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Kidney transplant outcomes are influenced by donor and recipient age, sex, HLA
mismatch, donor type, anti-rejection medication adherence and disease recurrence,
but variability in transplant outcomes remains unexplained. We hypothesise that donor
and recipient polygenic burden for traits related to kidney function may also influence graft
function. We assembled a cohort of 6,060 living and deceased kidney donor-recipient
pairs. We calculated polygenic risk scores (PRSs) for kidney function-related traits in both
donors and recipients. We investigated the association between these PRSs and recipient
eGFR at 1- and 5-year post-transplant as well as graft failure. Donor: hypertension PRS
(P < 0.001), eGFR PRS (P < 0.001), and intracranial aneurysm PRS (P = 0.01), along with
recipient eGFR PRS (P = 0.001) were associated with eGFR at 1-year post-
transplantation. Clinical factors explained 25% of the variation in eGFR at 1-year and
13% at 5-year, with PRSs cumulatively adding 1% in both cases. PRSs were not
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associated with long-term graft survival. We demonstrate a small, but statistically
significant association between donor and recipient PRSs and recipient graft function
at 1- and 5-year post-transplant. This effect is, at present, unlikely to have clinical
application and further research is required to improve PRS performance.

Keywords: polygenic risk scores, eGFR, graft survival, graft function, multivariable models

INTRODUCTION

Kidney transplant outcomes are influenced by a wide array of
factors including donor age and sex, whether the donor is living
or deceased, clinical era of transplant, donor cause of death, and
HLA mismatch [1, 2]. While significant progress has been made
in improving short-term graft survival, enhancing medium- and
long-term graft survival and function still remains a challenge [3].

HLA mismatch and blood group are the only genetic factors
currently used in transplant allocation decisions. It is well
established that graft survival is inversely related to the
number of mismatched HLA alleles [4]. However, in many
centres, less than 5% of transplants are fully matched across
the 6 HLA antigens tested [5]. Thanks to modern
immunosuppression, it is possible to have good outcomes even
with poorly HLA matched kidneys [6]. It has also been reported
that mismatches between donor and recipient in non-
synonymous single nucleotide polymorphisms (SNPs) in genes
for transmembrane and secreted proteins and outside the HLA
were significantly associated with graft survival [7]. However, a
subsequent replication attempt, involving nearly 8,000 pairs,

found no significant associations between these variants and
graft outcome [8]. A more recent study reported an
association between donor and recipient genetic mismatch and
graft survival [9]. Genetic mismatch in this context was defined as
the sum of variant mismatches in transmembrane, secretory, and
kidney-related proteins.

Polygenic risk scores (PRSs) quantify individual genetic
burden for a trait using summary statistics from genome-wide
association studies (GWAS). Specifically, they estimate the
cumulative effect of common genetic variation on an
individual’s disease status weighted by estimated effect size [10].

PRSs for various traits of the donor kidney (“donor PRS”) have
been reported to be associated with transplant outcome. Donor
burden for estimated glomerular filtration rate (eGFR) has been
correlated with eGFR post-transplant [11]. Other studies have
shown an association between donor genetic risk scores in
interleukin-6 and biopsy proven rejection [12, 13]. A recent
study from our group has shown that donor kidneys in the
top decile of PRS for traits related to stroke have eGFR at 1-year
post-transplant approximately 5 mL/min/1.73 m2 lower than
those in the bottom decile of risk [14]. The effect of recipient
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polygenic burden on transplant outcome has also been
established for several outcomes of interest. Recipient
polygenic burden of eGFR has been shown to be associated
with post-transplant eGFR [11] and recipient burden for skin
cancer has been associated with skin cancer post-transplant [11,
15]. Recipient PRS for type 2 diabetes was shown to be associated
with the development of post-transplant diabetes, and the same
study found that the same PRS in donors was a significant
predictor of post-transplant diabetes, but only in liver
transplants [16]. Shaked et al also found that combining both
donor and recipient PRS for type 2 diabetes significantly
improved type 2 diabetes prediction [16].

