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There have been significant advances in short-term outcomes in renal transplantation.
However, longer-term graft survival has improved only minimally. After the first post-
transplant year, it has been estimated that chronic allograft damage is responsible for 5%
of graft loss per year. Transplant glomerulopathy (TG), a unique morphologic lesion, is
reported to accompany progressive chronic allograft dysfunction in many cases. While not
constituting a specific etiologic diagnosis, TG is primarily considered as a histologic
manifestation of ongoing allo-immune damage from donor-specific anti-HLA
alloantibodies (DSA). In this review article, we re-evaluate the existing literature on TG,
with particular emphasis on the role of non-HLA-antibodies and complement-mediated
injury, cell-mediated immune mechanisms, and early podocyte stress in the pathogenesis
of Transplant Glomerulopathy.
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INTRODUCTION

Transplant Glomerulopathy (herein referred to as “TG”), by definition, is a morphologic description
of histologic or ultrastructural alterations and not a specific clinicopathologic entity. The hallmark
morphologic manifestation of TG is glomerular basement membrane double contouring, either by
light or electron microscopy [1]. The term was initially described in detail by Zollinger et al in
1973 [2]. TG is a contributing factor in early (less common) and, particularly, late allograft loss. TG
lesions, when encountered in allograft biopsies, have been repeatedly associated with poor graft
outcome [3], but studies have so far not revealed any specific therapeutics that reverse or even
improve outcomes in TG [3–5].

INCIDENCE AND EPIDEMIOLOGY

Studies from the French-Canadian cohort have informed the community regarding the cumulative
incidence of post-transplant TG. In this study, TG was present in 5% of the 1-year protocol biopsies
and was associated with poorest survival [6]. A second study reported the progressively increasing
prevalence of TG with transplant vintage: 2.8% at 1 year, 6.1% at 2 years, 8.5% at 3 years, and 11.5% at
5 years [7]. This larger study from the Mayo clinic involving 582 surveillance biopsies collected over
5 years found a mean prevalence of TG near 10% with a cumulative incidence of 20% by 5 years. In
this study, TG was associated with both acute and chronic Banff lesions, albeit milder TG (Cg = 1)
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was more prevalent in early surveillance biopsies (1 year) and
cross-sectionally less associated with Banff chronic lesions, while
higher Cg scores were more common in later surveillance
biopsies. In general, higher Cg scores in a biopsy was
associated with greater numbers of glomeruli samples in the
biopsy being involved with TG. In a retrospective review
(unpublished) of our institutional database since 2000,
189 cases with TG diagnoses were detected, which provided an
incidence of TG at near 3% of allograft biopsies per year.

When TG occurs in biopsies, it has independently been
associated with allograft loss [7]. A study examining causes of
graft loss censored for death identified TG as the potential driving
lesion in ~15% of such cases [8]. Recent meta-analyses,
including >5,000 published patients, reaffirmed the increased
risk of graft loss with a diagnosis of TG, potentially independent
of time from transplantation, showing an estimated difference of
median survival of nearly 12 years in patients with TG lesions vs.
those without [9]. The prognosis between subclinical and clinical
TG has also been reported to be similarly poor. However, as
discussed below, within the TG diagnosis, multiple sub

phenotypes and clusters may attenuate or aggravate the
outcome associated with TG. Hence, together, these studies
establish an early prevalence of the TG diagnosis within year-1
of near 5%, followed by a slower increase in the incidence per year
of TG related to time from transplantation [7] and an association
with increased risk of graft loss with the development of TG.

HISTOLOGY OF TG:
CLINICO-PATHOLOGIC CORRELATIONS
AND PROGNOSIS
Clinically, patients with biopsy-proven TG tend to show
proteinuria, edema, a slowly rising creatinine, and shortened
allograft survival. However, TG is a pathologic entity defined
primarily as reduplication/multilayering of the glomerular
basement membrane (Figures 1A, B) as observed by light
and/or electron microscopy in the kidney allograft, in the
absence of immune deposits. According to current Banff
schema, either TG or peritubular capillary multilayering

TABLE 1 | Banff quantitative criteria for transplant glomerulopathy (cg) (Adapted from Roufosse et al [1]).

