
Progress in Orthotopic Pig Heart
Transplantation in Nonhuman
Primates
Matthias Längin1*, Martin Bender1, Michael Schmoeckel 2 and Bruno Reichart 3

1Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany, 2Department of Cardiac Surgery,
LMU University Hospital, LMU Munich, Munich, Germany, 3Transregional Collaborative Research Center 127, Walter Brendel
Centre of Experimental Medicine, LMU Munich, Munich, Germany

Xenotransplantation of porcine hearts has become a promising alternative to human
allotransplantation, where organ demand still greatly surpasses organ availability. Before
entering the clinic, however, feasibility of cardiac xenotransplantation needs to be proven,
ideally in the life supporting orthotopic pig-to-nonhuman primate xenotransplantation
model. In this review, we shortly outline the last three decades of research and then
discuss in detail its most recent advances. These include the genetic modifications of
donor pigs to overcome hyperacute rejection and coagulation dysregulation, new organ
preservation methods to prevent perioperative xenograft dysfunction, experimental
immunosuppressive and immunomodulatory therapies to inhibit the adaptive immune
system and systemic inflammation in the recipient, growth control concepts to avoid
detrimental overgrowth of the porcine hearts in nonhuman primates, and lastly, the
avoidance of porcine cytomegalovirus infections in donor pigs. With these strategies,
consistent survival of 6–9 months was achieved in the orthotopic xenotransplantation
model, thereby fulfilling the prerequisites for the initiation of a clinical trial.
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INTRODUCTION

Since the first orthotopic transplantation of a porcine heart into a baboon 30 years ago [1], there has
been tremendous progress towards the ultimate goal - moving cardiac xenotransplantation (xHTx)
into the clinic. In the beginning, most research focused on the non-life supporting heterotopic
abdominal xHTx model [2–11], primarily to study immunosuppressive regimes to overcome
hyperacute and acute rejection (reviewed in detail [12–14]). While xenograft survival in this
model had steadily increased from several weeks to months and years, results in the life
supporting orthotopic xHTx model were not encouraging: until 2017, most experiments lasted
only a few days and many recipient animals were lost during the first 48 h [1, 2, 15–21]; maximum
survival was 57 days [21]. These results were far from the recommendations devised by an expert
committee of the International Society for Heart and Lung Transplantation (ISHLT) in 2000 [22]: as
a prerequisite for a clinical application of xHTx, consistent 90-day survival of 60% of the animals in a
life supporting xHTx model was deemed necessary. In the following 5 years, research in the field
yielded many new insights, leading not only to improvements in both survival consistency and
survival time [23–27], but also to the first clinical xenotransplantation of a porcine heart into
a human [28].
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In the following review, we specifically aim at a detailed
overview on this recent period and highlight key findings that
facilitated the progress of xHTx.

FIRST DECADE (1994–2003)

In the first decade of orthotopic xHTx, research in Loma Linda
(CA, USA) and Cambridge (UK) focused on overcoming

hyperacute and acute rejections. Survival rates where however
short and inconsistent (Table 1; Figure 1) [1, 2, 15–17], with an
overall median survival of 6.6 ± 1.6 (SEM) days and a maximum
survival of 39 days [17]. At that time, the main cause for
hyperacute rejection after porcine xHTX into non-human
primates – the binding of preformed antibodies to the
carbohydrate antigen galactose-α1,3-galactose (αGAL) on
porcine endothelial cells – could not be avoided since cloning
techniques to knock-out αGAL were not established in the pig

TABLE 1 | Orthotopic pig-to-baboon cardiac xenotransplantation experiments in the last three decades (1994–2023).

Year Author Donor genetics Organ
preservation

Immunosuppression Immunomodulation Growth
inhibition

Survival

1994 Fukushima
Nz [1]

WT static CsA, DSG Immunadsorption 3 days, 4 days,
4 days, 5 days,
6 days, 6 days,
8 days, and 16 days

1998 Xu H [15] WT static CsA, MTX, Cs, ATG TLI 3 h, 18 days,
19 days

1998 Schmoeckel
M [16]

hCD55 static CsA, CyP, Cs 6 h, 6 h, 9 h, 10 h,
and 18 h, 4 days,
5 days, 5 days,
5 days, and 9 days