We assembled 6,060 genotyped donor-recipient transplant
pairs across seven cohorts. We calculated kidney function
related PRS for seven traits in both donors and recipients. We
test the correlation between polygenic burden and transplant
outcomes, particularly eGFR at 1 and 5 years post-transplant, as
well as long-term graft survival.

MATERIALS AND METHODS

Inclusion Criteria
The inclusion criteria were as follows: (1) availability of SNP array
genotyping data for both the donor and recipient in a transplant
pair; (2) availability of data on donor age, sex, and kidney
donation type (living, deceased of stroke, deceased of other
cause), recipient age, sex, year of transplant, and whether it
was the recipient’s first transplant; (3) at least one of the
following outcome variables was also required: death-censored
graft survival, eGFR at 1-year post-transplant, eGFR at 5-year
post-transplant (plus or minus 3 months for each). If a graft had
failed by 1- or 5-year, then individuals were assigned values of
eGFR at 1- or 5-year respectively of 0 mL/min/1.73 m2.

Patient Cohort Descriptions
We included seven predominantly European ancestry cohorts from
the following regions: USA: Deterioration of Kidney Allograft
Function (DeKAF), Genomics of kidney transplantation
(GEN03). Finland: Finnish Red Cross Blood Service (FRCBS).
Netherlands: Transplant Lines (TL). France: Kidney
Transplantation - Genomic Investigation of Essential Clinical
concerns (KiT-GENIE). UK and Ireland: United Kingdom and
Ireland Renal Transplant consortium (UKIRTC), Queen’s
University Belfast (QUB). See Supplementary Materials for more
detailed information on the recruitment and characteristics of each
of these cohorts involved. There were 924 missing values of HLA
mismatch, so we performed multiple imputation using the R
package mice based on the variables for donor type, donor age,
recipient age, donor sex, recipient sex, and whether it was the
recipient’s first transplant.

Calculation of PRS
SNP array genotype data was subject to quality control for minor
allele frequency, missingness per marker, and missingness per
individual (see Supplementary Materials). We calculated PRSs in
each individual for hypertension [17], eGFR [18], rapid decline in

eGFR [19], albuminuria [20], total kidney volume (TKV) [21], stroke
[22], and intracranial aneurysm [23] using published GWAS for
each trait. These traits were selected as they were directly related to
kidney function and risk factors for progression of kidney disease.
We have previously demonstrated the impact of donor intracranial
aneurysm and stroke as a cause of death to be associated with
recipient graft function [14]. Further details of these GWAS can be
found in Supplementary Table S1. PRSs were calculated using
PRSice2 [24], selecting alleles with a p-value threshold greater than
0.5 (see Supplementary Materials for further details). All analysis
was conducted in R, using version 4.2.1 (2022-06-23) [25].

For two of these PRSs (eGFR and total kidney volume), we
hypothesised that higher values would be associated with better
kidney function [26], while for the others (hypertension,
albuminuria, stroke, intracranial aneurysm, and rapid kidney
function decline), one might expect that higher values would be
associated with worse kidney function. To simplify interpretation,
we standardised the directionality of all PRSs, such that one might
expect higher scores to be associatedwith negative outcomes.We did
this by inverting the sign of the eGFR and total kidney volume PRSs
to create “new” PRSs, which we will refer to as “decreased eGFR,”
and “decreased total kidney volume.”

Univariable Analysis
A series of univariable linear models for recipient eGFR at 1- and
5-year post-transplant were created for all the clinical factors
(donor age, donor sex, recipient age, recipient sex, HLA
mismatch, year of transplant, donor type, and whether it was
the recipient’s first transplant), as well as the donor PRSs, and
recipient PRSs. The variance in the outcome explained (R2) was
also calculated for each factor. In a similar manner, a series of
univariable Cox proportional hazards models for death-censored
graft survival were created for each of the clinical factors, donor
PRSs, and recipient PRSs.

