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An overview is provided of the evolution of strategies towards xenotransplantation during
the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs,
pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive
therapy. Despite initial challenges, including hyperacute rejection resulting from natural
(preformed) antibody binding and complement activation, significant progress has been
made through gene editing of the organ-source pigs and refinement of
immunosuppressive regimens. Major steps were the identification and deletion of
expression of the three known glycan xenoantigens on pig vascular endothelial cells,
the transgenic expression of human “protective” proteins, e.g., complement-regulatory,
coagulation-regulatory, and anti-inflammatory proteins, and the administration of an
immunosuppressive regimen based on blockade of the CD40/CD154 T cell co-
stimulation pathway. Efforts to address systemic inflammation followed. The synergy
between gene editing and judicious immunomodulation appears to largely prevent graft
rejection and is associated with a relatively good safety profile. Though there remains an
incidence of severe or persistent proteinuria (nephrotic syndrome) in a minority of cases.
This progress offers renewed hope for patients in need of life-saving organ transplants.
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INTRODUCTION

Despite the great progress that has been made in the gene-editing of pigs that are the sources of
organs or cells for xenotransplantation in nonhuman primate (NHP) or human recipients, there
remains a need for the administration of exogenous immunosuppressive therapy to the recipient of a
pig xenograft [1]. Increased gene-editing of the organ-source pigs [2, 3] and the introduction of new
agents that are more effective in suppressing the human immune response are both key factors that
have allowed changes to be made to the immunosuppressive regimen to prevent rejection.

We here briefly review the changes in pre-transplant treatment, immunosuppressive protocols,
and adjunctive therapy that have been made during the past almost 40 years of pig-to-NHP heart or
kidney transplantation with some based on concomitant in vitro studies [4]. These observations are
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made largely through the experience of one group but that of
several other groups has also been reviewed.

THE “CONVENTIONAL”
IMMUNOSUPPRESSIVE THERAPY ERA

By the 1980s, it was known that natural (preformed) antibodies,
when bound to antigens on a discordant animal organ graft, could
activate complement, resulting in hyperacute rejection (defined as
rejection occurring within 24 h) [5–10]. There was evidence that
natural antibodies developed as a defense mechanism when the
gastrointestinal tract of infants became colonized by
microorganisms that expressed carbohydrate antigens, e.g.,
galactose-α1,3-galactose (Gal), that were also expressed on pig
cells (Table 1) [11, 12].

Antibody Depletion
When xenotransplantation was first explored in wild-type
(i.e., genetically-unmodified) pig-to-NHP models in the 1980s
[13, 14], cyclosporine had become available, but tacrolimus was
not yet accessible to most groups. Initial studies were therefore
based on the regimens used in clinical allotransplantation,
i.e., cyclosporine with added steroids with or without
azathioprine or mycophenolate mofetil (MMF) (Table 2) [14].
The results were extremely disappointing and, with graft survival
still measured inminutes, hours, or a few days, the administration
of a cyclosporine-based regimen made little difference to the
outcome. The innate immune response was clearly very strong
and the effect of cyclosporine in suppressing the adaptive
immune response was very modest (in contrast to its effect in
allotransplantation).

As pre-transplant splenectomy was thought to be beneficial in
allotransplantation across the ABO blood group barrier [15, 16],
it was believed that it might also reduce the immune response to a
pig graft, probably by removing a major source of B cells in the
host as well as by decreasing the number of lymphocytes and their
proliferative responses [17, 18]. With time, however, evidence for
this was lacking and, possibly after the addition of rituximab to
the protocol, it was eventually omitted from the regimen.

An effort was made to deplete the potential recipient of anti-
pig antibodies either by 1) plasmapheresis [17], which extended
graft survival to a maximum of 23 days, though usually for a
shorter period of time, or by 2) preliminary perfusion of the
recipient blood through a donor-specific second organ, e.g., the
kidney, before donor-specific heart transplantation [13, 14], but
graft survival remained very limited.

When Gal was clearly identified as the major target for human
preformed anti-pig antibodies (Table 1) [19–23], techniques of
antibody depletion were explored in vitro [24, 25] and refined to
allow removal or “neutralization” of only anti-Gal antibodies,
thus not depleting the NHP of antibodies that might be important
in protecting from infectious complications. Again based on
experience in overcoming the barrier of ABO-incompatibility,
anti-pig antibody immunoadsorption was achieved by 1)
perfusion of the recipient’s blood through an immunoaffinity
column of synthetic Gal oligosaccharides [20, 26–33] or 2) the
continuous intravenous infusion of soluble synthetic Gal
oligosaccharides [33–36].