1998 Waterworth
PD [2]

hCD55 static CsA, CyP, Cs 0 h, 0 h, 5 days,
5 days, 9 days

2000 Vial CM [17] hCD55 static CsA, CyP, Cs, MMF 39 days
2005 Brandl U [18] hCD55 static CyP, Cs, Tac, mTOR-

I, ATG
aGAL polymera 1 day, 30 h, 9 days,

25 days
2005 Brenner

P [19]
hCD55 static CsA, CyP, Cs, MMF 1 h, 11.1 days,

13.1 days, 20 days
2007 Brandl U [20] hCD55a, hCD46a static CyP, Cs, Tac, mTOR-I,

ATG, Rixa
aGAL polymera 1 day, 9 days; 0 h,

30 h; 0 h, 20 h,
14 days, 25 days;
5.5 h, 9.5 h, 34 h,
3 days, 4 days

2008 McGregor
CGA [21]

hCD46 static Tac, mTor-I, ATG aGAL polymer 34 days, 40 days,
57 days

2018 Längin M [23] GGTA1-KO, hCD46, hTBM statica,
perfusiona

Cs, MMF, anti-CD40 aba/
anti-CD40L PAS Faba,
ATG, Rix

C1-I, anti-IL1R, anti-
IL6R, anti-TNFa

mTOR-Ia,
ACE-
Ia, BBa

1 day, 1 day, 1 day,
3 days, 30 days;
4 days, 18 days,
27 days, 40 days;
51 days, 90 days,
90 days, 182 days,
195 days

2020 DiChiacchio
L [24]

GGTA1-KO, CMAH-KOa,
B4GALNT2-KOa, hCD55a, hCD46,
hTBMa, hEPCRa, hCD47a,
hHMOX1a, hvWFa

static Cs, MMF, anti-CD40 ab,
ATG, Rix

CVF 2 h, 7 h, 18 h, 22 h,
26 h, 40 h

2020 Reichart
B [25]

GGTA1-KO, hCD46, hTBM perfusion Cs, MMF, anti-CD40 ab,
ATG, Rix

C1-I, anti-IL1R, anti-
IL6R, anti-TNFa

mTOR-I,
ACE-I, BB

15 days, 27 days,
90 days, 90 days

2022 Mohiuddin
MM [26]

GGTA1-KO, CMAH-KOa,
B4GALNT2-KOa,hCD55a, hCD46a,
hTBMa,
hEPCRa,hCD47a,hHMOX1a,
hvWFa

statica (blood
cardio),
perfusiona

Cs, MMF, anti-CD40 ab,
ATG, Rix

CVFa, C1-Ia, anti-IL6R,
anti-TNFa

GHR-KOa 6 h, 4 days, 29 days,
57 days; 12 h,
6 days, 8 days;
84 days, 95 days;
182 days, 264 days

2022 Cleveland
DC [27]

GGTA1-KO, hCD55a, hCD46a,
hTBMa

static (del
Nidoa)

Cs, mTOR-I, anti-CD40
ab, ATG, Rix

C1-I, anti-TNFa BBa 3 h; 4 h, 90 days,
241 days

WT, wildtype; CsA, cyclosporine A; DSG, desoxyspergualin; MTX, methotrexate; Cs, corticosteroids; ATG, anti-thymocyte globulin; CyP, cyclophosphamide; MMF, mycophenolate
mofetil; Tac, tacrolimus; mTOR-I, mTOR, inhibitor (sirolimus, temsirolimus); Rix, rituximab; anti-CD40 ab, anti-CD40 monoclonal antibody; anti-CD40L PAS Fab, PASylated anti-CD40L
antibody fragment; TLI, total lymphoid irradiation; C1-I, C1-esterase inhibitor; anti-IL1R, interleukin 1 receptor blocker; anti-IL6R, interleukin 6 receptor blocker, anti-TNFα, tumor necrosis
factor alpha inhibitor; ACE-I, angiotensin-converting enzyme inhibitor; BB, beta blockers; GHR-KO, growth hormone receptor knockout.
adrug/genetic modification used only in some experiments of the respective study.
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[29]. By adding the human transgene hDAF (or hCD55) to the
donor pig genome [30], complement activation following binding
of anti-pig-antibodies to αGal epitopes could be attenuated, and
graft survival was prolonged [2, 16, 17]. However, without further
genetic modifications and the “standard” clinical
immunosuppression of that time (i.a. cyclosporin A,
methotrexate, cyclophosphamide, corticosteroids), expectations
of a fast translation into the clinic could not be met.