Multivariable Analysis
For each of the three outcomes of interest in the univariable
analysis (eGFR at 1-year, eGFR at 5-year, and graft survival),
multivariable models were created with just the factors that had a
p-value less than 0.2in the univariable analysis. Assumptions of a
linear model (residuals vs. fitted, normal Q-Q, scale-location, and
residuals vs. leverage) and Cox model (proportional hazards,
nonlinearity and influential observations respectively) were also
checked. The adjusted R2 for each model was also calculated. The
adjusted R2 for a model without the PRSs (with just the clinical
factors), was then calculated. Using the R function anova, an
ANOVA test was then carried out to investigate if there was a
statistically significant difference between these models.

Comparison of Outcomes Between
Individuals With High and Low
Polygenic Burden
We used these multivariable linear models to predict eGFR at 1-
and 5-year for two transplant recipients: one with high PRSs (in
the 90th percentile), and the other with average PRSs (in the 50th
percentile), but are otherwise completely identical.We did this for

Transplant International | Published by Frontiers March 2025 | Volume 38 | Article 141713

Collins et al. Genetic Burden and Kidney Transplant Outcome



the median transplant recipient, which in our cohort, took place
in 2007, with a 51 year old male recipient, on his first transplant,
with a 50 year old male donor who died of stroke, with whom he
has three HLA mismatches.

RESULTS

Table 1 shows the characteristics for the 6,060 kidney transplants
ascertained from seven sites that passed genotyping quality control.
The median donor age was 50 years and there were more males
(3,221, 53%) than females. 1,470 (24%) of the donors were living,
2,826 (47%) died of stroke, while 1,764 (29%) died of other causes.
The median recipient age was 51 years, with more male recipients
than female (3,912, 65%). First transplants comprised 88% of the
cohort, andHLAmismatch data was available for 85% of the cohort.
The median number of HLA mismatches in a donor: recipient pair
was 3. One-year graft survival was 97%, 5-year graft survival was
89%, and 10-year graft survival was 76%. Recipient eGFR at 1-year
post-transplant was available for 88% of the cohort, with amedian of
52 mL/min/1.73 m2 while eGFR at 5-year post-transplant was only
available for 50% of the cohort, with a median of 44 mL/min/
1.73 m2. Power calculations indicated that the smallest sample size
required to detect an effect that explains at least 1%of the variation in
outcome was 272 individuals (see Supplementary Materials).

Univariable Models to Identify Factors
Associated With Transplant Outcome
In order to investigate the impact of donor and recipient PRSs on
eGFR at 1- and 5-year, we created univariable linear models for

each PRS. Similarly, we also created univariable Cox models for
each PRS to predict graft failure (seeMaterials andMethods). The
association between each of the clinical factors, seven donor PRSs,
and seven recipient PRSs and recipient eGFR at 1-year, 5-year,
and graft failure are detailed in Table 2. We observed a significant
univariable association between the following donor
characteristics and recipient eGFR at 1-year: age
(Estimate = −0.63; P < 2e-16), male sex (Estimate = 3.4; P =
6.1e-8), stroke cause of death (Estimate = −17; P < 2e-16), other
cause of death (Estimate = −8.6; P < 2e-16), and year of transplant
(Estimate = 0.45; P < 2e-16). Standard deviation increases in
donor hypertension, decreased eGFR, and intracranial aneurysm
PRSs correspond to decreases in eGFR at 1-year of 1.6 (P = 6.7e-
7), 1.5 (P = 5.4e-6), and 1.0 (P = 0.001) mL/min/1.73 m2

respectively. We also observed significant associations between
recipient age (Estimate = −0.46; P = 8.2e-12), recipient decreased
eGFR PRS (Estimate = −1.5; P = 4.4e-4) and recipient eGFR at 1-
year. None of the other PRSs were significantly associated with
eGFR at 1-year. The factors with the highest R2 were donor age,
recipient age, and donor type (0.16, 0.08, 0.10 respectively).