cg0 No glomerulopathy. Double contours in <10% of peripheral capillary loops in most severely affected glomerulus
cg1 Double contours affecting up to 25% of peripheral capillary loops in the most severely affected non-sclerotic glomerulus. If

noted by EM only, cg1a is assigned; if by light microscopy, cg1b is assigned
cg2 Double contours affecting 26%–50% of peripheral capillary loops in the most affected non-sclerotic glomerulus
cg3 Double contours affecting >50% of peripheral capillary loops in the most affected non-sclerotic glomerulus

FIGURE 1 | Light microscopic and ultrastructural findings in allograft biopsies demonstrating C4d staining and transplant glomerulopathy. (A) Hematoxylin and
eosin stain of allograft biopsy with glomerulus showing global wall thickening and increase in mesangial cellularity, suspicious for transplant glomerulopathy, 200x. (B)
PAS stain of glomerulus demonstrating reduplication of the capillary basement membranes (see inset, black arrows), 200x. (C) Transmission electron photomicrograph
showing expansion of the lamina rara interna by grungy variably electron-dense material, as well as areas of original (red arrows) and de novo (black arrows)
basement membrane formation, indicative of transplant glomerulopathy, TEM, 13,900x. (D) Immunofluorescent staining for C4d showing diffuse circumferential positive
staining in peritubular capillaries in a patient with concurrent transplant glomerulopathy on biopsy (patient developed positive Class II donor-specific antibodies ~2 years
after diagnosis; 100x). (E) immunohistochemical staining for C4d showing diffuse positive staining in peritubular capillaries in a patient demonstrating early transplant
glomerulopathy and findings indicative of chronic antibody-mediated rejection on biopsy, 100x.
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(ptcml) are required features in the diagnosis of chronic active
antibody-mediated rejection (cABMR) [10]. TG is defined using
the cg scoring system, with a lesion Score cg > 0 requiring de novo
basement membrane formation in at least three capillary loops by
EM (cg1a), or double contours in only a single capillary loop as
the minimal light microscopic finding (cg1b) after the exclusion
of chronic thrombotic microangiopathy, recurrent, or de novo
Glomerulonephritis (Table 1; Figures 1B, C). The ptcml lesion,
defined ultrastructurally by seven or more peritubular capillary
basement membrane layers in a single capillary, or five or more in
at least two peritubular capillaries, has been shown to correlate
with worse overall prognosis in cases of TG [11]. An increase
in the mesangial matrix may be present but is less specific and
is not required for diagnosis. TG can be differentiated from the
recurrent and de novo glomerulonephritis by negative
Immunofluorescence for IgG, IgA, IgM, C1q, C3, κ, and λ
and absence of immune complex deposition [12].
Mesangiolysis and glomerulosclerosis may be present,
mimicking focal segmental glomerulosclerosis, while
microvascular inflammation, including glomerulitis (g) and/
or peritubular capillaritis (ptc), may be observed in cases
mediated by alloimmune mechanisms [13, 14]. Glomerular
C4d is found in lesions associated with TG, and the strength of
its association increases when associated with peritubular
capillary C4d (Figures 1D, E). [15]. Glomerular C4d
positivity is not a part of the current Banff criteria, i.e., C4d
should be evaluated in peritubular capillaries or vasa recta
only. Glomerular C4d staining could be a tool to detect a
humoral etiology in cases of DSA-negative microvascular
inflammation, if further validated [15–18]. Using electron
microscopy (EM), features of TG can be identified as those
of endothelial injury, whose definition was refined as
endothelial cell enlargement, subendothelial electron-lucent
widening, and subendothelial neo-densa glomerular basement
membrane formation [16].

It is imperative to consider that TG changes are primarily
observed on the lamina rara interna side of the GBM, indicating
the role of endothelial side injury. These findings are similar to
other entities associated with endothelial injury, such as chronic
thrombotic microangiopathy (cTMA). Electron-dense deposits
or characteristic immunofluorescence findings are not present in
TG and, if present, would suggest a recurrent or de novo immune
complex glomerulonephritis, especially immunoglobulin-
mediated (type 1) membranoproliferative glomerulonephritis
or a C3 glomerulopathy. TG is diagnosable in the most recent
Banff criteria purely by EM in the absence of double contours by
light microscopy. This requires glomerular basement membrane
duplication in at least three glomerular capillaries and is
designated cg1a by Banff criteria (see Table 1).