SECOND DECADE (2004–2013)

With the discovery of the αGAL epitope (reviewed in [31]),
research groups in Rochester (MN, United States) and Munich
(Germany) began infusing synthetic GAL oligosaccharides in
recipients of orthotopic xHTx, with the aim of binding and
inactivating anti-αGAL-antibodies, and finally preventing
hyperacute rejection reactions [18, 20, 21]. As another
strategy, immunoadsorption was explored [32–34]. The human
complement-regulating transgene hCD46 was introduced to
counteract complement activation independent of antibody
binding [35] and tested in orthotopic xHTx experiments [18,
21]. New clinically available immunosuppressants, such as
mycophenolate mofetil, tacrolimus or rapamycin, were used,
with and without B cell and T cell depletion (anti-thymocyte
globulin (ATG), rituximab) for induction [18–21]. With these
improvements, graft rejection could be delayed, and overall mean
survival increased to 10.9 ± 2.9 (SEM) days (Table 1; Figure 1),
with the longest single survivor reaching 57 days [21].

Although these results were promising, they still by far did not
meet the prerequisites for a clinical study as defined by the ISHLT
[22]. Especially puzzling was the fact, that the results after
heterotopic abdominal pig-to-baboon xHTx experiments, with
survivals of up to 179 days [5], were superior to those after
orthotopic xHTx. The main culprit was “Perioperative Cardiac
Xenograft Dysfunction” [36] (PCXD), a systolic organ failure that
led to graft loss in up to 60% within the first 48 h after orthotopic
transplantations, without any signs of rejection [35]. Possible
explanations for PCXD included various xeno-specific factors,

such as the use of young donor organs, inflammatory effects of
preformed non-GAL antibodies, incompatibility between porcine
and primate plasma; donor-specific factors, notably the
sensitivity of the porcine heart to cardiopulmonary bypass and
ischemia/reperfusion injury, were also discussed [reviewed
in [36]].

As successful translation to the orthotopic pig-to-baboon
model seemed more and more impossible, researchers focused
on refining the heterotopic abdominal model; the question was
raised, if further orthotopic xHTx experiments were at all needed
for clinical application [37].

THIRD DECADE (2014–2023)

With the creation of knockout pigs lacking the gene coding for
αGAL (GGTA1-KO) [38] and the addition of human
thrombomodulin (hTBM) to overcome thrombotic
microangiopathy due to interspecies coagulation
incompatibilities [39], survival rates after heterotopic
abdominal xHTx increased even further: In 2016, M.
Mohiuddin reached a median graft survival of 298 days in five
baboons (maximum survival 945 days) with triple genetically
modified donor piglets (GGTA1-KO, hCD46, and hTBM) and an
immunosuppression based on an experimental chimeric CD40/
CD40L costimulation blockade (mouse/rhesus monkey clone
2C10R4) [11]. In two of these long-term experiments, graft
rejection was intentionally triggered by discontinuation of the
costimulation blockade, demonstrating the importance of this
specific therapy.

By translating the knowledge gained from these heterotopic
abdominal xHTx experiments and new approaches in organ
preservation and growth inhibition, the field of orthotopic pig-
to-baboon xHTx was stimulated by the work of theMunich group
[23] and, subsequently, further advanced by the group of M.
Mohiuddin in Baltimore (MD, United States) [26]. Overall mean
survival in this decade increased to 51.8 ± 11.5 (SEM) days
(Table 1; Figure 1), with the longest single survivor reaching
264 days [26]. And even more so, in 2020 the recommendations
of the ISHLT [22] were finally fulfilled for the first time [25],
paving the way for a first clinical trial. The most important
advances of this last decade are now reviewed in more detail
in the following.

GENETIC MODIFICATIONS

The longest surviving grafts in recent orthotopic pig-to-baboon
xHTx studies included at least the following three genetic
modifications [23, 26, 27]: GGTA1-KO for the removal of the
αGAL epitope, insertion of the complement regulator hCD46, and
hTBM to overcome interspecies coagulation incompatibilities.
With these minimum set of modifications, maximum survival
times were 195 [23], 241 [27], and 264 days [26]. In the latter
experiment, however, the porcine donor also carried several
additional modifications: KOs of β-1,4-N-acetyl-galactosaminyl
transferase 2 (B4GALNT2-KO), and growth hormone receptor

FIGURE 1 | Survival after orthotopic pig-to-baboon cardiac
xenotransplantations from 1994 to 2023. Data taken from [1, 2,
15–21, 23–27].
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(GHR-KO); additional transgenes included a second complement
regulator protein (hCD55), the human endothelial protein C
receptor (hEPCR) and the human signal regulatory protein
alpha hCD47. It remains unclear to what extent these
additional modifications contributed to graft survival.