Univariable donor factors associated with eGFR at 5-year
post-transplant included: age (Estimate = −0.64; P < 2e-16),
male sex (Estimate = 3.3; P = 0.001), stroke cause of death
(Estimate = −13; P = 1.7e-10), other cause of death
(Estimate = −4.2; P = 0.04), and HLA mismatch
(Estimate = −1.1; P = 0.002). Standard deviation increases in
donor hypertension PRS, donor decreased eGFR PRS, and
recipient decreased eGFR PRS correspond to decreases in
eGFR at 5-year of 1.2 (P = 0.02), 1.8 (P = 4.4e-4), and 1.1
(P = 0.02) mL/min/1.73 m2 respectively. Recipient factors
included whether it was the recipient’s first transplant (HR =

TABLE 1 | Demographic characteristics of study participants. For further details regarding the recruitment and characteristics of each cohort, see the Supplementary
Materials.

Variable Overall DeKAF FRCBS GEN03 KiT-GENIE QUB TL UKIRTC

Number of transplants 6,060 684 888 472 1,463 68 608 1877
Donor age, median (range) 50 (18–90) 44 (18–70) 58 (18–77) 45 (18–71) 56 (18–90) 44 (18–66) 46 (18–72) 47 (18–81)
Female donor, n (%) 2,839 (47) 405 (59) 417 (47) 271 (57) 616 (42) 32 (47) 292 (48) 806 (43)
Donor type
Living, n (%) 1,470 (24) 684 (100) 0 (0) 472 (100) 265 (18) 0 (0) 49 (8) 0 (0)
Died of stroke, n (%) 2,826 (47) 0 (0) 585 (66) 0 (0) 699 (48) 42 (62) 319 (52) 1,181 (63)
Died of other causes, (n %) 1764 (29) 0 (0) 303 (34) 0 (0) 499 (34) 26 (38) 240 (39) 696 (37)

Recipient age, median (range) 51 (0–84) 51 (0–83) 57 (18–79) 51 (1–81) 55 (18–84) 44 (10–72) 50 (16–74) 47 (18–79)
Female recipient, n (%) 2,148 (35) 231 (34) 275 (31) 177 (38) 497 (34) 30 (44) 246 (40) 692 (37)
First transplant, n (%) 5,337 (88) 603 (88) 888 (100) 418 (89) 1,140 (78) 68 (100) 555 (91) 1,665 (89)
HLA mismatch, median (range) 3 (0–6) 3 (0–6) 3 (0–6) 3 (0–6) 4 (0–6) NA NA 2 (0–6)
Unknown 924 (15) 1 (0.1) 0 (0) 13 (3) 0 (100) 68 (100) 608 (100) 234 (12)

Year of transplant, median 2007 2008 2014 2014 2011 2002 2000 2001
Follow up, median (range) 5 (0–25) 2 (0–5) 3 (0–10) 2 (0–3) 6 (0–21) 7 (0–24) 7 (0–17) 8 (0–25)
Graft status, n (%)
Censored 5,098 (84) 671 (98) 831 (94) 470 (100) 1,138 (78) 46 (68) 509 (84) 1,433 (76)
Rejected 962 (16) 13 (2) 57 (6) 2 (0.4) 325 (22) 22 (32) 99 (16) 444 (24)

eGFR at 1-year, median (range) 52 (0–185) 60 (0–178) 54 (0–135) 62 (16–185) 50 (0–129) 0 (0–0) 45 (0–124) 49 (0–124)
Unknown, n (%) 726 (12) 0 (0) 247 (28) 0 (0) 59 (4) 53 (78) 24 (4) 343 (18)

eGFR at 5-year, median (range) 44 (0–124) 0 (0–0) 38 (0–106) 0 (0–0) 45 (0–122) 0 (0–0) 47 (0–124) 44 (0–121)
Unknown, n (%) 3037 (50) 671 (98) 747 (84) 470 (99.5) 491 (34) 49 (72) 139 (23) 470 (25)

DeKAF, deterioration of kidney allograft function; FRCBS, finnish red cross blood service; GEN03, genomics of kidney transplantation; KiT-GENIE, kidney transplantation - genomic
investigation of essential clinical concerns; QUB, Queen’s University Belfast; TL, TransplantLines; UKIRTC, united kingdom and ireland renal transplant consortium; eGFR, estimated
glomerular filtration rate.
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0.66; P = 7.9e-7), age (Estimate = −0.24; P = 8.2e-12), andmale sex
(Estimate = 2.5; P = 0.01).