While the diagnosis of TG relies on a semiquantitative score
identified by either light microscopy and/or EM, it
oversimplifies a rather complex phenotype resulting from
multiple etio-pathogenetic mechanisms. For instance, a
retrospective study of 209 allograft biopsies performed for
chronic allograft dysfunction identified 25 which met the
pathological criteria of TG. Three partially overlapping
etiologies accounted for 21 (84%) cases: C4d-positive (48%),

hepatitis C-positive (36%), and chronic thrombotic
microangiopathy (cTMA)-positive (32%) TG. The majority of
patients with confirmed cTMA were also hepatitis C-positive,
and the majority of hepatitis C-positive patients had TMA [19].
However, with the success in curing hepatitis C with anti-viral
agents, HCV-related TG is expected to be insignificant in the
modern context.

Pathologic features encountered in TG have also been
associated with prognosis. Using a cohort of 92 patients with
TG, of whom 64 developed allograft failure within 5 years of
diagnosis, a prognostic index (PI) utilizing component Banff
lesion scores was developed and then validated in an
independent external of kidney transplant recipients with TG
[20]. In this elegant study using principal component analyses, a
“chronic-inflammation” score combining Banff ci, ct, and ti
scores during TG was associated with time-dependent risk to
graft failure. Interstitial fibrosis and tubular atrophy (Ci + Ct)
have been consistently associated with poor kidney outcomes. In
a recent analysis aimed at evaluating the histological risk factors
for kidney allograft loss, the key finding was that, regardless of the
specific cause for chronic histological damage, the presence of
interstitial fibrosis and tubular atrophy had an additive and
independent impact on graft outcomes, including those
patients with TG [21]. One study evaluated 147 cases of either
active or cABMR using activity and chronicity indices and found
that a chronicity index score of 4 or greater (including
components of cg score, as well as ci, ct, and cv scores) was
associated with worse overall graft survival, independent of other
parameters [22]. Others, however, have called into question the
reproducibility of such a chronicity index [23]. Indeed,
reproducibility and interobserver variability in feature
identification, including the cg score, are known issues in the
field of allograft pathology [24–27]. Overt evidence of DSA-
mediated mechanisms on serology/pathology have shown
distinct prognostic associations. In a case series of 71 patients
with TG, Lesage et al [28] noted that eight were donor-specific
antibody positive/C4d negative, six were donor-specific antibody
negative/C4d positive, and only 12 were donor-specific antibody
positive/C4d positive. The long-term outcomes for all three
groups were similar and significantly worse than those with
both Cd and donor-specific antibody negativity [28]. Serum
creatinine and proteinuria at the time of biopsy have also
shown to be independent risk factors for graft survival in TG,
signifying co-occurrence of cumulative damage [29, 30].

POTENTIAL PATHOGENETIC
MECHANISMS RELATED TO TG

Our understanding of TG continues to evolve. Many active
players identified are associated with TG and are potentially
incorporated as pathogenetic factors, including HLA and
non-HLA antibodies, donor-specific antibodies (DSA),
cell-mediated mechanisms, and podocyte stress
[summarized in Figure 2 schema]. In this section, we will
discuss in greater detail the role and extent of the scope of
each of these entities.
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Anti-HLA-DSA, Chronic Antibody-Mediated
Rejection (cABMR), and TG
Numerous studies identify the role of DSA in TG [31–35], and
TG is included in the constellation of findings that constitutes
cABMR in Banff schema [16]. In our data, we observed several
cases from our institution with concurrent TG and evidence of
cABMR (Figure 1). While class I [34, 36–41] and Class II DSA-
positive cases have been associated with TG [7, 34, 36, 42–44], a
role for HLA Class II DSA (whether pre-transplant and de novo)
with TG pre-eminently emerges from literature [36, 45–47]. For
instance, in a study evaluating sub-phenotypes of TG from
1,036 indication biopsies, where TG was diagnosed in 53
(5.1%) cases at a median of 5 years post-transplant, the
frequency of circulating anti-HLA alloantibody (both DSA and
non-DSA) were connected to peritubular capillary basement
membrane multilayering, peritubular capillary deposition of
C4d, and double contouring of glomerular basement
membranes [48]. Peritubular capillary basement membrane
multilayering was present in 48 (91%) and C4d staining was
detected in 18 (36%) cases of TG. The presence of anti-HLA
antibodies was detected in 33 (70%), among whom 28 (85%) were
DSA. Among anti-HLA antibodies, those directed against Class II
(13/33) or against class I and II (17/33) were more common than
those against class I (3/33) antigens. Thus, from this dataset of
biopsies obtained for cause, 70% of TG has potential evidence of
antibody-mediated phenomena—especially Class-II DSA.