In this latter approach, the infused synthetic Gal
oligosaccharides would be bound by the circulating anti-Gal
antibodies and therefore “neutralize” them by preventing them
from binding to the pig graft. This approach had proven to be
successful in preventing rejection of ABO-incompatible cardiac
allografts in baboons [14]. Subsequently, modifications were
made, e.g., synthetic Gal oligosaccharides were attached to
bovine serum albumin which was then infused intravenously
[37, 38]. All of these approaches prevented hyperacute rejection
of the graft, but the return of antibody within days inevitably
resulted in graft loss [39, 40].

In retrospect, the removal or neutralization of anti-Gal
antibodies alone was probably misguided because, in addition
to the early return of anti-Gal antibodies, there was already
evidence of the presence of antibodies to non-Gal antigens
[41–43] (identified as N-glycolylneuraminic acid [44] and Sda
[45] [Table 1]). However, at the time, it was hoped that
“accommodation” would develop [46] (i.e., when the return of
antibody is no longer associated with rejection) as occurs in many
patients receiving an ABO-incompatible allograft [47], but this
proved not to be the case. The exact mechanism by which
accommodation occurs remains uncertain. The additional

TABLE 1 | Glycan xenoantigens that have been deleted in gene-edited pigs.

Carbohydrate (abbreviation) Responsible enzyme Gene-knockout pig

1. Galactose-α1,3-galactose (Gal) α1,3-galactosyltransferase GTKO
2. N-glycolylneuraminic acid (Neu5Gc) Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) CMAH-KO
3. Sda β-1,4N-acetylgalactosaminyltransferase β4GalNT2-KO

TABLE 2 | Representative immunosuppressive regimen administered in the wild-
type pig-to-NHP heterotopic heart Tx model [14].

Pre-transplant therapy
Ex vivo hemoperfusion of recipient’s blood through a donor-specific pig kidney for

1 h (x2 kidneys)
Splenectomy (in some cases) 4–8 days before the transplant

Induction therapy
Cyclosporine by continuous IV infusion (15–32mg/kg/day) until a therapeutic level

of >400 ng/mL was achieved
Maintenance therapy
Cyclosporine by continuous IV infusion (15–32mg/kg/day) to maintain therapeutic

level of >400 ng/mL
Methylprednisolone 10 mg/kg/day IM (on day of transplant), with plan to taper the

dose to 2 mg/kg/day
Outcome
Longest heart graft survival = 5 days

Transplant International | Published by Frontiers January 2025 | Volume 37 | Article 139422

Sanatkar et al. Immunosuppressive Therapy in Xenotransplantation



differences in complement and coagulation factors between pig
and human (see below) probably contributed to the difference in
outcome between allograft and xenograft.

Protection From Complement Injury
Complement depletion or inhibition in the potential NHP
recipient extended graft survival to a maximum of 25 days
[48–52], but it was suspected that patients with no
complement activity would be at risk for infectious
complications and would not do well long-term and so this
approach was not pursued (although prolonged complement
inhibition has been adopted again by some groups recently [53]).

The introduction of the first gene-edited pigs by White and his
colleagues at the British biotechnology company, Imutran, was a
milestone in xenotransplantation research and enabled progress to
be made [54]. These pigs expressed a single human complement-
regulatory protein, CD55 (decay accelerating factor, DAF), and this
alone extended kidney or heart graft survival in some
immunosuppressed recipient NHPs for several weeks – in one
case for up to 3 months [55]. However, the transplantation of
hCD55 transgenic pig grafts proved successful only if intensive
cyclosporine-based immunosuppressive regimens were employed
(Table 3) [56]. For example, induction therapy with
cyclophosphamide was found to be beneficial or even essential.
It was later confirmed that the expression of a human complement-
regulatory protein helps protect the graft from systemic
complement activation in the host [57].