For human recipients, KOs of the genes B4GALNT2 and
cytidine monophosphate-N-acetylneuraminic acid hydroxylase
(CMAH) in addition to GGTA1-KO are important for xHTx
because of preformed antibodies against their respective gene
products N-glycolylneuraminic acid (Neu5Gc) and a glycan
corresponding to the human Sd(a) blood group antigen
(β4GAL) (“triple KO-pig,” reviewed in [40]). In the
nonhuman primate (NHP) model, by contrast, CMAH-KO has
been reported to be disadvantageous due to the presumed
exposure of another, yet unknown xenoantigen [41, 42]. This
is supported by results from Mohiuddin’s study, in which
maximum survival of grafts with CMAH-KO was
only 8 days [26].

In the last few years, a plethora of genetical modifications have
been described, including deletion of genes coding for
carbohydrate antigens and expression of complement and
coagulation regulatory, as well as immunomodulatory proteins
(reviewed in detail elsewhere [40]). Further studies are needed to
better define which combination of additional modifications
might prove beneficial for graft survival. Based on existing
data [23, 26, 27], at least a minimum of one complement
regulator and one coagulation regulatory protein in addition
to GGTA1-KO seems to be required.

ORGAN PRESERVATION

In the previous two decades, clinically applied cold crystalloid
cardioplegic solutions were used to preserve the porcine donor
hearts. Byrne and McGregor assumed that an increased
sensitivity of the porcine heart to ischemia/reperfusion
injury was a major contributor to PCXD [36]. Although
PCXD was overcome in the heterotopic thoracic xHTx
model [43] and in singular cases of orthotopic xHTx
experiments [21], consistent survival could not be achieved
using this conservation technique. In 2016, Steen et al.
developed a cold, non-ischemic preservation method with
an oxygenated, hyperoncotic, erythrocyte containing
cardioplegic solution, with which pig hearts were
successfully preserved for up to 24 h [44]. The Munich
group adopted this preservation method for orthotopic
xHTx: after cardiopulmonary bypass had stopped, cardiac
function was preserved, and inotropic support was reduced
to a minimum [23, 44]. Several explanations have been
postulated to be responsible for the results after non-
ischemic porcine heart preservation: addition of oxygenated
erythrocytes to minimize myocardial ischemia/reperfusion
injury, hypothermia to reduce metabolic needs, continuous
delivery of nutrients and removal of toxic metabolites, high
oncotic pressure of the preservation medium and strict
pressure-/flow-controlled coronary perfusion to inhibit
edema formation and reduce capillary damage, and lastly,

physiological levels of catecholamines, cortisol and thyroid
hormones for maintenance of myocardial energy
stores [45–48].

After several discouraging experiments with static ischemic
preservation [24], Mohiuddin’s group also adopted the non-
ischemic preservation technique [26]. Additionally, ischemic
preservation with blood cardioplegia/Del Nido solution yielded
promising results [27, 49], especially when the ischemic periods
were kept very short [50].

IMMUNOSUPPRESSIVE THERAPIES

The addition of CD40/CD40L costimulation blockade to an
immunosuppression based on MMF, steroids and preoperative
T and B cell depletion (ATG, rituximab) was an important step
for prolonging xenograft survival after heterotopic abdominal
and orthotopic pig-to-NHP xHTx [11, 23]. The first study
showing that CD40/CD40L costimulation blockade was
superior to conventional immunosuppression was done by
Bühler et al [51] in 2000, and it was first used in xHTx by
Kuwaki et al. in 2005 [5]. Since then, several experimental
antibodies have been tested in preclinical xenotransplantation
studies (reviewed in detail in [52]). Whereas initial results in
heterotopic xHTx with anti-CD40L antibodies (clone 5C8H1)
were very promising [53], first-generation antibodies proved to be
thrombogenic in clinical trials due to activation of thrombocytes
via binding to the FcγRII receptor [54] and were subsequently
abandoned. Most recent results in preclinical orthotopic cardiac
xenotransplantation were achieved with the chimeric anti-CD40
antibody clone 2C10R4 [25, 26]. For clinical use, a humanized
version of this antibody has been developed by Kiniksa
Pharmaceuticals (KPL-404, abiprubart), which completed a
phase I trial [55] and recently commenced a phase II clinical
trial for treatment of Sjögrens disease; this antibody was also
applied in the first clinical xenotransplantation of a porcine heart
into a human [28]. Several other pharmaceutical companies have
antiCD40/CD40L antibodies in their pipelines (overview in [56,
57]). Until now, however, none of these antibodies have been
approved for clinical use.