Furthermore, studies also suggest reduced 5-year graft survival
with class II sensitization over Class I [36], and the presence of
TG at 1 year after transplantation resulted in graft loss of
approximately 30% in the former vs. 20% in Class-I-positive
patients [36].Within Class II, anti-DQDSA has been increasingly
associated with the development of TG [46, 49–51]. Coemans
et al in 2021 performed a single-center cohort study including
2,761 protocol and 833 indication biopsies. Patients with
pretransplant HLA-DSA were more prone to develop histology
of acute antibody-mediated rejection, TG histology, or a
combination of both. This manuscript provided a detailed
statistical analysis of the causal relationship between HLA-
DSA and TG and showed that the deleterious graft outcomes
of HLA-DSA are mediated by the occurrence of AMR and
transplant glomerulopathy [52].

Together, these data point to the concept that, while DSA are
associated with TG, nearly 30%–40% of TG lesions must develop
from different pathogenetic mechanisms [48]. Analogously, not
all patients with detectable class II DSA develop TG, suggesting
the need for additive/alternate injury mechanisms. Indeed,
traditionally, peritubular capillary basement membrane
multilayering has been considered a lesion associated with
repeated endothelial injury by DSA; however, in our recent
work, we reported that these lesions were identifiable at a
similar rate in patients with or without DSA but associated
with microvascular inflammation (MVI), suggesting that the

FIGURE 2 | Schematic of potential pathogenetic mechanisms related to TG. TG defined by basement membranemultilayering on the lamina rara densa side is likely
initiated by immunologically mediated endothelial injury. While the role of DSA is frequently reported, selected anti-donor antibodies directed against non-HLA proteins
have been incriminated. Accompanying complement mediated injury likely plays a role, along with anti-donor antibodies. A proportion of TG is unassociated with DSA
and is now attributable to innate and adaptive cell-mediated mechanisms. Activated NK cells seem to be associated with TG in combination with DSA, while T-cell
infiltration/activation has been observed without DSA. An understudied contributor to TG is the role played by podocyte stress from obligate glomerular hypertrophy,
compounded by donor-recipient weight mismatch and metabolic or immunologic injury. Whether podocyte loss is causal in TG remains a hypothesis in need of testing.
Endothelial injury from other sources (cTMA, viral injury, or medications) can cause/compound endothelial injury and multilayering.

Transplant International | Published by Frontiers November 2024 | Volume 37 | Article 133654

Chutani et al. Re-Evaluating the TG Lesion -Beyond DSA



presence of endothelial injury may be causative rather than the
specific type of injury associated with DSA [53].

C4d Staining in Transplant Glomerulopathy
In the complement cascade, C4d is generated from C4 following
activation of C1Q via DSA or polysaccharides in the mannose
binding lectin pathway [4, 54]. Complement activation in the
presence of DSA (HLA or non-HLA) may play a role in TG.
However, DSA- and C4d-negative TG is well recognized [36, 41].
Similarly, studies of TG report C4d-negative but DSA-positive
cases [4, 36], suggesting these two features are not always correlated
in TG. It must be noted that C4d is covalently bound to the tissues
and, while considered a footprint of prior antibody activity, C4d
positivity may remain after injury [4, 46, 55] or indeed be
evanescent [4]. It is also important to note that the rate of C4d
detection of TG in reported studies is also contingent upon the
technique used in a particular dataset, whether
immunofluorescence or immunohistochemistry [56].
Pathogenetically, the hallmark lesion of TG is likely endothelial
cell injury with swelling, loss of fenestrations leading to sub
endothelial widening of lamina rara interna and electron lucent
or flocculent material, cell debris and reduplication, or multi
layering of lamina densa [4]. Electron dense deposits, which are
the sine qua non of recurrent or de novo immune complex
glomerulonephritis in the allograft (immunoglobulin mediated
or C3 glomerulopathy), are not encountered in TG and show
that complement activation within the glomerulus is not sufficient
to induce a TG phenotype in these other glomerulitides.

