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Substance Abuse and the Microbiome

Substance abuse, also known as drug abuse, refers to excessive use of agents that cause harm to self, society, or both. Some of the commonly used substances of abuse include: Opioids, Cocaine, Lysergic acid diethylamide (LSD), marijuana and alcohol. Substance abuse can lead to addiction thereby triggering significant negative effects on the brain and the body. The gastrointestinal (GI) tract harbors a complex array of microorganisms, called the gut microbiota which play a critical role in regulating homeostasis in the body and disease. Extensive use of next-generation sequencing technology has enabled the discovery of how dysbiosis caused by environmental factors can impact the development and severity of many clinical disorders. Such studies have also led to the detection of gut-brain axis, a bidirectional communication pathway between the Central Nervous System and the Gastrointestinal System in which the gut microbiota play a critical role. The gut microbiota can regulate the brain functions through microbial metabolites, including the short-chain fatty acids which can cross the blood-brain barrier. Additionally, the brain can regulate the gut microbiota through neural, endocrine and cytokine pathways. How does substance abuse fit into the complex cross-talk between the gut microbiota and the brain? This is an exciting area of research that is drawing a lot of attention. Some substances of abuse such as alcohol have already been shown to cause dysbiosis which may influence alcoholic liver disease through leaky gut. Such findings also raise an exciting possibility of using probiotics, reversing dysbiosis, or fecal microbiota transplantation as a therapeutic modality to reverse the negative impacts of substance abuse.



This Special Issue is focused on how substance use disorder can alter gut microbiota and impact functions of the Central Nervous and other organ systems. It is also the goal to explore how stabilization of gut microbiota can prevent the negative effects of substance abuse.

[image: image]




Table of Contents



Editorial: Substance abuse and the microbiome

DOI: 10.3389/adar.2024.12734

Prakash Nagarkatti, Mitzi Nagarkatti and Shilpa Buch


Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation

DOI: 10.3389/adar.2022.10550

Kontham Kulangara Varsha, Mitzi Nagarkatti and Prakash Nagarkatti


Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome

DOI: 10.3389/adar.2023.11359

Melissa Ellermann


Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation

DOI: 10.3389/adar.2023.11092

Sudipta Ray, Susmita Sil, Muthukumar Kannan, Palsamy Periyasamy and Shilpa Buch


Gut-Microbiome Implications in Opioid Use Disorder and Related Behaviors

DOI: 10.3389/adar.2022.10311

Bridget Herlihy and Sabita Roy



		SPECIAL ISSUE EDITORIAL
published: 06 March 2024
doi: 10.3389/adar.2024.12734


[image: image2]
Editorial: Substance abuse and the microbiome
Prakash Nagarkatti1*, Mitzi Nagarkatti1 and Shilpa Buch2
1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
2Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
Edited by:
Sabita Roy, University of Miami, United States
* Correspondence: Prakash Nagarkatti, prakash@mailbox.sc.edu
Received: 25 January 2024
Accepted: 28 February 2024
Published: 06 March 2024
Citation: Nagarkatti P, Nagarkatti M and Buch S (2024) Editorial: Substance abuse and the microbiome. Adv. Drug Alcohol Res. 4:12734. doi: 10.3389/adar.2024.12734

Keywords: drug abuse, microbiota, cannabinoids, opioids, dysbiosis
Editorial on the Special Issue 
Substance abuse and the microbiome