IMMUNOMODULATORY THERAPIES

After pig-to-NHP xenotransplantation, systemic inflammation
reactions were observed - termed “Systemic Inflammation in
Xenograft Recipients” (SIXR) -, defined by an increase in
inflammatory markers (C-reactive protein, histones, serum
amyloid A, D-dimer, cytokines, chemokines) and a decrease in
free triiodothyronine [58, 59]. While it is assumed that SIXR has a
negative impact on xenograft survival by promoting coagulation
activation and adaptive immune response [58], the exact role and
mechanisms of SIXR are not fully understood. For orthotopic
xHTx specifically, it has been postulated that the exposure to
cardiopulmonary bypass has an additional detrimental effect
[60]; this hypothesis is not generally accepted [61], however.
To attenuate inflammation reactions after orthotopic xHTx,
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complement inhibitory drugs (cobra venom factor or C1 esterase
inhibitor) and various immunomodulatory drugs (interleukin
(IL) 1 and IL6 receptor blockers, tumor necrosis factor (TNF)
α inhibitors) have been added to existing immunosuppressive
regimens [23, 25–27, 62]. Furthermore, glycocalyx shedding, a
surrogate parameter for endothelial dysfunction and
inflammation, was only marginal under anti-inflammatory
therapy [63]. It remains unclear, however, to what extend each
of these anti-inflammatory substances contribute: for instance,
IL6 receptor blockers have been shown to bind to baboon but not
to pig IL6 receptors. Circulating IL6 - which is increased under
treatment with IL6 receptor blockers [64] - could possibly
moderate detrimental effects in the graft by activating
porcine cells [65].

Another approach to prevent SIXR is the addition of anti-
inflammatory transgenes to the porcine donor genome, such as
human hemeoxygenase-1 (hHMOX1) or human tumor necrosis
factor α-induced protein 3 (hA20), as was done in some of the
recent studies [24, 26]. Further knowledge is however needed to
clarify the potential benefit of these modifications.

Interestingly, cold non-ischemic preservation has also
immunomodulatory effects [66]: after 8 h of ex vivo
hypothermic cardioplegic perfusion, myocardial tissue was
significantly immunodepleted, whereas the perfusate displayed
a pro-inflammatory cytokine/chemokine pattern; the following
heterotopic heart allotransplantation showed reduced leucocyte
infiltrations in the transplant, and the graft’s viability was
improved compared to controls. These results demonstrate a
potential beneficial effect of cold non-ischemic preservation
beyond sole reduction of ischemia/reperfusion, deserving
further research in the xenotransplantation setting.

GROWTH INHIBITION

Extensive overgrowth of the donor heart was first described in a
series of heterotopic thoracic pig-to-baboon xHTx experiments
[43, 67], and subsequently, in orthotopic xHTx [23]. Graft
overgrowth had also been observed after kidney
transplantation between species of different body and organ
sizes [68]. Besides genetic determination [69] (an intrinsic or
donor-specific factor), several extrinsic (recipient-specific) factors
have been described to influence cardiac growth after xHTX:
nutrition [69], levels of growth hormone (GH), insulin-like
growth factor 1 (IGF1) [70], hormones (thyroid hormones,
vascular endothelial growth factor, insulin, catecholamines,
endothelin, angiotensin), and mechanical stress/strain [71].
Interestingly, extensive cardiac overgrowth did not occur in
the heterotopic abdominal pig-to-baboon xHTx model despite
intrinsic mismatch of growth rate and organ size [11]: this is
possibly due to the lack of relevant afterload in this non-working
model (reviewed in [72]), leading to myocardial atrophy [73] and
thereby counteracting the intrinsic growth of the graft [74]. By
contrast, in the orthotopic model, the juvenile pig heart needs to
adapt to an unphysiologically elevated afterload in an adult
baboon [75]; elevated afterload is known to trigger myocardial
hypertrophy [76, 77].