Depletion of complement for a prolonged period of time was,
and still is, considered to put the patient at increased risk of
infectious complications. Once the transgenic expression of
human complement-regulatory proteins could be induced in
the organ-source pig, systemic complement inhibition was
avoided by most groups. However, transient systemic
complement inhibition at the time of pig organ
transplantation, when there is complement activation and
inflammation, may be beneficial [58]. When introduced by
Langin et al [59], the administration of a C1-esterase inhibitor
on just 2 days appears to be safe and beneficial, even though it has
not been conclusively demonstrated to be essential. Long-term
complement inhibition, e.g., with a C5 inhibitor, has been

incorporated into the immunosuppressive regimen by some
groups [53], but its necessity remains controversial.

THE INTRODUCTION OF CD40/
CD154 T CELL CO-STIMULATION
PATHWAY BLOCKADE
Based on encouraging studies in models of allotransplantation, in
2,000 Buhler et al. carried out pig hematopoietic cell
transplantation in an attempt to induce chimerism as a basis
for achieving immunological tolerance to a pig organ in an
immunosuppressed NHP [60, 61]. When immunosuppressive
therapy was based on cyclosporine, an elicited antibody response
to the pig cells was clearly detected within the first 14 post-
transplant days. In contrast, treatment with an anti-CD154
monoclonal antibody (mAb) prevented this antibody response
[60] (Blockade of the B7/CD28 pathway did not prove equally
successful) [62–65]. This proved a major step forward. Since then,
almost all groups have employed an anti-CD154 or anti-CD40mAb
as the basis of their immunosuppressive regimen [53, 66–77].

Yamamoto et al. subsequently demonstrated prolonged
survival of kidney grafts from α1,3-galactosyltransferase gene-
knockout (GTKO) pigs (in which the most important
xenoantigen, galactose-α1,3-galactose [Gal] against which
humans and NHPs have natural antibodies had been deleted
[78–80] in NHPs receiving a CD40/CD154 co-stimulation-based
inhibitory regimen compared to NHPs receiving a conventional
(tacrolimus-based) immunosuppressive regimen (Figure 1) [81].
The administration of an anti-CD154mAb has been associated
with better results when compared with an anti-CD40mAb [74].
In summary, bymodulating the immune response between T cells
and antigen-presenting cells, inhibiting co-stimulatory pathways
improves long-term post-transplant outcomes.

When attempting to induce tolerance to an allotransplant, at
that time the potential recipient was pre-treated with whole body
and thymic irradiation. However, in the pig-to-NHP model,

TABLE 3 | Representative immunosuppressive regimen administered in the hDAF
(CD55) transgenic pig-to-NHP heterotopic heart and kidney Tx models [55].

Pre-transplant therapy
None

Induction
Cyclophosphamide 40 mg/kg on day −1 IV and 10mg/kg on day 0 (the day of the

transplantation) IV
Cyclosporine 35 mg/kg x2 daily orally from day −2
Methylprednisolone 1 mg/kg IV on day 0

Maintenance
Cyclosporine 35 mg/kg x2 daily orally to achieve a 12-hour trough level of

300–500 ng/mL
Prednisone 1 mg/kg orally on days 1 and 2 with subsequent tapering by

0.05 mg/kg/day to a baseline dose of 0.2 mg/kg/day from day 18
Outcome
Longest life-supporting kidney graft survival = 90 days
Longest non-life-supporting (heterotopic) heart graft survival = 62 days FIGURE 1 | GTKO pig kidney survival in baboons receiving US FDA-

approved immunosuppressive agents (Group A, in red) was much shorter
than in those receiving an anti-CD40mAb-based regimen (Group B, in black)
outlined in Table 6 (Reproduced with permission from Yamamoto T,
et al. [81]).
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survival of the graft rather than tolerance induction was the major
aim, and so whole body irradiation was deemed unnecessary,
although thymic irradiation was still carried out for a period of
time (Table 4).

Nevertheless, induction therapy was still considered essential.
Initially, this consisted of large doses of anti-thymocyte globulin
and other agents that depleted T cells (Table 4). With the
transplantation of organs from pigs expressing fewer
xenoantigens and a greater number of human protective
transgenes it was determined that the dose of ATG could be
reduced. The effect of the ATG can be determined simply by
following the total lymphocyte count.

However, additional B cell depletion was considered beneficial
and so the administration of an anti-CD20mAb (in the form of
Rituximab) was included, initially by McGregor et al [83].
Whether this is essential remains uncertain but a significant

reduction in B cells in the blood for several weeks (Figure 2)
may possibly result in a subsequent reduction in plasma cells,
though this has not been proven.