Univariable donor factors associated with graft failure
included age (HR = 1.02; P < 2e-16), HLA mismatch (HR =
1.1; P = 8.1e-5), stroke cause of death (HR = 3.5; P = 1.6e-14),
other cause of death (HR = 2.7; P = 1.4e-9), year of transplant
(HR = 0.98; P = 0.003), and hypertension PRS (HR = 1.07; P =
0.049). No recipient factors were associated with graft failure. A
standard deviation increase in donor hypertension PRS
corresponds to a 7% greater risk of graft failure.

Multivariable Models to Identify Factors
Associated With Transplant Outcome
For each of the three outcomes of interest (eGFR at 1-year, 5-year
and graft failure), multivariable models were created using only
the statistically significant factors from the univariable
analysis (Table 3).

In a multivariable model the following donor factors were
independently associated with eGFR at 1-year: age, sex, year of
transplant, donor type, hypertension PRS, decreased eGFR PRS,
and intracranial aneurysm PRS. Recipient factors associated with
eGFR at 1-year in the multivariable model included age, and
decreased eGFR PRS. This model had an adjusted R2 of 0.26,

compared to the adjusted R2 of a model with just the clinical
factors of 0.25. There was a significant difference between the two
models, according to the ANOVA test (F = 14.4, P = 9.9e-12),
indicating that the addition of PRSs increases the predictive
power of a model with just clinical factors.

In the multivariable model for eGFR at 5-year, donor factors
associated included age, donor type, and decreased eGFR PRS.
Recipient factors included sex, age, and decreased eGFR PRS.
The adjusted R2 of the model with the PRSs was higher (0.14)
than that of the model with just the clinical predictors (0.13). There
was a significant difference between the twomodels, according to the
ANOVA test (P = 0.003), again indicating that the addition of PRSs
to a model of clinical factors significantly increases predictive ability.

The following factors were associated with graft failure in the
multivariable model: donor age, HLA mismatch, whether it was the
recipient’s first transplant, year of transplant, and donor cause of
death.None of the PRSswere significantly associatedwith graft failure.

Comparison of Outcomes Between
Individuals With High and Low
Polygenic Burden
To demonstrate the utility of these models, we used the models
created in the previous section to predict recipient eGFR at 1- and

TABLE 2 | Univariable linear models for recipient eGFR at 1- and 5-year post-transplant, and Cox model for death-censored graft failure.

eGFR at 1-year eGFR at 5-year Graft failure

Estimate (SE) P value R2 Estimate (SE) P value R2 HR (95% CI) P value

Clinical factors
Donor age −0.63 (0.02) <2e-16 0.16 −0.64 (0.03) <2e-16 0.12 1.02 (1.02–1.03) <2e-16
Male donor sex 3.4 (0.62) 6.1e-8 0.005 3.3 (0.98) 0.001 0.004 0.98 (0.86–1.1) 0.72
Male recipient sex 1.2 (0.65) 0.06 0.001 2.5 (1.01) 0.01 0.002 1.1 (0.93–1.2) 0.34
Recipient age −0.46 (0.02) <2e-16 0.08 −0.24 (0.04) 8.2e-12 0.02 1.00 (0.99–1.01) 0.29
HLA mismatch −0.16 (0.20) 0.43 0 −0.77 (0.33) 0.02 0.001 1.1 (1.02–1.11) 0.006
First transplant −0.2 (0.94) 0.83 0 3.0 (1.38) 0.03 0.002 0.66 (0.56–0.78) 7.9e-7
Year of transplant 0.45 (0.047) <2e-16 0.02 −0.15 (0.08) 0.06 0.001 0.98 (0.98–0.99) 0.003
Donor type 0.1 0.03
Living - - - - - -
Stroke cause of death −17 (0.72) <2e-16 −13 (1.95) 1.7e-10 3.5 (2.5–4.7) 1.6e-14
Other cause of death −8.6 (0.79) <2e-16 −4.2 (2.01) 0.04 2.7 (2.0–3.8) 1.4e-9