Untreated, this (mal-)adaptive myocardial hypertrophy leads
to a phenomenon termed “xenogeneic Hypertrophic Obstructive
Cardiomyopathy” (xHOCM) and eventually to graft dysfunction
and graft loss [74]. Two different approaches have been described
to prevent cardiac overgrowth: administration of growth
inhibitory drugs or genetic modification of the donor animals.
The Munich group administered a combination of a mTOR
inhibitor (Temsirolimus), antihypertensive drugs (beta-blocker
and ACE-Inhibitors) and fast steroid tapering to counteract
intrinsic growth and attenuate cardiac remodeling [23].
Cleveland et al. used a similar approach by using an
immunosuppressive regime based on rapamycin instead of
MMF and fast steroid tapering; they also observed
postoperative periods of severe hypertension, which were
treated with milrinone and esmolol [27]. In these drug
regimens, the mTOR inhibitor seems to be the most
important substance: it has been shown to reduce and prevent
cardiac hypertrophy in pressure overloaded animals [78, 79] as
well as after human cardiac allotransplantation [80, 81]. By
contrast, Mohiuddin et al. did not use drugs to inhibit graft
growth, but 10fold genetically modified pigs, which lacked growth
hormone receptors (GHR-KO) [26]; pigs with GHR-KO have
been shown to grow slower and smaller than wild-type German
Landrace pigs [82]. It has been proposed that a reduction of local
myocardial IGF-1, produced by syngeneic resident macrophages,
may play an additional role in inhibiting myocardial hypertrophy
after xHTx with GHR-KO donor pigs [83, 84]. With growth
inhibition, whether by drugs or genetic modifications, survival
times of up to 6–9 months were achieved [23, 26, 27], thus
emphasizing the tremendous importance of growth control after
orthotopic xHTx. Especially for clinical use in adult humans,
smaller donor races such as Auckland Island pigs are a future
alternative to control growth [85], as undesirable effects
associated with growth inhibitory drugs or genetic
modifications can be avoided.

It must be noted that also rejection episodes [11, 26], as well as
inflammation [74, 86] have been described to cause
enlargement of the heart, mediated by myocardial edema,
cellular infiltrate and/or hemorrhage. To what extend this
contributes to chronic graft overgrowth after orthotopic
xHTx is unknown; however, acute myocardial edema due to
a rejection episode certainly has the potential to further
damage an already hypertrophic xenograft.

AVOIDING PCMV/PCR

First described after pig-to-baboon kidney xenotransplantation
[87, 88], infection of porcine donors with porcine
cytomegalovirus – in fact a porcine roseolovirus (PCMV/PRV)
– has been associated with significantly reduced graft survival
after orthotopic pig-to-baboon xHTx [86, 89]. The underlying
pathomechanism is still largely unknown, but it is assumed that
PCMV/PRV infection causes an increase in levels of IL6, TNFα
and tissue plasminogen activator inhibitor (tPA-PAI-1)
complexes, suggesting a complete loss of the pro-fibrinolytic
properties of endothelial cells, eventually leading to multiorgan

Transplant International | Published by Frontiers September 2024 | Volume 37 | Article 136075

Längin et al. Progress in Preclinical Orthotopic Xenotransplantation



failure of the recipient baboon [86, 90]. It has also been assumed
that SIXR could be (at least in part) a reaction to PCMV/PRV [91,
92]. There is no effective antiviral treatment or vaccination, so
xHTx of organs from PCMV/PRV infected donors must be
strictly avoided (e.g., by motherless rearing [93] and rigorous
testing protocols [90, 94]). In a recent retrospective analysis, the
donors’ PCMV/PCR status did not significantly affect the
outcome after orthotopic pig-to-baboon xHTx, with maximum
recipient survival after transplantation of PCMV/PCR positive
hearts of 225 days [95]. More data is needed, however, to confirm
these preliminary data before the policy towards PCMV/PCR
should be revisited.

CONCLUSION

In the last 30 years, there has been significant progress in
orthotopic pig-to-NHP xHTx, with recipient survival
increasing from a few hours in 1994 to several months in
2024. Recent improvements in donor genetics, organ
preservation, immunosuppressive and immunomodulatory
treatments, donor organ growth inhibition and prevention
of PCMV infection have led to consistent graft survival,
thereby fulfilling the recommendations of the ISHLT as a
prerequisite for a pivotal clinical trial. Some questions still

remain, but a clinical application has never been closer
than today.
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