The initial anti-CD154mAbs were tested in vitro and in
vivo [75, 84–86]. When transplants were still being carried out
with organs from wild-type pigs, the results remained
disappointing because the innate response remained strong.
When GTKO pigs became available, however, the results
improved markedly. The first series that combined the
transplantation of heterotopically-placed hearts (i.e., not
life-supporting) from GTKO pigs into baboons with
immunosuppression based on CD40/CD154 co-stimulation
pathway blockade demonstrated greatly improved graft
survival, extending to a maximum of 6 months (Table 4)
[82, 87]. However, the recipient baboons were selected on the
basis of their low anti-pig antibody levels.

Using an identical immunosuppressive regimen, life-supporting
GTKO kidney grafts survived approximately only half as long [88],
possibly because 1) kidneys may be more immunogenic than
hearts, or 2) the kidneys were life-supporting whereas the hearts
were not. When GTKO pig kidneys were transplanted into NHPs
immunosuppressed with a tacrolimus-based regimen, the results
were markedly inferior [89].

The transplantation of GTKO hearts that expressed a
different human complement-regulatory protein, CD46, with
the same or very similar immunosuppressive regimen reduced
early graft failure but did not extend maximum graft
survival [90, 91].

The withdrawal of the original anti-CD154mAbs because of
their thrombogenic effect [92–94] necessitated the use of anti-
CD40mAbs, first introduced into xenotransplantation by
Mohiuddin et al [68–70]. However, increasing data indicate that
anti-CD154 agents are superior to anti-CD40 agents in preventing
both the adaptive immune response and some aspects of the innate
response [75, 95]. Once Fc-modified anti-CD154 agents (that do
not result in platelet activation) were introduced [74, 75, 96–98],
these soon became the treatment of choice [74, 76, 77].

One important observation made in regard to anti-CD154mAb
therapy was that in infant baboons in which natural antibodies had
not yet developed, treatment with an anti-CD154mAb prevented
the development of natural anti-Gal and anti-AB antibodies,
suggesting that natural antibodies may be, at least in part, T cell-
dependent [99]. This has considerable relevance to the treatment of
neonates with complex, life-threatening congenital heart disease,
e.g., single ventricle physiology, by pig heart xenotransplantation
[100, 101]. For example, by inhibiting both natural and elicited
antibody production, treatment with an anti-CD154mAb during
the first week of life (at the time of pig heart transplantation) might
possibly facilitate the development of immunological tolerance to
the graft. Once the graft has been established, it may be possible to
discontinue all immunosuppressive therapy.

Despite the suppressive effect of agents that block the CD40/
CD154 co-stimulation pathway, the transplantation of kidneys or
hearts from GTKO pigs was not consistently successful, with
some grafts failing from antibody-mediated rejection [66, 82, 88,
102–105], coagulation dysfunction, or graft vasculopathy
(chronic rejection) (Figure 3) [106].

TABLE 4 | Representative immunosuppressive regimen administered in the
GTKO pig-to-NHP heterotopic heart Tx model [82].

Pre-transplant therapy
Thymic irradiation 700 cGy (day −1)

Induction
Anti-thymocyte globulin (horse ATG [ATGAM])* 50 mg/kg IV on days −3, −2,

and −1 (3 doses)
LoCD2b** 1–4 mg/kg IV on days 1–7
Cobra venom factor (CVF) 6 mg/day IV for 4–15 days in some cases

Maintenance
Anti-CD154mAb (AB1793, Novartis) 25 mg/kg IV
Mycophenolate mofetil (MMF) 25–110 mg/kg/day by continuous IV infusion from

day −2
Methylprednisolone 4 mg/kg IM daily reducing to 0.5 mg/kg/day
Heparin 5–60 U/kg/h IV from day 0
Aspirin 40 mg on alternate days from day 4 (in some cases)

Outcome
Survival from 2 to 6 months (median 78 days)

*To deplete T cells, the necessary dose of horse ATG [ATGAM] is significantly higher than
of rabbit ATG (Tables 5, 6).
**LoCD2b depletes cells expressing CD2 that include T and NK cells [157].