Donor PRSs
Donor hypertension PRS −1.6 (0.32) 6.7e-7 0.005 −1.2 (0.49) 0.02 0.002 1.07 (1.00–1.14) 0.049
Donor decreased eGFR PRS −1.5 (0.32) 5.4e-6 0.004 −1.8 (0.5) 4.4e-4 0.004 1.05 (0.99–1.13) 0.11
Donor albuminuria PRS 0.52 (0.32) 0.1 0.001 −0.34 (0.5) 0.5 0 1.00 (0.94–1.06) 0.92
Donor rapid eGFR decline PRS −0.37 (0.38) 0.34 0 −0.15 (0.51) 0.77 0 0.99 (0.92–1.06) 0.73
Donor intracranial aneurysm PRS −1.03 (0.31) 0.001 0.002 −0.6 (0.48) 0.21 0.001 1.04 (0.98–1.11) 0.18
Donor stroke PRS −0.12 (0.31) 0.7 0 0.58 (0.5) 0.23 0 0.95 (0.89–1.01) 0.09
Donor decreased TKV PRS 0.25 (0.31) 0.43 0 0.08 (0.5) 0.87 0 0.98 (0.92–1.05) 0.58
Recipient PRSs
Recipient hypertension PRS 0.53 (0.30) 0.08 0 0.63 (0.49) 0.2 0.001 0.99 (0.92–1.1) 0.64
Recipient decreased eGFR PRS −1.5 (0.31) 1.0e-6 0.004 −1.1 (0.47) 0.02 0.002 1.05 (0.99–1.1) 0.09
Recipient albuminuria PRS 0.56 (0.32) 0.08 0.001 0.14 (0.48) 0.77 0 1.02 (0.96–1.1) 0.5
Recipient rapid eGFR decline PRS 0.34 (0.36) 0.35 0 0.65 (0.48) 0.17 0.001 0.97 (0.91–1.0) 0.4
Recipient intracranial aneurysm PRS 0.12 (0.32) 0.7 0 −0.43 (0.5) 0.38 0 1.00 (0.94–1.1) 0.97
Recipient stroke PRS −0.29 (0.32) 0.36 0 −0.83 (0.49) 0.09 0.001 1.10 (0.99–1.1) 0.12
Recipient decreased TKV PRS 0.1 (0.31) 0.74 0 0.1 (0.49) 0.83 0 0.94 (0.88–1.0) 0.06

eGFR, estimated glomerular filtration rate; HR, hazard ratio; TKV, total kidney volume; SE, standard error.
Statistically significant (P < 0.05) predictors are bolded and italicised.
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5-year post-transplant in the median transplant recipient (see
Materials and Methods), one with high PRSs (in the 90th
percentile) and the other with average PRSs (in the 50th
percentile). Transplants where both the donor and recipient
had high PRSs were predicted to have an eGFR at 1-year of
45.6 mL/min/1.73 m2, whereas transplants where both the donor
and recipient had average PRSs were predicted to have an eGFR at
1-year of 50.6 mL/min/1.73 m2. Transplants where both the
donor and recipient had high PRSs were predicted to have an
eGFR at 5-year of 40.0 mL/min/1.73 m2, whereas transplants
where both the donor and recipient had average PRSs were
predicted to have an eGFR at 5-year of 42.8 mL/min/1.73 m2.