Transplant Glomerulopathy in the Absence
of DSA: Adaptive Immune-Cell-Mediated
Mechanisms
Several studies have now demonstrated that DSA is neither
necessary nor sufficient to induce the lesions of TG.
Vongwiwatana et al [57], showed that only 25% of biopsies with
TG had associated positive C4d deposition. Similarly, in a study by
Aly et al [58], all 20 patients with TG were C4d negative. It must be
noted here that DSA + C4d-negative TG biopsies were similar to
cABMR in their gene-expression profile, suggesting that DSA-
mediated injury can occur without detectable C4d [59]. In this
latter study by Akalin et al, a substantial number of patients with TG
did not have either positive C4d staining or DSA [60], while another
retrospective study of TG showed that only 45% had detectable DSA
and only 14% were C4d-positive. Indeed, demonstration of sub-
phenotypes within TG using DSA also highlights non-DSA-
mediated TG. Lower glomerulitis and peritubular capillaritis
scores, less C4d deposition, and less interstitial inflammation
have been seen in the absence of DSA compared with
DSA–positive biopsies. Analogously, the severity of Banff g, C4d,
and i scores were less pronounced in the absence of HLA-DSA [29],
although the distribution of the chronic lesions and the graft
function, assessed by serum creatinine, proteinuria, and eGFR,
were comparable between the HLA DSA–negative and HLA-
DSA–positive TG phenotypes [29]. Hence, when applying
conventional markers of DSA-mediated allograft injury
(i.e., serologic DSA or C4d), the pathogenesis of many cases of

TG remains unexplained. Novel markers have suggested that cell-
mediatedmechanisms, rather thanDSA, underlie TG in a significant
proportion of cases. Dean et al. compared intragraft biopsy gene
expression profiles between positive cases crossmatch-associated
with TG, non-DSA-TG, and 10 conventional DSA-neg controls
with stable histology [61]. Despite the antibody involvement, gene
expression profiles associated with cell-mediated immunity were
significantly enriched, including those for cytotoxic T lymphocytes
and InterferonGamma [61]. Similarly in six TG biopsies, glomerular
staining for the costimulatory molecule ICOS and the chemokine
receptor CXCR3 with its ligand Mig were present, indicating the
presence of activated T cells in DSA-negative TG.

Innate immune-cell-mediated mechanisms: A role for NK
cell-mediated recognition of “non-self” donor tissue and
consequent injury, independent of development of DSA, has
also been shown in MVI cases [62, 63] without demonstrable
DSA. Notably, the association of NK cells with the
development of TG in this form of injury is not as well
established in current human data. Pioneering animal
studies of ABMR using CCR5-knockout-B6 mice as kidney
recipients show that depletion of NK cells prevented acute
ABMR lesions despite the presence of high DSA titers.
However, longer follow up of these allo-transplants allowed
the development of TG, suggesting that NK cells may mediate
the ultimate TG phenotype when combined with DSA. In this
model, high levels of IFN-y, perforin, and granzyme B were
found 3 days after transplantation, suggesting T cell/NK cell
activation in the allograft occurred even before DSA was
detectable in recipient mice with MVI [64]. A recent study
compared bulk transcriptomics of 15 cABMR biopsies (all with
evidence of TG), 17 T-cell mediated rejection (TCMR cases
without Cg), and 18 non-rejectors (NR) [65]. The study found
marked enrichment of NK-cell activation signatures in
cABMR vs. NR biopsies, which were confirmed by
deconvolution analyses. While both TCMR and cABMR
showed NK cell enrichment, this was highest in the cABMR
transcriptomes. Another recent study delineated differential
roles of NK- and T-cell mediated injury in subtypes of TG
cases [66]. The authors compared the transcriptomic profiles
of 14 TG cases without DSA/C4d with 22 cases classified as TG
with DSA+/C4d+ using the NanoString Banff-Human Organ
Transplant (B-HOT) panel with subsequent multiplex
immunofluorescence validation. DSA+/C4d+ TG showed a
higher glomerular abundance of natural killer cells/
macrophages and increased expression of complement-
related genes and DSA-related pathways vs. samples DSA−/
C4d− TG, while the latter showed enrichment of genes related
to the activity of T cells (CD3+, CD8+). At the protein level,
using multiplex immunofluorescence, they confirmed
increased T-cell markers (CD3+, CD3+CD8+) in DSA−/C4d−

TG. Together, these data suggest that T-cell- and NK cell-
mediated rejection phenomena are independently or co-
operatively involved in the pathogenesis of TG.

