold Ringer’s acetate at low

pressure through a Lifeport cannula (Organ Recovery Systems,
Itasca, IL) inserted in the renal artery until the effluent was clear
from residual blood. Ureters were cannulated with a neonatal
feeding catheter (8Fr). Kidneys from each animal were flushed
with preservation solution (KPS)-1 (Organ Recovery Systems).
Animals were sacrificed by an intravenous injection of 500 mg
pentobarbital, 30 mg morphine, and 50 mmol potassium
chloride. Ethylenediaminetetraacetic acid (EDTA; 0.5 M) blood
samples were collected throughout surgery, centrifuged at 3000 g
for 15 min at 4°C and stored at −80°C until further analysis.

Normothermic Machine Perfusion
All kidneys were preserved at 4°C for 18 h in University of
Wisconsin based preservation solution (KPS-1, Organ recovery
systems, Itasca, IL) prior to NMP; sham kidneys were not perfused
(n = 6). Closed-circuit NMP was initiated using a pressure-
controlled perfusion system (Software: SophistiKate, UMCG,
Groningen, the Netherlands), a centrifugal pump providing
pulsatile flow (Medos Deltastream DP2; Xenious AG,
Heilbronn, Germany), a pediatric oxygenator with integrated
heat exchanger (D100: Sorin Group, Arvada, CO) and an organ
chamber (Figure 1) [30]. Components were connected by
phosphorylcholine coated tubes, sampling ports were situated
before and after the organ chamber. Perfusion pressure was
obtained via pressure transducers (Edwards Lifesciences, Irvine,
CA), and perfusion flow was measured via inline flow sensors
(Transonic Systems Europe BV, Elsloo, the Netherlands). The
NMP circuit was primed for 20 min with autologous plasma at
39°C (centrifuged at 3000 g for 15 min at 4°C). The renal vein was
cannulated (12Fr catheter; Sorin Group). NMP was started with
oxygenated (atmospheric air/oxygen 70%/30%) whole blood
[hematocrit 20%, glucose 1 mg/mL, heparin 5 IU/mL, creatinine
1mM, 0.1mL sodiumnitroprusside (25mg/mL:Hospira Inc., Lake
Forest, IL)] at 39°C with a mean arterial pressure of 60 mmHg and
conducted for 4 h. Volume loss due to urine production was
managed by 1:1 volume replacement with the recirculation of
urine, administration of Ringer´s acetate, or autologous whole
blood in 20 mL intervals based on the blood gas results.
Throughout the perfusion, urine and perfusate-preparation
samples were collected in EDTA tubes and stored at −80°C.
Blood gas analyses were performed (ABL90 Flex/Plus: Bergman
Diagnostika, Kjeller, Norway), and electrolyte imbalances were
corrected to regulate the pH value. After 4 h of NMP, kidneys were
flushed with 200 mL NaCl 0.9% at room temperature and
thereafter tissue biopsies (cortex and calyx) were excised and
fixed in formalin or snap-frozen at −80°C. Perfusion
characteristics including renal blood flow, renal resistance, mean
arterial pressure and urine production were constantly monitored.

C5 Inhibitor
Kidneys from each animal were randomized to receive either
20 μg/mL C5 inhibitor [Ra101295 peptic C5 inhibitor,
comparable mode of action to Zilucoplan®, provided by Ra
Pharma part of UCB Pharma (Brussels, Belgium)] or saline
(NaCl 0.9%), thus every animal was its own control.
C5 inhibitor or saline was given during SCS (20 μg/mL), as
bolus at the start of NMP (20 μg/mL) and as a continuous
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infusion for the whole study period (1.75 μg/h,
Supplementary Figure S1).

Microdialysis
The microdialysis samples were collected in microvials (M
Dialysis AB) during surgery (before and after warm ischemia),
SCS (1 h, 3 h, 16 h, and 18 h) and reperfusion (10 min, 30 min,
60 min, 120 min, 180 min, and 240 min). Concentrations of
glucose, pyruvate and glycerol were immediately analyzed with
the Iscus analyzer (M Dialysis AB).

