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In xenotransplantation, the vascular endothelium serves as the first point of contact
between the recipient’s blood and the transplanted donor organ. The loss of the
endothelium’s ability to control the plasma cascades plays a critical role in the
dysregulation of the complement and coagulation systems, which greatly contribute to
graft rejection and hinder long-term xenograft survival. Although it is known that an intact
glycocalyx is a key feature of a resting endothelium that exhibits optimal anticoagulant and
anti-inflammatory properties, the role of the endothelial glycocalyx in xenotransplantation is
barely investigated so far. Here, we discuss the central role of endothelial cells and the
sugar-rich endothelial glycocalyx in regulating the plasma cascades, and how the loss of
these functions contributes to graft damage and rejection. We highlight the importance of
preserving the regulatory functions of both endothelial cells and the glycocalyx as
strategies to improve xenotransplantation outcomes.
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INTRODUCTION

The luminal side of the vascular endothelium is lined by a monolayer of endothelial cells (ECs),
which function far beyond merely acting as the barrier between blood and tissue. EC functions
include regulating the vascular tone, mechanotransduction, permeability, oxygen and nutrient
supply, vascular hemostasis, as well as immunomodulatory activities [1–6]. The outermost layer
of ECs is covered by the endothelial glycocalyx, a sugar-rich layer composed of diverse sugar
conjugates, such as glycoproteins, proteoglycans, and glycolipids, which serve as the first point of
contact for cellular and humoral components of the immune system with the endothelium [7–10].

The well-balanced control of the plasma cascade systems – complement, coagulation, fibrinolysis,
and kallikrein/kinin – by ECs is crucial in healthy and pathological conditions, including pig-to-
human xenotransplantation [11]. However, this control is lost due to incompatibilities between
regulatory factors provided by the porcine ECs and the human plasma components present in the
recipient’s blood, ultimately leading to graft damage and rejection [12–14]. The activation of the
xenograft ECs and subsequent loss of the regulatory control of the plasma cascades have been shown
to be the significant events leading to organ failure and rejection [15–19].

Genetic modifications have been used to overcome xenorejection due to humoral responses by
eliminating the synthesis of xenoantigens [20–22]. In addition, the expression of human complement
and coagulation regulatory genes in donor pigs has been used to regain control over the activation of
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the plasma cascade systems [23–26]. While impressive progress
has been achieved, complement and coagulation dysregulations
are still presented as key features of short- or long-term xenograft
rejection in preclinical and clinical models [26–30]. This indicates
that the currently available strategies to preserve the regulatory
functions of xenograft ECs are not sufficient to achieve long-
lasting control and graft survival.

In this review we outline the critical roles of ECs and the
glycocalyx in regulating the plasma cascade systems. We also
highlight the interaction of the EC glycocalyx with the recipient’s
plasma cascades as well as its role in xenograft rejection. Finally,
we discuss the potential of EC glycocalyx protection as a possible
therapeutic strategy to improve graft survival and function.

REGULATION OF PLASMA CASCADES BY
ENDOTHELIAL CELLS

Normal ECs are typically in a quiescent state, displaying minimal
proliferation, migration, and permeability. The surface of healthy
ECs is also in an anticoagulant, anti-inflammatory, and pro-
fibrinolytic state. The maintenance of this quiescent state is
achieved by complex and active functions involving the
continuous production and regulation of various molecules
and receptors [1, 11].

Coagulation and Fibrinolysis
Coagulation and fibrinolysis are essential physiological processes
that occur continuously, maintaining the delicate equilibrium
between fibrin formation and breakdown in the plasma [31].
Activation of the coagulation cascade can be initiated via two
pathways: the intrinsic pathway, also called the contact activation
pathway, and the extrinsic pathway, which is triggered by tissue
factor (TF). Both pathways result in the activation of factor X and
subsequent production of thrombin, a serine protease that
converts fibrinogen into fibrin, ultimately leading to clot
formation. The extrinsic pathway mainly serves as a
mechanism for hemostatic control and response to injury,
while the activation of the intrinsic pathway has been
associated with pathological clotting [32, 33].