FIGURE 2 | Total white blood cell, lymphocyte, T cell, and B cell counts
in the blood of a baboon with a life-supporting pig kidney that received the
immunosuppressive regimen outlined in Table 6.
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Protection From Coagulation Dysfunction
Predictions of significant differences in the coagulation-
anticoagulation systems between pig and human had been
discussed for some time [107, 108], but evidence in the
important pig-to-NHP model was first reported in the late
1990s [84, 109–111] (Figure 4). Although the presence of
porcine cytomegalovirus (CMV) in the graft was identified as
playing a role in coagulation dysfunction [112], later confirmed
by Yamada [113], this problem stimulated the need to introduce
human coagulation-regulatory genes into the pig.
Thrombomodulin, endothelial cell protein C receptor (EPCR),
and/or tissue factor pathway inhibitor (TFPI) were expressed
in the pig.

When the problems relating to coagulation dysfunction
between pig and human were confirmed, the introduction of
GTKO. hCD46 pigs that additionally expressed human
thrombomodulin reduced the incidence of thrombotic
microangiopathy in the pig graft and of consumptive
coagulopathy in the recipient NHPs (Table 5; Figure 5) [70].
This prolonged life-supporting kidney graft survival to
7–8 months, with termination of the experiments from
infectious complications rather than from rejection [70].

Protection From Systemic Inflammation
Xenotransplantation was found to be accompanied by a systemic
inflammatory response that could be detrimental to the survival
of the graft by augmenting the immune response and/or
coagulation dysfunction [62, 114–118]. Corticosteroids
appeared to have no effect in suppressing this response.

However, in the period 2015-2020, the beneficial effects of
interleukin-6 receptor (IL-6R) blockade using tocilizumab (which
blocks IL-6 binding to the receptors on NHP cells but not on pig
cells) were investigated [119–121]. Although the initial results
were encouraging, the accompanying rise in IL-6 in the blood
engendered some caution in the use of tocilizumab [120, 121].
With additional experience, we have tentatively concluded that

this agent has a positive effect on graft survival [77]. It may be
particularly beneficial when orthotopic pig heart transplantation
is carried out because it may protect the recipient’s tissues, e.g., the
lungs, from inflammatory injury associated in part to the need for
cardiopulmonary bypass [118]. However, the combination of two
inhibitors of IL-6 proved fatal from profound
thrombocytopenia [122].

There is some evidence that the introduction of a human
“anti-inflammatory” transgene into the pig, e.g., hemeoxygenase-
1, A20, has a protective effect on the graft [3, 121, 123].

Low-dose corticosteroids have been used in almost all
regimens (probably because they are included in the regimens
of most patients with organ allografts) but there is little evidence
that they are essential when co-stimulation blockade is employed,
particularly if tocilizumab is being administered. As long ago as
2005, Yamada carried out one GTKO pig kidney transplant in a
baboon without maintenance steroids and found no significant
detrimental effect on graft survival [88]. Our suspicion is that
steroids add little to the efficacy of the regimen, particularly if it
includes tocilizumab.

Although not fully recognized in the early days of
xenotransplantation research, inhibition of complement
activity also has beneficial effects on coagulation dysfunction
and the inflammatory response (see below) [58].

ADDITIONAL IMMUNOSUPPRESSIVE
THERAPY AND ADJUNCTIVE THERAPY

Although blockade of the CD40/CD154 co-stimulation pathway
has formed the basis of all effective regimens for the past two
decades [60], its dosage is important. For example, dosing of the
Tonix-1500 anti-CD154mAb at 20 mg/kg weekly, although
effective in preventing rejection of allografts, was not entirely
successful in regard to grafts from triple-knockout (TKO) pigs, in

FIGURE 3 | Histopathological features of graft vasculopathy (chronic
rejection) In a GTKO pig heart transplanted heterotopically (in the abdomen)
3 months previously in a baboon that received the immunosuppressive
regimen outlined in Table 4.

FIGURE 4 | Histopathological features of a pig cardiac graft
demonstrating multiple vascular thromboses with surrounding ischemic
changes (fibrosis) in a baboon that received the immunosuppressive regimen
outlined in Table 4.
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which expression of all three of the known pig xenoantigens
against which humans have natural antibodies has been deleted
(Table 1) [74]. A higher dosage, however, appears to be
consistently successful without significant infectious
complications [77] and Kinoshital et al. (unpublished data).