Immunoassays
In-house enzyme-linked immunosorbent assays (ELISA) were
used to measure C3a [31] and fluid-phase C5b-9 (sC5b-9) [32]
concentrations in EDTA perfusate, urine samples and whole
protein tissue extracts. Commercially available porcine ELISA
assays were used to detect interleukin (IL)-10 (e-bioscience,
Waltham, MA), tumor necrosis factor (TNF), IL-6 and IL-1β
(R&D, Minneapolis, MN) in whole protein tissue extracts and
EDTA perfusate. IL-8 quantification was performed using a
Luminex assay (Merck, Darmstadt, Germany). All assays were

FIGURE 1 |Closed-circuit normothermic machine perfusion. Graphic illustration of the different components of the closed-circuit normothermic machine perfusion
model. Blood was driven in a sinusoidal manner at a fixed rate of 60 oscillations per minute by a centrifugal pump. Pump speed was adjusted by setting a mean arterial
pressure target in the software. Blood was warmed to 39°C, oxygenated, and cleared for CO2 in an oxygenator prior to entering the kidney through an arterial cannula. At
the venous side, treatment, whole blood, Ringer’s solution and urine were infused and pushed into a bubble trap to prevent perfusion of air bubbles from entering
the circuit. Perfusate sampling ports were placed before and after the kidney chamber, and the microdialysis syringe pump was placed beside the organ chamber,
allowing sampling throughout the perfusion period.

TABLE 1 | Perfusion solution characteristics during machine perfusion.

C5 inhibitor Placebo

T60 T120 T180 T240 T60 T120 T180 T240

Blood gas analysis
pH 7.2 (7.1–7.3) 7.1 (7.1–7.3) 7.1 (6.9–7.2) 7.2 (7.0–7.2) 7.2 (7.2–7.2) 7.2 (7.1–7.3) 7.1 (7.0–7.2) 7.0 (6.9–7.1)
pO2 (kPa) 16.5

(11.8–17.1)
16.0

(14.8–17.0)
16.6

(13.7–17.8)
16.8

(15.0–18.5)
12.3 (9.2–15.0) 15.3

(13.3–16.3)
15.0

(13.6–17.8)
15.9

(14.0–18.7)
pCO2 (kPa) 3.5 (2.3–5.0) 2.9 (2.5–3.8) 3.2 (2.1–4.1) 2.8 (2.4–3.4) 3.8 (3.1–5.4) 4.1 (3.0–4.5) 4.3 (3.4–4.8) 2.8 (2.3–3.1)
Hb (g/dL) 6.6 (5.0–8.2) 6.3 (5.2–7.5) 6.0 (4.6–6.7) 8.2 (6.0–10.7) 7.7 (7.0–8.0) 6.7 (5.5–7.0) 6.4 (5.7–8.5) 6.9 (4.7–7.3)
Glucose
(mmol/L)

4.1 (2.5–4.7) 6.1 (3.1–8.9) 3.7 (2.3–7.3) 7.1 (3.3–9.4) 4.5 (2.9–5.8) 5.7 (3.4–6.7) 5.7 (1.9–9.6) 6.0 (4.1–10.8)

Normothermic machine perfusion
MAP 59.8

(53.3–63.2)
60.7

(56.3–62.3)
60.7

(55.0–65.0)
65.0

(62.3–67.6)
62.0

(58.7–64.0)
63.3

(58.0–69.5)
63.0

(60.6–64.3)
64.3

(60.6–69.0)

Abbreviations: MAP, mean arterial pressure.
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used according to the manufacturer’s instructions. Tissue
extraction was performed as previously described [33], using
CytoBuster protein extraction reagent (EMD Millipore Corp.,
Billerica, MA) and cOmplete protease inhibitor cocktail (Roche,
Basel, Switzerland).

Kidney Damage Biomarkers and Function
Neutrophil gelatinase-associated lipocaline (NGAL) levels were
detected by a commercially available porcine ELISA (Abcam,
Cambridge, UK) according to the manufacturer´s instructions.
Perfusate concentrations of creatinine were obtained through
arterial blood gas, while the concentration in urine was measured
using routine procedures at the clinical chemistry laboratory,
Oslo University Hospital. Total protein concentrations in urine
were measured by detergent compatible protein assay of Bio-Rad
(Hercules, CA). Formulas used to estimate creatinine clearance
and oxygen consumption are available in the
Supplementary Material.

Histological Evaluation
Histopathological injury was examined using hematoxylin &
eosin and periodic acid-Schiff (PAS) staining techniques on
paraffin-embedded biopsies. Glomerular capillary
microthrombi and fibrin deposition were examined through
a Maurits, Scarlet, and Blue (MSB) stain, as described in detail
elsewhere [34]. Loss of glomerular integrity was scored on a
scale of 0–100; 0 (none), 0–1 (occasional), 1–10 (mild), 10–50
(moderate) and severe (>50), the abundance of tubular
protein casts was scored on an ordinal scale. Signs of
tubular ischemic injury including intratubular cellular
detachment and tubular necrosis were observed, but not
quantified due to concerns raised about the accuracy of
such subjective measurements in our setup. All histological
analyses were performed by an experienced pathologist
blinded to group allocation.