DISCUSSION

We have explored the influence of donor and recipient PRSs for
traits related to kidney function on post-transplant outcome. We
have confirmed the previously reported clinical factors associated
with graft function, and have additionally demonstrated, across
seven cohorts comprising 6,060 donor-recipient transplant pairs,
that higher donor and recipient decreased eGFR PRS was
associated with lower eGFR at 1-year post-transplant, with
similar effects observed at 5-year post-transplant. We further
demonstrated that donor hypertension and intracranial
aneurysm PRSs are also associated with reduced eGFR at 1-
year post-transplant. Transplants where both the donor and
recipient had high polygenic burden were predicted to have
recipient eGFR at 1-year post-transplant that was over 5 mL/
min/1.73 m2 lower than those with average polygenic burden.

To our knowledge, this is the first study to combine donor and
recipient PRS into a single predictive model in the transplant
setting. Previous studies have investigated the effect of either
donor PRS [11] or recipient PRS [13, 15], but none have
combined the two in a single predictive model. While the
impact of PRS on transplant outcome is relatively modest
(accounting for 1% of the variation in recipient post-
transplant eGFR), these results align with a growing body of
literature demonstrating the utility of PRS in predicting kidney
disease [27] and kidney transplant outcome [11]. They are also
consistent with recent results demonstrating the association of
combined donor and recipient genetic factors with transplant
outcome [7, 9, 28]. As GWAS continue to grow in size and
predictive power, PRS could potentially explain a more
substantial proportion of graft function. It is likely that a
GWAS focused on kidney failure would result in significantly
better PRS for kidney failure rather than just a GWAS for eGFR,
as it is quite possible that the variants involved in low eGFR may
be quite different from those involved in kidney failure.

This study has replicated the well described significant impact
of clinical factors on long-term graft function and survival
including donor age, donor cause of death, HLA mismatch,
era of transplantation, and donor type. These clinical factors
explain approximately 25% of variation in eGFR at 1-year and

TABLE 3 | Multivariable models for recipient eGFR at 1- and 5-year post-
transplant, and graft failure, keeping statistically significant factors from
univariate models. Effect of polygenic risk scores is highlighted in grey.

eGFR at 1-year (adjusted R2 = 0.26)

Estimate (95% CI) P Value

Intercept −1,267 (−1,460, −1,098) <2e-16
Donor age −0.54 (−0.59, −0.50) <2e-16
Male donor sex 2.7 (1.5, 3.7) 21.6e-6
Male recipient sex 1.68 (0.52, 2.72) 0.004
Recipient age −0.25 (−0.29, −0.21) <2e-16
Year of transplant 0.68 (0.59, 0.78) <2e-16
Donor type
Living - -
Stroke cause of death −7.6 (−9.1, −6.2) <2e-16
Other cause of death −6.3 (−7.8, −4.7) <2e-16

Donor albuminuria PRS 0.24 (−0.32, 0.80) 0.40
Donor hypertension PRS −1.3 (−1.7, −0.6) 9.2e-6
Donor decreased eGFR PRS −1.2 (−1.8, −0.7) 4.33e-5
Donor intracranial aneurysm PRS −0.66 (−1.2, −0.14) 0.01
Recipient hypertension PRS 0.47 (−0.07, 1.02) 0.09
Recipient albuminuria PRS −0.05 (−0.62, 0.50) 0.85
Recipient decreased eGFR PRS −1.0 (−1.5, −0.49) 0.001

eGFR at 5-year (Adjusted R2 = 0.14)

Estimate (95% CI) P value

Intercept −621 (−952, −290) 0.0002
Donor age −0.68 (−0.7, −0.6) <2e-16
Male donor sex 1.01 (−0.8, 2.9) 0.28
Recipient age 0.04 (−0.0, 0.1) 0.26
Male recipient sex 2.8 (0.9, 4.6) 0.004
Year of transplant 0.35 (0.2, 0.5) 3.7e-5
HLA mismatch −0.61 (−1.3, 0.1) 0.09
First transplant 3.24 (0.7, 5.8) 0.01
Donor type
Living - -
Stroke cause of death −8.0 (−11.8, −2.8) 3.0e-5
Other cause of death −6.7 (−10.5, −2.8) 0.0007