Role of Non-HLA Antibodies
Non-HLA antibodies against polymorphic donor antigens can
result from classical adaptive allo-immune responses initiated by
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T-cells culminating in specialized antibody-secreting plasma cells
but can occur as part of the autoimmune phenomena or naturally
occurring IgG. Ischemia-reperfusion injury and/or episodes of
rejection may unmask polymorphic donor antigens causing
antibody formation against non-HLA proteins [67]. Non-HLA
antibodies clearly contribute to ABMR in HLA identical renal
allografts exemplified by anti-donor endothelial reactive
antibodies [68]. Recent evidence suggests non-HLA auto-
and alloantibodies (through independent cytotoxicity or
with concurrent DSA) contribute to TG (reviewed in [3,
69]). Interestingly, the most widely studied non-HLA
antigen target implicated in ABMR is the angiotensin
receptor (AT1R). However, the association of anti-AT1R
antibodies with TG independent of HLA-DSA is still
unclear [70, 71].

Dinavahi et al [72] used protein microarrays to compare
antibody panels in pre- and post-transplant sera from patients
with and without transplant glomerulopathy and saw reactivity
against peroxismal-trans-2-enoyl-coA-reductase being associated
with development of TG. In mouse models, the development of
antibodies to glomerular basement membrane components, such
as perlecan or collagens type IV or type VI, has been associated
with the development of TG [73]. In clinical data, the presence of
antibodies against the glomerular basement membrane
components, particularly anti-Agrin antibodies, were identified
in 44% of TG cases (16 patients) and associated with rejection
episodes prior to the diagnosis of TG [74]. Another group
identified that antibodies to renal tissue restricted self-
antigens, particularly fibronectin and collagen type IV,
increased the odds of TG [75]. Here, non-HLA antibodies
were detected irrespective of the presence of anti-HLA
antibodies, while MVI features and C4d deposition were
equivalent in patients with non-HLA or HLA-antibodies,
suggesting an independent role for non-HLA antibodies in the
development of TG. In a highly sensitized cohort (75% DSA-
positive), anti-endothelial cell antibodies (AECAs) detected by
ELISA were demonstrably increased with ABMR along with MVI
lesions and TG [76]. This suggests that non-HLA antibodies are
associated with TG clinically and experimentally, but a focused
approach examining antibodies specifically against polymorphic
or self-restricted endothelial or GBM antigens, restricted to
patients with suspected antibody-mediated (C4D-positive) TG,
may be required to reveal potential culprits. A major limitation
for non-HLA antibody detection is the limited utility of
commercial panels currently available for this purpose.

Role of Podocyte Stress in TG: Cause,
Effect, or Guilt by Association?
The stereotypic lesions of TG do not develop in usual contexts of
glomerular injury in binephric individuals, suggesting a unique
predilection for the uninephric allograft state. Although
endothelial damage likely initiates the cascade of immunologic
injury culminating in characteristic TG, a role for increased
podocyte stress leading to critical podocyte depletion [77] and
TG is evolving. Notably, advanced TG is characterized by
significant proteinuria, progressive injury, and graft loss