The gastrointestinal (GI) tract harbors a highly complex array of microorganisms that play a critical role in regulating homeostasis in the body. Thus, any perturbations or imbalance, termed dysbiosis, can trigger disease. While the direct effects of abused substances on various organ systems such as the brain, have been well-recognized, whether drug misuse can also lead to dysbiosis, resulting in clinical disorders remains an interesting possibility that is actively researched. This Special Issue was therefore focused on how substance use disorders (SUD) are linked to dysbiosis, and how altered gut microbial composition can influence the functions of the Central Nervous System (CNS) and the immune system. It was also the goal of this Special Issue to explore whether the stabilization of gut microbiota could lead to the restoration of clinical disorders that are triggered by drugs of abuse.
In this Special Topic Issue, we present four articles: In the first article, Varsha et al. describe how the ability of cannabinoids to suppress inflammation could likely be mediated, in part, through the alterations in the gut microbiome and metabolome. There is significant evidence demonstrating that cannabinoids such as delta-9-tetrahydrocannabinol (THC), and Cannabidiol (CBD) act as anti-inflammatory agents. Also, these cannabinoids have been approved by the FDA to treat several clinical disorders. For example, THC has been approved by the FDA to treat HIV/AIDS-induced anorexia as well as chemotherapy-induced nausea and vomiting in cancer patients undergoing chemotherapy. CBD has also been approved by the FDA to treat certain types of epilepsy syndromes. Moreover, several states in the US have legalized cannabis for medicinal and/or recreational use. Thus, it is important to understand whether the anti-inflammatory effects of cannabinoids are mediated via the regulation of dysbiosis and, if so, the impact of this on health. This review captures the mechanism(s) that trigger dysbiosis following exposure to cannabinoids. Additionally, it highlights how cannabinoids can induce microbial secondary bile acids, short-chain fatty acids (SCFA), and indole metabolites, that can have an immunoregulatory role even in distant organs.
The second review by Ellermann is closely related to the first article in that the review focuses on endocannabinoids. An important highlight of this article is the demonstration that changes in the gut microbiome caused by external factors such as diet or disease can have a significant impact on the endocannabinoid tone. This is critical inasmuch as endocannabinoids regulate a wide array of important bodily functions such as memory, sleep, temperature control, pain control, appetite, and immune functions. The article also highlights endocannabinoid-mediated regulation of naturally occuring bacteria within the gut microbiome. Additional exciting areas covered by this article include the preclinical studies demonstrating that engineered gut bacteria synthesizing the host N-acylethanolamides could be potentially used to treat diseases that involve aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Drug abuse by HIV-1/AIDS patients has been shown to increase viral load and accelerate the disease progression. The third article by Ray et al. highlights the evidence that the gut microbiome plays an important role in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegeneration. It is well documented that drug abuse can disrupt the gut-brain axis resulting in dysbiosis, and altered expression of neurotransmitters, bile acids, and metabolites, including SCFA. Such alterations can activate a wide range of pro-inflammatory signaling pathways, which, in turn, can impact the CNS through the hypothalamic-pituitary axis, ultimately resulting in pain, stress, and anxiety. The article highlights how understanding the mechanism(s) underlying how drugs of abuse alter the microbiota in HIV-1/AIDS patients could aid in the development of better treatment modalities for drug abuse-related disorders.
The fourth article by Herlihy and Roy focuses on opioid-mediated microbial dysbiosis and its impact on behavior. The review highlights how drug-induced dysbiosis can lead to an increased prevalence of pathogenic bacteria, in turn, manifesting as a compromised gut barrier with consequent systemic translocation of bacteria that trigger proinflammatory cytokine release. The microbiome also communicates with the brain by sending signals through the vagus nerve. The article also discusses how the microbiome can increase microglial activation in the brain as well as dysregulation of brain-derived neurotrophic factor (BDNF) signaling during drug use. All such alterations in the microbiome also impact the behavioral consequences of drug use. Together, these studies suggest that preventing dysbiosis could likely attenuate behavioral symptoms associated with drug use.
In summary, this Special Issue consisting of four review articles comprehensively discusses the complex interactions between drug use and microbial dysbiosis. It also highlights how dysbiosis is closely associated with the endocannabinoid and immune system while communicating with the brain through the gut-brain axis, thereby regulating pain, anxiety, and behavior. The articles highlight the challenges and opportunities to advance this research to better understand and control drug use and behavioral disorders.