Study Design and Statistical Analysis
In this prospective, blinded, controlled randomized study,
kidneys were allocated randomly into two intervention
groups using the random allocation tool in Microsoft Excel,

the investigators handling the kidneys were blinded to the
intervention. The sample size was calculated by power
analyses, revealing that 10 kidneys in each treatment group
would be sufficient to detect a 20% difference in the
inflammatory markers (sC5b-9, TNF-α, IL-1β, IL-6, and IL-
8) between the groups with a power of 0.8. In total, twenty-eight
kidneys were included (sham, n = 6), two kidneys were
excluded from analyses; one due to a technical perfusion
defect and one due to morphologic abnormalities in the
renal artery. NMP was terminated early when blood flow
dropped below 10% of the maximum flow or severe
perfusate leakage occurred, which was not possible to
resuscitate within 5 minutes and/or kidney perfusion ceased.
Six kidneys ceased functioning during NMP, in which five
belonged to the C5-inhibitor treated group. One kidney
ceased functioning after 74 min and one after 150 min and
these were therefore excluded from analyses later than 60 min
and 120 min of NMP, respectively. Four kidneys ceased
functioning between 180 and 198 min of NMP and were
excluded from analyses later than 180 min of NMP. Kidneys
with perfusion times of ≥220 min were included in 240 min
analyses. Values are presented as median ± interquartile range
(IQR). Differences between C5 inhibitor-treated and control
animals as well as differences over time throughout the study
period were investigated using generalized linear mix model
analyses (intervention as fixed effect and subject number as
random effect). Non-parametric tests i.e., Mann-Whitney U
test and Wilcoxon signed-rank test were used to compare
differences between the groups. All statistical analyses were
conducted using IBM SPSS Statistics for Macintosh 28 (IBM
Cooperation, Armonk, NY) and GraphPad Prism 9 (GraphPad
Software, San Diego, CA). P values less than 0.05 were
considered statistically significant.

RESULTS

Perfusion Characteristics During NMP
Kidney weight did not differ between control and the
C5 inhibitor group at baseline (109 g versus 108 g, p =

FIGURE 2 | Perfusion characteristics. Arterial renal blood flow (A) and renal resistance (B) over a 240 min period of normothermic machine perfusion. Data are
presented as median ± IQR. General mixed model analyses.
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0.784) or after NMP (150 g versus 151 g, p = 0.720). Perfusate
characteristics were comparable between groups throughout the
NMP period (Table 1). Mean arterial pressure was kept stable
during NMP. The renal blood flow showed a steep increase
during the initial 30 min and was stable thereafter until the end
of the 4 h of NMP, with no difference between the control and
C5-inhibitor treated group (p = 0.849, Figure 2A). The renal
resistance decreased within the first 10 min and remained
continuously low throughout the perfusion with no
difference between the control and C5-inhibitor treated
group (p = 0.282, Figure 2B).

Renal Function and Injury
Perfusate and urinary NGAL excretion rates significantly
increased after 60 min (p = 0.001; p < 0.001, respectively
Figures 3A, B). Throughout reperfusion, significantly higher
levels of proteinuria were observed during the first hour of
reperfusion (p = 0.032, Figure 3C). Generally low oxygen
consumption levels were observed during NMP and plateaued
at 0.20 (0.12–0.51) mL O2/min/100 g (Figure 3D). The creatinine
clearance plateaued after 120 min NMP at 1.85 (0.94–2.98) mL/
min/100 g (Figure 3E). Urine production rates slowly increased
over the 4 h reperfusion period (Δ 0.72 mL/min/100g, p < 0.001,

FIGURE 3 | Renal function and injury. The renal function and injury markers in the control and the C5 inhibited group were compared over a 240 min period of
normothermic machine perfusion. NGAL levels in perfusate and NGAL levels in urine (A, B), excretion rates of protein in urine (C) and oxygen consumption creatinine
clearance and urine production (D–F). Data are presented as median ± IQR. Generalizedmixedmodel analyses. NGAL, neutrophil gelatinase-associated lipocalin; NMP,
normothermic machine perfusion.
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Figure 3F). No significant differences were observed between the
control and the C5 inhibitor groups for assessed kidney function
and injury markers.