It must be remembered that allOldWorld NHPs have natural
antibodies to TKO pig cells, thus increasing the hurdle that has to
be overcome, i.e., the hurdle of “sensitization” (that will not be the
case in many human patients receiving a pig xenograft)
[124–127]. The results of TKO pig organ transplantation in
NHPs are inferior to those of GTKO pig organ transplantation
[71, 128], but remarkably CD40/CD154 co-stimulation pathway
blockade appears to overcome this hurdle if recipient NHPs are
selected with low anti-pig antibody levels (Table 6) [72, 77, 129].

Whether other agents, if any, need to be combined with co-
stimulation blockade remains uncertain. Pierson and Kawai and
their respective colleagues have clearly demonstrated that in
allotransplantation no other agents (either for induction or
maintenance) may be necessary because anti-CD154mAb
alone (in the form of Tonix-1500) prevents rejection almost
consistently for at least 6 months (at which time the studies
have been electively concluded) [97, 98]. Rejection develops only
some weeks or months after cessation of treatment. There is some
evidence, however, that the addition of low-dose rapamycin or
tacrolimus to the regimen ensures an absence of rejection.

However, these agents alone are not so effective in
xenotransplantation. For example, Tonix-1500 alone (with no
induction therapy or additional maintenance therapy) was
associated with antibody-mediated rejection of a kidney graft
from a pig with 10 gene-edits on post-transplant day 4 [77]. This
indicated to us that some form of induction therapy and
additional maintenance therapy is required (Table 6).

When both T and B cells are depleted by this induction
therapy (Table 6), the anti-CD40 or anti-CD154mAb
maintenance therapy appears to maintain low lymphocyte
counts throughout the first 6 months of the post-transplant

period (Figure 2), which we suspect contributes to preventing
an immune response to the graft [70, 77, 130].

To augment the effect of anti-CD40 or anti-CD154mAbs,
we have selected rapamycin, in part because it can be
administered intramuscularly, which is an advantage when
managing NHPs that do not consistently take oral medications
[131]. Mammalian target of rapamycin (mTOR) inhibitors
have several properties that may be especially beneficial in
xenotransplantation, e.g., suppression of T cell proliferation,
increases in the number of T regulatory cells, inhibition of pig
graft growth, and anti-inflammatory, anti-viral, and anti-
cancer effects [132].

However, rapamycin is not tolerated by some patients (largely
from gastrointestinal disturbances or oral ulcers) and so other
pharmacologic immunosuppressive agents have been
incorporated in several regimens. MMF has perhaps been the
most commonly used agent [74, 76] but its value, as with
rapamycin and tacrolimus, has not been proven. No group
has yet had the courage to maintain immunosuppression
with co-stimulation blockade alone. However, preliminary
evidence that this may be possible was reported in one
baboon when all immunosuppressive therapy, except anti-
CD40mAb, was discontinued 2 months after pig kidney
transplantation. During follow-up for a further 2 months,
no clinical or histopathological features of rejection were
observed [133]. Nevertheless, we have seen antibody-
mediated rejection on occasions when the rapamycin level
fell to subtherapeutic levels.

One important observation made recently is that, when
proteinuria is present (which may be an early sign of
antibody-mediated rejection), therapeutic mAbs may be lost in
the urine, thus exposing the xenograft to rejection [77].
Furthermore, there is some evidence that an infectious
microorganism in a xenograft (e.g., pyelonephritis) may
induce an immune response, resulting in rapid rejection as
has been well-documented in ABO-incompatible kidney
allotransplantation [134, 135].

FIGURE 5 | Platelet counts in baboons with hearts from
GTKO.CD45.TBM (red) or GTKO.CD46.CD55 (black) pigs. The baboons
received the immunosuppressive regimen outlined in Table 5.

TABLE 5 | Representative immunosuppressive regimen used in the GTKO/CD46/
hTBM pig-to-NHP life-supporting kidney Tx model [70].