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Cannabinoids and the endocannabinoid system have been well established to play a crucial role in the regulation of the immune response. Also, emerging data from numerous investigations unravel the imperative role of gut microbiota and their metabolites in the maintenance of immune homeostasis and gut barrier integrity. In this review, we concisely report the immunosuppressive mechanisms triggered by cannabinoids, and how they are closely associated with the alterations in the gut microbiome and metabolome following exposure to endogenous or exogenous cannabinoids. We discuss how cannabinoid-mediated induction of microbial secondary bile acids, short chain fatty acids, and indole metabolites, produced in the gut, can suppress inflammation even in distal organs. While clearly, more clinical studies are necessary to establish the cross talk between exo- or endocannabinoid system with the gut microbiome and the immune system, the current evidence opens a new avenue of cannabinoid-gut-microbiota-based therapeutics to regulate immunological disorders.
Keywords: inflammation, cannabinoids, microbiota, drug abuse, endocannabinoids
INTRODUCTION
Cannabis sativa, otherwise known as marijuana, has a rich history of being used for medical and recreational purposes. The complex biochemical metabolism of cannabis leads to the production of over 550 chemical constituents of which over 100 are identified as phytocannabinoids (1). The chemical structure of the non-psychoactive cannabinoid compound, cannabidiol (CBD) was first deduced in 1963 followed by the identification of the psychoactive cannabinoid, δ9-tertrahydrocannabinol (THC), in 1964 (2). Cannabinoids accomplish their physiological and behavioral consequences via their binding to the cannabinoid G-protein-coupled receptors (GPCRs), CB1 and CB2 (CBRs). The existence of these receptors and their endogenous ligands, named endocannabinoids (eCBs), in the human system was discovered in the 1990s thus revealing the functions of eCB system in neuronal and immunomodulatory functions. eCBs such as anandamide (AEA) and 2-arachydonoylglycerol (2-AG), which are native lipid-based retrograde neurotransmitters, as well as exogenous cannabinoids such as THC, act as strong agonists of CBRs. CBD, unlike THC, is not psychoactive and considered to be a negative allosteric modulator of the CB1 receptors (3). Fatty acid amide hydrolase (FAAH) and monoacylglycerol acid lipase that break down AEA and 2–AG, respectively, are the two other important participants of the eCB signaling system (4-6). The CB1 and CB2 receptors are expressed primarily in the brain and immune cells respectively and mediate nearly all the effects of both endogenous and exogenous cannabinoids (6, 7).
The downstream signaling initiated by CBRs involves the inactivation of protein kinase A following inhibition of adenyl cyclase activity and a decrease in cyclic adenosine monophosphate (cAMP) levels. In addition, CBRs trigger an array of various mechanisms in the wake of activation. This includes multiple effector protein kinase signaling cascades related to cell proliferation and survival such as phosphoinositide-3-kinase–protein kinase B/Akt (PI3K-PKB/AKT), p38 mitogen-activated protein (p38 MAP) kinases, extracellular signal-regulated kinase (ERK) as well as focal adhesion kinase (FAK) (8). Coupling to ion channels, phospholipase-cb activation, and ceramide biosynthesis are certain other pathways activated by CBRs (7–11). It is demonstrated that eCBs can also bind to non-CBRs, of which the most investigated are transient receptor potential vanilloid 1 (TRPV1) channel along with peroxisome proliferator-activated receptor and orphan GPCRs (9, 12). Most of these pathways mentioned above are entwined with maintenance of immune homeostasis. For example, certain subsets of effector CD4+ T cells depend on the PI3K signaling activation for their differentiation and steering of effector functions. Additionally, PI3K and p38MAPK signaling are involved in the production of inflammatory cytokines (13, 14), ERK signaling plays a role in resistance to immunomodulatory drugs (15), and nuclear translocation of FAK is important to regulate inflammatory gene expression of chemokines and cytokines (16). Such studies demonstrate that the downstream signaling pathways initiated by CBRs can lead to immunomodulation.
It is well documented that the gut microbiome plays a crucial role in host metabolism as well as the balance between pro- and anti-inflammatory responses, thereby controlling disease pathogenesis (17). Short-chain fatty acids (SCFAs), lipopolysaccharides (LPS), and other biologically active metabolites generated by various microbial species contribute toward immune regulation, activation or suppression (18). Thus, dietary and medical interventions that manipulate the composition of the microbiome have been shown to cause pro- or anti-inflammatory milieu (19). There is emerging evidence that the gut microbiome and eCB system communicate via signaling pathways involved in nutrient processing and energy metabolism (17). In this mini-review, we briefly recite an account of the effects and mechanisms of endogenous and exogenous cannabinoids on immunosuppression via microbiome-mediated activities.