Renal Local Metabolism Assessed by
Microdialysis
SCS led to a significant decline in tissue microdialysate levels of
glucose (Δ −2.05 mM, p < 0.001) and pyruvate (Δ −56.82 µM, p <
0.001) Figures 4A, C), whereas glycerol levels increased (Δ
+427.8 μM, p < 0.001) (Figure 4B) compared to in vivo baseline
levels assessed prior to kidney procurement. A significant
increase in glucose (Δ +3.81 mM, p < 0.001) and pyruvate (Δ
+84.18 µM, p < 0.001) levels were observed during the initial
30 min of NMP, while glycerol levels decreased (Δ −378.8 μM,
p < 0.001). Lactate was reduced upon SCS (Δ −1.91 mM, p <
0.001) and increased gradually during NMP (Δ +5.66 mM, p <
0.001) in comparison to baseline levels (Supplementary Figure
S2). After 4 h of NMP, all metabolites settled at levels
comparable to in vivo baseline levels except lactate, which
showed a steady increase (Supplementary Figure S2). No
statistical differences in microdialysis assessed metabolites
were observed between the control and the C5 inhibitor
group during SCS or NMP. Throughout NMP, correlations
were observed between the level of tissue microdialysate
levels of glycerol and urinary NGAL excretion rates (p =
0.0324, r = 0.316). None of the other kidney functional
markers showed significant correlations (data not shown).

Complement System Activation
C3a and sC5b-9 levels in the perfusate and urine increased during
the initial 30 min of NMP and remained elevated for up to 4 h
(Figures 5A, B, E, F). Over the whole NMP period, C5 inhibition
led to significantly reduced levels of sC5b-9 in perfusate and urine
(p < 0.001; p = 0.002, respectively), except for a modest but
significant increase at 240 min NMP in perfusate compared to the
start of NMP (p < 0.001). Lower urine sC5b-9-to-proteinuria
ratios were observed in C5 inhibitor treated kidneys compared to
non-treated kidneys (p = 0.033, Figure 5G). In contrast, C3a
perfusate and urine levels did not differ between the control and
the C5-inhibitor treated group according to inhibition at the

C5 level (Figures 5B, F). No significant differences were observed
in sC5b-9 from tissue extracts between the control and the
C5 inhibitor group (Figure 5C). C3a tissue levels were
significantly elevated after 4 h of NMP compared with sham-
treated kidneys (p < 0.001) and were significantly higher in
medulla tissue compared to cortex tissue (Figure 5D). In the
medulla tissue, C5 inhibitor treated kidneys had significantly
higher C3a tissue levels (p = 0.03) compared to placebo.

Cytokine Production and Release
All tissue cytokine concentrations, except IL-10, were
significantly elevated after NMP compared to sham kidneys
(p < 0.001 for all, Figures 6A–D). Cytokine concentrations did
not significantly differ between medulla and cortex region,
except for IL-10, which showed lower levels in medulla
compared to cortex (p = 0.021, Figure 6E). C5 inhibitor
treatment led to a 46% reduction of IL-1β levels in medulla
tissue (p = 0.049), while only non-significant trends were
observed for the other cytokines. Perfusate levels of IL-1β,
IL-6, IL-8, TNF and IL-10 significantly increased after 120 min
of NMP and remained elevated up to 4 h; no differences were
observed between the control and the C5 inhibitor group
(Supplementary Figure S3).

Histopathology
Glomerular basement membrane integrity loss together with a
reduction in cell density of the mesangium was observed in
several of the kidneys exposed to NMP; no differences were
observed between the groups (Figure 7). In separate analyses,
MSB staining showed no signs of intracapillary fibrin
deposition. Protein casts were observed in the lumen of the
tubules; most prominent in the calyces, without differences
observed between the control and the C5 inhibitor group. No
evident lesions were present among the sham-treated kidneys.

DISCUSSION

In this study, we demonstrated that microdialysis detected
changes in the renal metabolites glucose, pyruvate and
glycerol, comparable between both intervention groups in

FIGURE 4 | Renal tissue metabolism. Glucose, pyruvate and glycerol (A–C) were measured in the renal microdialysate during SCS and NMP. Data are presented
as median ± IQR. General mixed model analyses. SCS, static cold storage; NMP, normothermic machine perfusion; BL, in vivo baseline measurements (mean ± 2x sd).
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response to SCS and NMP. The primary aim of this study was to
assess the effect of complement inhibition on NMP induced
inflammatory responses. We observed that NMP induced
inflammation with increase in complement and cytokine levels
in perfusate, urine, and kidney tissue. C5 inhibition completely
blocked sC5b-9 formation and substantially and significantly

reduced IL1-β, a central component of the
NLRP3 inflammasome.