similar to podocytopathies. To study this aspect of the
development of TG, Wiggins et al, tested the role of the “two
kidneys to one kidney transition” that occurs in all allografts and
resultant podocyte stress using urine podocin/creatinine ratio as a
marker of podocyte injury/depletion [78]. Surprisingly, while
allograft recipients have half the number of nephrons, they
observed a significantly increased rate of podocin mRNA
excretion (a surrogate of podocyte loss) in urine of all allograft
recipients vs. binephric controls and that urinary podocyte loss
was markedly higher in patients with TG vs. patients with non-
glomerular allograft pathology (tubular injury or IFTA). The
steepest decline in podocyte density occurred in the subset of TG
patients diagnosed within 2-year of transplant (early TG). Later
stage TG (>2 years) was less associated with biopsy-confirmed
rejection episodes and had a distinct podometric profile [78]. The
same group reported that such early loss of podocytes in urine
from any cause was associated with later graft loss [79]. This was
exacerbated in context with donor-recipient weight mismatch,
which is a surrogate marker for glomerular stress and suggests a
greater need for post-transplant compensatory hypertrophy [78,
80, 81]. Another potential extrapolation of this inference is that
post-transplant obesity and metabolic syndrome in the context of
immunosuppression could be a predisposing factor in
exacerbating podocyte loss, leading to accelerated loss of graft
function and early onset of TG. Additionally, the same
researchers also reported that, even within normal ranges of
mean arterial pressures (MAP), increases in MAP were
linearly associated with urine markers of podocyte stress [82],
bringing out a role for fluid-flow and shear stress [83]. In this
pathogenetic chain, the specific role played by immunologically
mediated endothelial injury, leading to exacerbation of podocyte
stress, still needs to be better defined.

While associative data shows podocyte damage or podocyturia
in the context of TG, it must be noted that there is no conclusive
evidence directly linking podocyte damage as a causal factor in
TG.Most of the current evidence supports the hypothesis that TG
is initially characterized by glomerular basement membrane
alterations and endothelial injury, which could then lead to
podocyte injury with foot process effacement or podocyte loss.
The specific causal role of podocyte loss in TG, if any, remains an
area in need of mechanistic research.

Non-Transplant-Related Contributors in
GBM Multilayering
Role of hepatitis C: Hepatitis C is associated with immune-
complex-mediated MPGN, where histological findings may
overlap with TG (reviewed in [4]). It is not entirely clear
whether alterations in morphological appearance of usual
MPGN result from concurrent immunosuppression with
altered immune complex deposition or a uninephric state
following transplantation. It is postulated that hepatitis C
could upregulate alloimmune responses and microvascular
inflammation, leading to C4d positivity [4, 84]. HCV-
associated injury, especially cryoglobulinemia, could also
induce endothelial injury and histologic features of thrombotic
microangiopathy (TMA), all contributing to TG-like lesions.
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With effective HCV treatment, such co-occurrences will be
increasingly infrequent.

Chronic Thrombotic microangiopathy: cTMA with resultant
endothelial injury may produce electron and light microscopic
lesions, which may be very difficult to distinguish from TG [4,
84]. Clinically, cTMA has characteristic serologic findings,
including microangiopathic hemolytic anemia and
thrombocytopenia on peripheral blood smear, suggesting
intravascular hemolysis and thereby differentiating it from TG.

CONCLUSION

In summary, in this review article we discuss potential patho-
mechanistic processes that have been elucidated by recent
research to be in the evolution pathway of TG. While
primarily understood to be initiated after persistent injury to
the allograft glomerular endothelium from serologic- (DSA,
non-HLA antibodies, and/or complement-mediated) or cell-
mediated mechanisms, subsequent co-incidental podocyte
stress and detachment (hypertrophic, hypertensive, and/or
immunologic) could contribute as a common pathway
leading to critical podocyte loss, often associated with
increasing proteinuria over the course of graft life-span and
in turn leading to progressive graft damage. Since podocytes
have recently been ascribed a buttressing function in
homeostatic and injured glomeruli [85–87], their
contributory vs. potential causative role in TG needs to be
better defined. A current problem in the field is the limited
availability of long-term allo-transplantation models in
transgenic rodents that also develop TG lesions. Rodent
models of TG could help investigate cell-type- and gene-
specific- modulations to differentiate causation vs. association
as it relates to podocytes. On the other hand, non-human
primate allo-models which do develop TG-like lesions in the

context of DSA-mediated injury have not yet specifically
focused on podocyte injury—again a deficiency in the field.
Hence, mechanistically focused research is needed to unravel
molecular targets that could be utilized to arrest the progression
of TG. Ultimately, a multi-pronged approach targeting both
initiators and effectors of TG will be needed to combat this
important contributor to delayed graft loss.
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