Under normal physiological conditions, ECs prevent
thrombus formation by providing a non-adhesive surface to
prevent the activation of platelets and the coagulation cascade.
More importantly, ECs are actively preventing thrombus
formation by expressing soluble and membrane-bound
molecules with anticoagulant properties [34]. ECs produce
soluble molecules such as nitric oxide (NO) and prostacyclin
(PGI2) which inhibit platelet aggregation [35–37]. To inhibit
coagulation via the TF pathway, ECs also express tissue factor
pathway inhibitor (TFPI) [38–40]. Furthermore, as the formation
of fibrin happens continuously in the plasma, ECs prevent the
accumulation of fibrin by secreting tissue-type plasminogen
activator (tPA) and urokinase-type plasminogen activator
(u-PA) [41, 42]. These two molecules will convert
plasminogen to the active plasmin, which breaks down fibrin
clots accumulating on the EC surface. To further enhance its
anticoagulant properties, ECs bind inhibitors of coagulation

factors, preventing the progression of the coagulation cascade.
For instance, heparan sulfate (HS), present on the EC glycocalyx,
bind the liver-derived antithrombin III (ATIII), which inhibits
coagulation by preventing thrombin and other coagulation
factors from binding to their substrates [43–45]. Moreover, the
membrane-bound thrombomodulin (TBM) expressed on the EC
surface can bind circulating thrombin and inhibit its procoagulant
function, altering thrombin’s affinity from binding fibrinogen to
binding and activating anticoagulant protein C [34, 46, 47]. ECs also
express a high affinity receptor for protein C (EPCR), which binds
protein C and further enhances its TBM-thrombin complex-
mediated activation [48]. The coagulation inhibitory properties of
ECs are summarized in (Table 1).

Complement Cascade
The complement system plays a crucial role in clearing immune
complexes and injured cells. It can be activated via three different
activation pathways, all of which converge at the C3 level.
Activation of the cascades produces opsonins (C3b, C4b),
which mark the targets for subsequent removal, and the
membrane attack complex (MAC, C5b-9), which directly lyses
the target cells. Additionally, complement activation generates
the anaphylatoxins C3a and C5a, promoting leukocyte
recruitment and inflammation. However, the activation of the
complement system acts as a double-edged sword because the
effectors of complement activation have the potential to harm the
host. To prevent this, the complement system is highly regulated
through the expression of soluble and membrane-bound
molecules to avoid the undesired effect of complement
activation. ECs, as the first layer constantly exposed to the
complement mediators in the plasma, play an indispensable
role in this regulatory process.

ECs express membrane-bound components and secrete
soluble molecules that prevent the activation of the
complement cascade or deposition of complement activation
products (Table 2). ECs express the surface molecules
CD46 and CD55, which inhibit the activation of complement
pathways, and CD59, which prevents the formation of MAC on
the surface of ECs [50, 51, 54]. ECs also secrete C1 inhibitor (C1-
INH), clusterin, factor H, and factor I, which prevent the
formation of complement effectors at various stages [49, 52,
53, 55, 56].

Both the complement and coagulation systems comprise of
serine proteases with common ancestral genes [57, 58]. There is
substantial evidence of crosstalk between complement and
coagulation factors, leading to mutual engagement of both
systems. For instance, proteases such as thrombin, factor XII
(Hageman factor), and plasmin play roles in both coagulation and
complement activation [59–62]. This crosstalk also influences the
regulation of the plasma cascade pathways by ECs through shared
complement-coagulation regulators such as C1-INH, TBM,
TFPI, CD46, CD55, and CD59 [58, 63–65]. Consequently, a
lack of function of the previously mentioned inhibitors, can
also contribute to concurrent activation and amplification of
complement and coagulation pathways under pathological
conditions, resulting in excessive activation of both systems
[64, 66, 67].
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Genetic Modification Strategies to
Overcome Complement and Coagulation
Dysregulation in Xenotransplantation
In xenotransplantation, interaction of the porcine ECs with the
human plasma cascades presents great immunological challenges
due to the presence of xenoantigens on porcine ECs, and
molecular incompatibilities between porcine plasma cascade
regulators and human plasma cascade components [21, 22,
68]. The porcine glycocalyx presents sugars carrying α-Gal,
N-glycolylneuraminic acid (Neu5Gc), and Sda epitopes, which
can be recognized as foreign by natural antibodies circulating in
human blood, and have been shown to play a significant role in
the immune response to pig grafts in xenotransplantation [22,
68–71]. Antibody-mediated complement activation will lead to
hyperacute rejection, a rapid destruction of the xenograft due to
the complement attack, accompanied by interstitial hemorrhage,
edema, and microvascular thrombosis [21, 72, 73]. The lack of
complement and coagulation protection on the surface of ECs
due to the interspecies molecular incompatibilities also leads to
complement-mediated injury and coagulopathy, which are
evident in various stages of xenograft rejection [74–76].