During organ transplantation, the metabolic state of kidney
grafts is affected and NMP is used to reconstitute metabolism
with the aim to reduce organ damage upon reperfusion [14].
Here, SCS caused a decrease in glucose and pyruvate levels while

FIGURE 5 | Effect of C5 complement inhibition on complement activation. The complement markers in the control and the C5 inhibited group were compared
during and after a 240 min period of normothermic machine perfusion. sC5b-9 levels and C3a levels in the perfusate (A, B), sC5b-9 and C3a levels in medulla and cortex
tissue (C, D), sC5b-9 and C3a levels in the urine (E, F) and urine sC5b-9-to-proteinuria ratio (G). Data are presented as median ± IQR. General mixed model analyses,
Wilcoxon signed rank test and Mann-Whitney-U test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. BL, in vivo baseline measurements; CAU, complement arbitrary
units; NMP, normothermic machine perfusion.
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glycerol increased. These findings are consistent with previous
studies and confirm the lack of metabolic function during SCS
and cellular membrane break-down reflected by glycerol increase
[18, 35, 36]. Upon the initiation of NMP, microdialysis detected
an immediate glucose increase, followed by pyruvate, whereas the
level of glycerol dropped significantly. Thus, NMP leads to return
of renal cellular metabolism and decreases fatty-acid breakdown.
Lactate increased progressively during NMP. Similar metabolic
trends have also been found in the perfusate of previous NMP
studies [12, 37–39] and are due to the limited ability of the kidney
to metabolize lactate. The accumulation of lactate might be
explained by the release through activated erythrocytes and
leucocytes present in the perfusate [40, 41]. Renal lactate
production caused by reduced oxidative phosphorylation [42]
is less likely since pyruvate stabilized at prior in vivo levels. Renal
oxygen consumption was stable. Thus, lactate was not produced
by renal but leucocyte hypermetabolism.

NMP led to a significant activation of the complement system
as revealed by increase in the activation products C3a and sC5b-9
in perfusate, urine, and renal tissue. These findings are consistent
with studies assessing complement activation in other
extracorporeal blood circulations such as cardiopulmonary
bypass, hemodialysis and plasmapheresis [25] and in-line with
previous findings in pig and human kidney NMP from our group
[43]. The introduction of foreign material or a gas-blood interface
into the circulation could initiate complement activation [44].
Artificial and air surfaces have been shown to induce IgG and
C3 conformational changes resulting in the activation of the
classical and alternative pathways [44–46]. Here, we have
minimized gas-plasma interfaces, by using a closed-NMP
system. Local synthesis of complement proteins by the kidney
itself could be an important contributor [47]. Human kidney
NMP uses plasma-free perfusates, but still shows complement
activation, which can be explained by small amounts of plasma

FIGURE 6 | Effect of C5 complement inhibition on cytokine levels in renal tissue. The complement markers in the control and the C5 inhibited group were compared
after a 240 min period of normothermic machine perfusion. IL-1β, IL-6, IL-8, TNF and IL-10 cytokine concentrations measured in medulla and cortex tissue (A–E). Data
are presented as median ± IQR. Wilcoxon signed rank test and Mann-Whitney-U test. * = p < 0.05. IL, interleukin; TNF, tumor necrosis factor.

Transplant International | Published by Frontiers November 2024 | Volume 37 | Article 133489

de Boer et al. Complement Inhibition Reduces NMP Inflammation



left in the kidney as well as de novo synthesis of complement in
the kidney [43]. Thus, although NMP reconstituted metabolism,
a strong innate immune reaction was induced, which might
hamper organ function and could at least in part explain high
delayed graft function rates in clinical trials of kidney NMP after
SCS preservation [6].