Pretransplant therapy
None

Induction
Anti-thymocyte globulin (ATG) 5 mg/kg IV on day −2 (i.e., 2 days before kidney

transplantation)
Anti-CD20 mAb (Rituximab) 10 mg/kg IV on day −1
C1 esterase inhibitor 17.5 units/kg IV on days 0 and 2

Maintenance
Anti-CD40 mAb 20 mg/kg IV on days 0, 2, 7, 10, 14, and weekly
Rapamycin x2 daily IM to maintain a 12-hour trough level of 6–12 ng/mL
Methylprednisolone 10 mg/kg IV tapering the dose over the first week to

0.25 mg/kg IM daily
Anti-TNF mAb (etanercept) (in some cases)
Tocilizumab (IL-6R blockade) 8 mg/kg IV monthly for 6 months

Outcome
Two grafts functioned for >7 and >8 months, respectively, with the experiments

being terminated for infectious complications
(When human thrombomodulin (hTBM) was not expressed in the kidney, a

consumptive coagulopathy developed within 12 days, necessitating euthanasia)
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COMMENT

Throughout the early years covered by this brief report, researchers
searched for other agents that might suppress the production of
anti-pig antibodies. These agents included 1) various known
immunosuppressive agents [30], 2) drugs used in other
conditions but thought to have immunosuppressive properties
[136–142], 3) new monoclonal antibodies directed towards
depletion of plasma cells [143], 4) anti-idiotypic antibodies [144,
145], and 5) agents that influence expansion of T regulatory cells,
but the majority proved unworthy or unnecessary of inclusion in
the immunosuppressive regimen. An important observation was
that prolonged treatment with bortezomib (a proteosome
inhibitor) to patients who were highly sensitized to HLA had
only a minimal effect in reducing anti-pig antibody levels [142].

Two agents thatmight well be valuablewhen xenotransplantation
is introduced into the clinic are 1) atorvastatin [140, 141], whose
anti-inflammatory effect could be of value. (As only tablets were
available to us, we found it difficult to administer it successfully to
NHPs.) and 2) alemtuzumab - but administering it to NHPs has
several major limitations [146].

With the aim of protecting their cells from the adaptive
immune response, gene-editing of the organ-source pigs has
been explored. This included producing pigs that secreted
CTLA4-Ig [147, 148] and pigs in which Major
Histocompatibility Complex (MHC) Class II expression had
been downregulated [149].

The level of CTLA4-Ig in the blood in pigs expressing CTLA4-
Ig was approximately 10-fold higher than the therapeutic level in
humans being treated with the agent [147]. Although this
demonstrated the success of the gene-editing, the pigs were
rendered immunocompromised and developed infections at a
relatively young age for which they required euthanasia. This
clearly precluded them from acting as sources of organs and from
breeding. Furthermore, we concluded that maintaining the
correct level of immunosuppression after organ
transplantation in NHPs would also be difficult. However,
others have successfully expressed CTLA4-Ig in the pancreatic
islets [150, 151] although this limited expression may not be
sufficient to protect against T cell-mediated rejection. MHC-Class

II-knockdown was successful in reducing the T cell response and
is worthy of further exploration [65, 149].

The currently available gene-edited pigs that are TKO and also
express multiple human proteins [3, 76] would appear to be
sufficient for clinical trials to be undertaken today. Future gene-
editing may include the introduction of HLA-E and G [151], PD-
L1 [152, 153], and MHC Class 1 knockout [154] or MHC Class II
modification [155, 156].

Although gene-editing of pigs has been the major factor that
has enabled progress to be made in pig organ xenotransplantation
in NHPs, the introduction of immunosuppressive agents directed
towards blockade of the CD40/CD154 co-stimulation pathway
must not be underestimated. Successful clinical pig organ
transplantation will require a combination of judicious gene-
editing and the administration of an effective, but not excessive,
immunosuppressive regimen.We suggest that selecting recipients
with low levels of anti-pig IgM and preferably no IgG will
contribute to success.
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TABLE 6 | Representative immunosuppressive regimen used in the TKO (+added
transgenes) pig-to-NHP life-supporting kidney Tx model [77].

Pretransplant therapy
None

Induction
Anti-thymocyte globulin (ATG), 5 mg/kg IV on day −2 (i.e., 2 days before kidney

transplantation [day 0])
Anti-CD20mAb (Rituximab) 10 mg/kg IV on day −1
C1 esterase inhibitor 17.5 units/kg IV on days 0 and 2

Maintenance
Anti-CD154mAb (Tonix-1500), 30 mg/kg IV on days 0, 2, 7, 10, 14, and weekly
Rapamycin daily IM to maintain a 24-hour trough level of 8–12 ng/mL
Methylprednisolone 10 mg/kg IV tapering the dose over the first week to

0.25 mg/kg IM daily
Tocilizumab (IL-6R blockade) 8 mg/kg IV monthly for 6 months

Outcome
Maximum ongoing graft function is now >12 months
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