The first approach to avoid activation of complement on the
EC surface in xenotransplantation is the deletion of porcine
xenoantigens, which was shown to prevent hyperacute
rejection [20, 24, 70, 77]. Another approach to provide better
control of the plasma cascades by the endothelium is the

transgenic overexpression of human complement and
coagulation regulatory factors [16, 23–26]. Strategies to
overcome the complement and coagulation dysregulation are
illustrated in Figure 1. Genetically modified pigs carrying
single or multiple xenoantigens knockouts and expressing
varying combination of plasma cascade regulatory proteins
have been developed and show different survival rates [26,
81, 87–89].

THE ROLE OF THE ENDOTHELIAL
GLYCOCALYX IN PLASMA CASCADE
REGULATION
The function of ECs, frommechanotransduction, maintenance of
vascular integrity and vascular tone, as well as regulating the
interaction of EC with the immune components of the blood, is
profoundly influenced by their glycocalyx component [90]. While
the term glycocalyx broadly refers to surface sugar layer of any
cells, the EC glycocalyx specifically refers to the carbohydrate-rich
layer on the luminal side of ECs. The thickness and the diversity
of the EC glycocalyx is influenced by the shear stress, plasma
proteins, and extrinsic glycosylation factors in the blood [3, 10,
91–93]. The EC glycocalyx is made up of diverse sugar conjugates,
including proteoglycans, glycoproteins, and glycolipids,
facilitating the interaction of ECs with various immune
mediators of the plasma cascades.

TABLE 1 | Anticoagulant properties of endothelial cells.

Molecule Form Target action Function Ref

Nitric Oxide (NO) Soluble gas Platelets Diffuses to nearby platelets and prevents calcium release, which ultimately
prevents platelet activation and aggregation

[36, 37]

Prostacyclin (PGI2) Soluble protein Platelets Inhibition of platelet activation through calcium release inhibition [35]
Heparane Sulfate (HS) Membrane-bound

glycosami noglycans
ATIII Bound ATIII inhibits thrombin (factor II) and other serine proteases binding

to their substrates
[43, 44]

Tissue Factor Pathway
Inhibitor (TFPI)

Soluble protein Tissue factor
(Factor III)

Limits the TF (factor III) activity which initiates prothrombin transformation
into thrombin

[38, 39]

Thrombo modulin (TBM) Membrane-bound protein Thrombin,
protein C

Binds to thrombin and reduces the ability of thrombin to convert fibrinogen
into fibrin
TBM-thrombin complex enhances protein C activity to inhibit coagulation
factors Va and VIIIa

[46, 48]

t-PA Soluble protein Plasminogen Activates plasminogen into plasmin and initiates fibrinolysis [31, 41]
u-PA Soluble protein Plasminogen Activates plasminogen into plasmin and initiates fibrinolysis [31, 41]
EPCR Membrane-bound protein Protein C Binds and promotes protein C activation by presenting protein C to TBM-

thrombin complex, ultimately inhibiting factor Va and VIIIa
[48]

TABLE 2 | Complement regulatory properties of endothelial cells.

Molecule Form Target action Function Ref

C1 inhibitor Soluble protein C1 Inhibits the activation of complement C1 [49]
CD46 (MCP) Membrane-bound protein C3, C4 Mediates the cleavage of C3b and C4b [50]
CD55 (DAF) Membrane-bound protein C3 convertase

C5 convertase
Destabilizes C3/C5 convertases in the classical and the alternative pathways [51]