C5-inhibition blocked perfusate and urine sC5b-9 formation
throughout NMP. sC5b-9 concentrations extracted from tissue
were low and comparable between groups. Thus, we did not
assess the deposition of C5b-9 in tissue sections. Furthermore, it
is known that complement activation can induce endothelial cell
and immune cell activation without detectable tissue complement
activation [48]. Clinical trials evaluated the efficacy of the
C5 inhibitor eculizumab when given minutes prior to
reperfusion of kidney grafts and reported no benefit on
delayed graft function [49]. In our study, kidney reperfusion
was mimicked by using whole blood during NMP and our results
are consistent with findings from these clinical trials. Here,
C5 inhibition was extended and started immediately after
organ procurement. However, C5 inhibition did not affect
metabolic or physiological markers of kidney function,
implying that transplant-induced IRI is only partly
C5 dependent. Studies in mice imply that the lectin and
alternative complement pathways contribute to renal IRI; mice
deficient inMBL, factor B, or C3 showed reduced renal injury [50,
51]. Activation of these pathways results in the cleavage of C3 into
C3a and C3b fragments. Since C3a-receptors are expressed on
renal tubular epithelial cells and granulocytes, C3a is thought to

play a role in the pathogenesis of renal IRI [28, 52]. In this study,
C5 was inhibited and thus C3 cleavage led to similar C3a
generation in both groups. Thus, targeting C3-cleavage might
provide better outcomes. Unfortunately, there is no effective
porcine C3 inhibitor currently available.

NMP caused a significant increase in the level of cytokines in
the perfusate and tissue after 60–120 min from the start of NMP.
Concordant with our findings, Stone et al. observed an
inflammatory storm after kidney NMP, demonstrated by the
increase of a range of pro-inflammatory cytokines at high
concentrations [53], which has been confirmed in discarded
human kidneys [43]. Interestingly, C5 inhibition resulted in a
decrease of 46% in IL-1β levels in kidney tissue. Increased IL-1β
levels have been linked with decreased graft function following
IRI and co-occur in many diseases caused by complement
dysregulation [50, 54]. We speculate that cytokines were
induced by DAMPS originating from the initial oxidative
allograft injury as the use of autologous blood only allows for
stimulation by “self” molecules [13, 55]. In line with Jager et al.,
TNF perfusate levels rapidly increased upon NMP whereas the
other cytokines increased first after 1 hour [43]. This strengthens
the notion that a TNF-dependent pathway might be involved in
generation of cytokines [43]. The levels of cytokines decreased at
the end of perfusion. A dilution effect is less likely as we observed
steady hemoglobin concentrations, implying that the observed
decrease reflects a biological mechanism. Taken together, all
studied cytokines increased in our study after NMP. As
cytokines are induced by several innate immune sensor

FIGURE 7 |Histology. Loss of glomerular basement membrane integrity depicted by the arrow (A) and protein casts in the lumen of tubules depicted by the arrows
(B) assessed after a 240 min period of normothermic machine perfusion in PAS-stained biopsies. No differences were observed between the control and the
C5 inhibited group.
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systems and renal IRI has been shown to enhance both TLR2 and
TLR4 expression, the combined inhibition of complement with
TLR co-factor CD14 may be more effective [56–58].

A limitation of this study is that we used whole blood as
perfusate. Initial experiments had shown vast complement
activation during leukocyte filtration of pig whole blood,
which could have influenced the results [59]. However, also
NMP performed with leucoyte- and even plasma-free
perfusate has been reported to activate complement and
cytokine production during NMP [43]. Thus, the results of
this study might be useful also in clinical settings of kidney
NMP. However, C5 inhibition in a clinical study [49] and this
study did not lead to improvement in immediate kidney function
and tissue damage. Thus, future research might have higher
chances of success if optimization of NMP includes metabolic
and inflammatory interventions in combination. A small number
of kidneys were investigated in this study, but the paired approach
using both kidneys from each individual created an ideal platform
for assessing the C5 intervention. All kidneys returned function.
Nonetheless, the observed histological injury along with
enhanced NGAL levels and proteinuria confirmed renal IRI in
our model. Some kidneys cease functioning due to high resistance
before the 4-h endpoint. While up to 8 h kidney NMP is
described, most NMPs are carried out in an open system [60].
Our closed-circuit setup required continuous monitoring to
correct for volume loss and was highly susceptible to
obstruction caused by collapse of the renal vein. Future
research comparing the degree of complement activation in
both systems should provide an answer to whether there is a
rationale for using the more labor-intensive closed-circuit system.

In conclusion, metabolism can be assessed by microdialysis in
kidney NMP and reveals metabolic demands during NMP. NMP
induced complement activation and production and release of
cytokines. Renal inflammation upon IRI appeared to be partially
mediated by the complement system as C5 inhibition mainly led
to non-significant changes except for a marked and significant
decrease of IL-1β. However, C5 inhibition did not lead to
improvement of kidney function and tissue damage. Further
metabolic optimization of the NMP model and the assessment
of additional immune inhibitors, should be the next step to
reduce NMP-induced renal IRI.
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