Donor hypertension PRS −0.7 (−1.9, −0.1) 0.16
Donor decreased eGFR PRS −1.6 (−2.6, −0.8) 0.0003
Recipient decreased eGFR PRS −0.9 (−1.8, −0.0) 0.04
Recipient stroke PRS −0.95 (−1.9, −0.1) 0.04

Graft failure(R2 = 0.23)

HR (95% CI) P value

Donor age 1.02 (1.02, 1.03) 1.8e-13
HLA mismatch 1.13 (1.07, 1.19) 3.3e-6
First transplant 0.61 (0.52, 0.72) 6.1e-9
Year of transplant 0.97 (0.96, 0.98) 2.3e-8
Donor type
Living - -
Stroke cause of death 2.6 (1.9, 3.6) 8.7e-9
Other cause of death 2.5 (1.8, 3.5) 5.6e-8

Donor Hypertension PRS 1.06 (0.99, 1.1) 0.09
Donor decreased eGFR PRS 1.04 (0.98, 1.1) 0.18
Donor intracranial aneurysm PRS 1.03 (0.96, 1.1) 0.39
Donor stroke PRS 0.95 (0.90, 1.01) 0.11
Recipient decreased eGFR PRS 1.05 (0.98, 1.11) 0.15
Recipient stroke PRS 1.06 (0.98, 1.12) 0.08
Recipient decreased TKV PRS 0.96 (0.90, 1.02) 0.17

eGFR, estimated glomerular filtration rate; CI, confidence interval; HR, hazard ratio.
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significantly outweighs the impact of PRSs on
transplant function.

This study has several limitations. The participants included
were of predominantly European ancestry. The performance of
PRSs in non-European ancestry populations is generally lower,
though much work is currently being done to address this issue
[28]. Data on HLA mismatch and/or eGFR at 5-year was
unavailable on 15% and 50% of participants respectively. We
were unable to detect a significant effect of PRSs on graft failure,
which may be on account of the effect potentially being stronger
in immediate graft function rather than long-term survival.
Additionally, 16% of these transplants date from before the
year 2000. This means that we have a long follow-up time for
many of our transplants, but treatment regimens have improved
significantly since some of the earlier transplants in the 1980s and
1990s. We accounted for this by controlling for the year of
transplant in our analysis. We lack data on several factors
which may influence graft function including history of
hypertension, history of diabetes, hepatitis C virus status,
terminal serum creatinine, and donor height and weight and
thus were unable to calculate the kidney donor profile index
(KDPI). However, this is not likely to significantly impact our
results, as it has been previously shown that while KDPI was
predictive of post-transplant eGFR, it does not significantly add
to donor age as a predictor of graft failure [29].

Additionally, the focus in this study is on common variation.
Large scale donor-recipient exome studies are currently
underway which will address the question of the impact of
rare variation on graft function. It is possible, and even likely
[30], that incorporating such information on rare variation may
yield results of larger effect.

In summary, this study demonstrates that the combined effect
of donor and recipient PRSs for decreased eGFR has an impact on
post-transplant eGFR. Donors and recipients who both have high
PRSs result in an average recipient eGFR at 1-year post-transplant
that is over 5 mL/min/1.73 m2 lower than the average from
transplants where both donor and recipient have average
polygenic burden. At this point in their development, these
PRSs have minimal added benefit over existing clinical risk
factors, but we anticipate that as PRSs become increasingly
powerful, that they will become an important tool in clinical
decision-making. These results may have potential implications
for transplant allocation decisions. Any incorporation of PRSs
into such decisions would likely first take place in living donor
transplants, where potential donors could be genotyped and
analysed without the time pressures that exist around deceased
donor transplantation. Before this can take place, further studies
are required to validate these results and construct a transplant
risk prediction tool based on clinical factors and PRSs.
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