Factor H Soluble protein C3b Inactivates the C3 and C5 convertases [52]
Factor I Soluble protein C3b, C4b Cofactor for the C3b and C4b cleavage by factor H [53]
CD59 Membrane-bound protein C5b-9 Prevents C5b-9 formation [54]
Clusterin Soluble protein C5b-9 Prevents C5b-9 formation [55, 56]
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Proteoglycans are glycoproteins comprising a core protein
(e.g., syndecan, glypican, and perlecan) that carries covalently
attached linear polysaccharide glycosaminoglycans (GAGs). The
main components of the EC glycocalyx GAGs are HS,
chondroitin sulfate (CS) and dermatan sulfate (DS) [10, 94].
The EC glycocalyx also contains the non-sulfated GAG
hyaluronan (HA), typically anchored by the CD44 receptor, or
as a soluble component [95, 96]. GAGs are the most abundant
sugars in the EC glycocalyx, contributing significantly to its
molecular mass and negative charge, creating a
transendothelial gradient for fluid transit, masking the
adhesion molecules, and capturing circulating plasma proteins
[97, 98]. GAGs are also essential in maintaining the quiescent
state of ECs. They act as mechanotransducers, signaling to
maintain EC function via the production of NO [90, 99].
GAGs can bind and modulate the activity of several growth
factors, antiangiogenic, and inflammatory molecules such as
VEGF, FGF, IL8, MMPs, angiopoietin-1, thrombospondin-1,
endostatin, and PAI-1 [100–105]. Additionally, GAGs have
binding sites for xantine-oxydoreductase (XOD) and
endothelial superoxide dismutase (eSOD), preventing oxidative
damage to ECs [106, 107].

HS is one of the most extensively studied GAGs and builds up
most of the sugar components of the EC glycocalyx. HS is known
for its critical role in various biological functions, from serving as
a binding domain for signal transduction molecules to regulating

the plasma cascade and immune interactions [108]. Plasma
proteins bind to HS via their heparin-binding domain. This
binding is specific, and through the differential expression of
HS, ECs can selectively determine which plasma proteins will
bind to the surface [109, 110]. HS on the EC glycocalyx can bind
and potentiate the activity of complement and coagulation
regulatory factors, including factor H, C1-INH, and ATIII,
providing an anti-inflammatory and anticoagulant surface [44,
111–115]. Binding of growth factors and cytokines such as VEGF,
FGF, and IL8 is predominantly facilitated by HS [43, 103, 116,
117]. HS also serves as a binding site for P-selectin and L-selectin,
potentially acting as a decoy receptor to influence cell adhesion
dynamics [118, 119]. Moreover, HS is also involved in the
regulation of the kinin-kallikrein system through its capacity
to recruit kinin precursors and mediate the activation of high
molecular weight kininogen [120, 121].

The terminal glycans of mammalian glycoproteins and
glycolipids are typically substituted by the negatively charged
sialic acid, which plays an essential role in physiological and
pathological processes, including complement, coagulation, and
inflammation [72, 122–124]. Many important receptors and
regulatory proteins on the EC surface carry N- and O-linked
oligosaccharide chains and are classified as glycoproteins [94,
125]. The interaction between ECs and leukocytes is controlled by
adhesion molecules such as siglecs and selectin receptors, that are
heavily influenced by the cellular glycosylation patterns of these

FIGURE 1 | Strategies to overcome the complement and coagulation dysregulation in xenotransplantation using genetic modifications. The deletion of genes
responsible for xenoantigen epitopes prevents the binding of natural antibodies and subsequent activation of the complement system [20, 21, 24]. Transgenic
expression of human complement regulatory genes such as human CD46 (hCD46), hCD55, and hCD59 inhibits the activation of the complement cascade and the
formation of membrane attack complex (MAC) [75, 78, 79]. The expression of human tissue pathway inhibitor (hTFPI) is used to prevent activation of the coagulation
cascade via the tissue factor (TF) pathway [80]. Additionally, Human thrombomodulin (hTBM) and endothelial protein C-receptor (hEPCR) are expressed to inhibit
thrombin activation, thus preventing fibrin formation [26, 81]. To maintain the platelets in a resting state, transgenic expression of human vonWillenbrand Factor (hVWF),
triphosphate diphosphohydrolase-1 (human ENTPDase-1 or hCD39) and human CD73 [82–84]. Deletion of the asialoglycoprotein receptor-1 (ASGR1) gene is used as a
strategy to reduce human platelet destruction by pig livers [85, 86].
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proteins [126, 127]. Factor H can bind to sialic acid, providing a
protective layer on ECs and shielding the cells from the
deposition of complement [128–131]. Glycosphingolipids
(GSLs), a diverse group of glycolipids containing one or
more glycans anchored to a ceramide, are known to play
important roles in many cellular processes, such as signal
transduction, cell-cell interactions, and immune response
regulation, including the complement and coagulation
systems [132–135]. While the role of GSLs has been
extensively studied in neurodegenerative diseases, their role
in the context of xenotransplantation immunology is less well-
understood.

Glycocalyx Shedding
Due to its pivotal role in maintaining the normal function of ECs,
destruction of the EC glycocalyx will lead to impairment of EC
function and overall vascular hemostasis. Glycocalyx shedding is
observed when ECs are activated and exhibit a pro-inflammatory
state, including in trauma-related injury, ischemia/reperfusion
injury, hemorrhagic shock, and hyperglycemia [10, 136–139]. In
xenotransplantation, glycocalyx shedding associated with

complement and coagulation activation after xenogeneic
treatment has been observed in vitro and in vivo [140–144].
Disruption of the EC glycocalyx may hamper its
mechanotransduction ability and induce edema due to
elevated vascular permeability [145–149]. Shedding of the EC
glycocalyx will result in the loss of anticoagulant and anti-
inflammatory properties of the EC, leading to increased
coagulation, decreased pro-fibrinolytic activity, increased
complement deposition, and adhesion of leukocytes to the EC
surface [138–140, 150].

Shedding of the EC glycocalyx during inflammation can be
mediated by various glycocalyx modifying factors such as reactive
oxygen species (ROS), matrix metalloproteinases (MMPs), and
glycan-degrading enzymes (heparanase, hyaluronase, sulfatase,
sialidase, etc.) [9, 10, 139, 151]. Other proteins with enzymatic
functions such as thrombin, elastase, proteinase 3, plasminogen,
as well as cathepsin B also contribute to degradation of the
glycocalyx [152–154]. In cardiovascular diseases associated
with vascular inflammation, the observed glycocalyx shedding
can be mediated by multiple glycocalyx-degrading mediators
[139, 155, 156].

FIGURE 2 | Interaction of human plasma cascade proteins with human and porcine glycocalyx. (A) Normal interaction between human plasma proteins and the
human endothelial cell (EC) glycocalyx, where plasma cascade regulatory molecules such as antithrombin III (ATIII), tissue factor pathway inhibitor (TFPI), Factor H, and
C1-inhibitor (C1-INH) are specifically bound to EC glycocalyx, providing anticomplement, anticoagulant, and anti-inflammatory properties to the ECs [44, 112–114]. The
human EC glycocalyx also binds antioxidant molecules such as XOD and SOD, thereby preventing oxidative damage to ECs [106, 107]. Attachment of leukocytes is
prevented by the negatively charged EC glycocalyx and the shielding of leukocyte binding receptors [138, 157]. (B) In xenotransplantation, the disparity between human
and porcine EC glycocalyx composition, which likely alters its structure and function, could lead to inefficient binding of protective plasma proteins. This could result in the
transition of the endothelium from a quiescent into an activated state, which leads to glycocalyx shedding. Disruption of the porcine EC glycocalyx and loss of its
anticoagulant properties will result in activation of the coagulation system, platelet recruitment and fibrin formation. Loss of anticomplement properties will also lead to the
deposition of complement proteins on the EC surface, along with the amplification of inflammation. Additionally, shedding of the porcine EC glycocalyx will increase
leukocyte attachment to the surface of EC due to the loss of leukocyte binding receptor shielding. Ultimately, this condition could lead to xenograft damage and failure.
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Interaction of the Porcine Glycocalyx With
Human Plasma Proteins in
Xenotransplantation
One significant concern, and barely studied so far, are the
possible differences in the binding of human plasma proteins
to the human and porcine glycocalyx (Figure 2). The absence
of glycans containing α-Gal, Neu5Gc, and Sda epitopes in
humans highlights the species-specific differences in sugar
synthesis and expression, as well as the disparity in
glycocalyx composition between humans and pigs [21]. Due
to its different composition, the porcine glycocalyx may have
varying structure and affinities for human plasma cascade
regulators such as ATIII, factor H, and C1-INH, which
could reduce the anti-inflammatory and anticoagulant
properties of the xenografted EC surface once a porcine
organ has been grafted into a human recipient.
Discrepancies in the binding affinities to human growth
factors, cytokines, and chemokines could likely also cause a
systemic effect due to loss of control of dissociated and active
molecules by ECs [103, 109, 158]. Similarly, possible
differences in enzyme kinetics and affinities between the
porcine glycocalyx and glycocalyx-modifying enzymes could
also affect the glycocalyx dynamics and function. Therefore,
despite the effort to substitute the interspecies complement
and coagulation incompatibility on a protein level in
xenotransplantation, EC function in controlling the plasma
cascade regulation might still not be optimal without proper
functioning of the glycocalyx [144].

Initially, the removal of sugar xenoantigens from xenograft
donor pigs by genetic engineering was implemented to overcome
the antibody-mediated rejection and has been proven effective
[20, 24, 70, 77]. However, these genetic modifications have been
found to influence the expression of other sugars and may even
lead to the synthesis of novel glycans, which is likely to influence
the structure, composition, and immunological function of the
porcine EC glycocalyx [159, 160]. Therefore, further studies are
necessary to determine how these alterations in sugar
composition and the emergence of neoglycans influence the
phenotype and physiological function of the porcine EC
glycocalyx.

EXPLORING EC GLYCOCALYX
PROTECTION IN
XENOTRANSPLANTATION
Protecting ECs and their glycocalyx is critical for improving graft
survival and function, highlighting the importance of targeted
therapy for preserving and maintaining the quiescent state of the
endothelium. Current strategies, including genetic engineering,might
indirectly protect the glycocalyx to a certain extent by preventing
antibody binding, complement activation, and controlling the
coagulation system. Additionally, anti-inflammatory and
anticoagulant agents, such as corticosteroids and heparin, which
are already incorporated in current immunosuppressive regimens
in xenotransplantation, have been shown to prevent the degradation

of the glycocalyx [161–163]. However, although evidence specific to
xenotransplantation remains limited, shedding of the glycocalyx
continues to be a significant issue in pathological conditions
related to vascular inflammation. Shedding of the glycocalyx in a
setting of (xeno)transplantation occurs immediately after graft
reperfusion (ischemia reperfusion injury), related to trauma and
inflammation, or long-term related to chronic rejection [136–138,
156, 164, 165]. Therefore, strategies to prevent shedding of the
glycocalyx, or to functionally replace glycocalyx components,
might be needed in clinical xenotransplantation.

Generally, glycocalyx protection strategies employ
therapeutic agents that interact with one or multiple
glycocalyx-modifying factors, including inhibiting the
glycocalyx-degrading enzymes, oxidative stress, and
inflammation. Molecules such as angiopoietin,
hydrocortisone, ATIII, berberine, and S1P prevent the
degradation of glycocalyx through the inhibition of MMPs
[10, 153, 166, 167]. SOD acts as antioxidant and helps to
mitigate oxidative stress associated with ischemia-reperfusion
injury, thus protecting the glycocalyx [149]. Sulodexide can
protect the glycocalyx by inhibiting heparanase-1 [168]. While
those therapies have been used in other vascular disorders, the
protective effects on porcine xenografts need further
evaluation, especially since existing studies do not fully
address the structure, function, and dynamics of the
glycocalyx in a xenotransplantation context.

Glycan-specific approaches have also been employed for
glycocalyx protection and restoration. Emerging therapies such
as bioengineering approaches also offer innovative strategies, for
instance, by engineering the EC to rebuild the glycocalyx, which
has been shown to minimize graft injury and rejection [169].
Other strategies use a class of molecules which can be termed
“endothelial cell protectants.” One such molecule, low molecular
weight dextran sulfate of 5000 MW (DXS), was shown to be
protective both in vitro and in a small animal model of
xenotransplantation [170, 171]. DXS has also been shown to
prevent ischemia/reperfusion injury in large animal models [172,
173]. Similarly, multimeric sulfated tyrosine has been shown to
help maintain and restore the glycocalyx layer [174]. While
currently there are no clinically approved drugs which act as
EC protectants, this class of substances has proved to be
successful in preclinical experiments and, in our view, by
keeping the endothelium in a quiescent state, has great
potential as an additional drug treatment in xenotransplantation.

CONCLUSION

The interaction between the porcine glycocalyx and the human
plasma cascades involves complex, yet poorly understood
dynamics that are critical to the success of
xenotransplantation. To address these challenges, a deeper
understanding of interspecies glycocalyx differences and
their impact on immune responses, coagulation, and EC
function is required. New insights into the structure and
function of the porcine and human glycocalyx, as well as
the mechanisms of glycocalyx degradation and regeneration
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in xenotransplantation, hold the potential to unlock novel
approaches to preserve the endothelial glycocalyx.
Protective strategies for the glycocalyx, combined with the
already available strategies to prevent complement and
coagulation dysregulation, can be explored as an approach
to improving the outcomes of xenotransplantation.
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