MECHANISMS AND NATURE OF IMMUNOMODULATION CAUSED BY CANNABINOIDS
Cannabinoids are well established as anti-inflammatory agents with a significant and wide range of immunosuppressive properties that have been meticulously reviewed before (20–25). CBD, the nonpsychotic cannabinoid, was shown to induce myeloid-derived suppressor cells (MDSCs) which suppressed T cell proliferation in vitro and in vivo (26). MDSCs mostly express CD11b and Gr-1 and represent a heterogeneous population of immature myeloid cells which produce arginase 1 and inducible nitric oxide synthase that enables them to suppress T cell proliferation (27). Cannabinoid-induced MDSCs upon adoptive transfer were shown to attenuate LPS-induced acute inflammation in vivo (26, 28). The psychoactive THC was also shown to induce MDSCs independent of TLR4. THC mobilized MDSCs from bone marrow and caused their expansion in the periphery (29). In addition to the generation of MDSCs, cannabinoids have also been shown to induce regulatory T cells (Tregs) (30–33). Such T cells express FoxP3, a transcription factor that plays a critical role in their differentiation and functions, and secrete immunosuppressive cytokines such as interleukin (IL)-10 and transforming growth factor β (TGF-β) (34). Additionally, cannabinoids can also induce apoptosis of immune cells such as T and B lymphocytes, macrophages, and dendritic cells (DCs) leading to immunosuppression (35). THC triggered DC apoptosis via reduction of mitochondrial membrane permeability, cleavage of Bid, activation of caspase cascade, and release of cytochrome-c (36). THC treatment caused phosphorylation of IkappaB-alpha and augmented apoptotic gene transcription regulated by NF-kappaB (35–38). Moreover, agonists of CBRs can disrupt the balance of pro and anti-inflammatory cytokines. THC exposure restrained the production of IL2, IL-12, and interferon-gamma (IFN-γ), and altered the equilibrium of T helper 1 (Th1)/T helper 2 (Th2) cytokines in a CB2R dependent manner (39, 40). Also, THC and AEA were shown to suppress inflammatory Th1 and Th17 response during delayed-type hypersensitivity response (41, 42).
Epigenetic modulations are additional mechanisms of immunosuppression triggered by cannabinoids (43). The eCB system undergoes epigenetic modifications and such variations are observed in pathological disorders such as Diabetes, Parkinson’s, Alzheimer’s, and colorectal cancer. The main targets of these modifications are the genes CNR1 and CNR2 that encode for CB1R and CB2R along with FAAH (44–46). Recent investigations provide insights into cannabinoid-mediated epigenome modifications and their impact on the suppression of the immune system. THC treatment increased methylation of the promoter region of DNA methyl transferases, DNMT3a and DNMT3b in MDSCs leading to subsequent reduction in DNMT3a and DNMT3b expressions in C57BL/6 mice. Moreover, a decrease in the methylation of Arg1 and STAT3 promoter regions was observed that led to over-expression of Arg1 and STAT3 (47). THC was shown to activate or suppress the expression of genes via histone modifications. THC treatment led to histone modifications that led to increases in Th2 cytokine genes while suppressing Th1 cytokine genes, thereby switching the immune response from Th1 to Th2 (48).
Up-regulation or down-regulation of microRNAs (miRNAs) are another major route of epigenetic alterations prompted by cannabinoids. Treatment of C57BL/6 mice with THC elevated miR-21 while lowered miR-29b expression that was associated with a corresponding increase in SMAD7 and decrease in IFN-γ expressions. This in turn inhibited Th1/Th17 activation in delayed-type hypersensitivity reaction (47). The eCB, AEA mitigated Staphylococcal enterotoxin B (SEB)-induced acute respiratory distress syndrome (ARDS) in mice via down-regulation of miRNA-23a-3p, which up-regulated arginase and TGF-β2, and miRNA-34a-5p that prompted FoxP3 induction. A reduction in pro-inflammatory cytokines such as IL-2, TNF-α, and IFN-γ, while an increase in MDSCs was detected following AEA treatment (49). THC administration into SEB-injected C3H/HeJ mice was reported to down-regulate miR-17/92 and miR-374b/421 clusters while up-regulating miR146a leading to the release of PTEN thus acting as an AKT inhibitor leading to a reduction in IFN-γ production (31). Another study reported that THC altered expressions of the members of miR-17-92 cluster, particularly miR-18a that directed the release of PTEN (50). A detailed description of cannabinoid-mediated epigenetic modulations pertaining to immune suppression has been recently published (43). It is interesting to note that the intestinal microbiota and their metabolites have been shown to regulate several epigenetic pathways (51). This raises the question of whether the cannabinoid-mediated changes in the epigenetic pathways are linked to the gut microbiota.
GUT MICROBIOTA, ECB SYSTEM, AND GUT-BRAIN AXIS
The diverse intestinal microbial population found in the gut shares a mutual symbiotic relationship with the host. The microbiota benefits the host by modulation of gut motility, intestinal barrier function, and nutrient absorption. Moreover, gut microbiota plays a major role in host metabolism and is associated with regulation of the inflammatory status of the host not only in the gut but also in other organs such as the brain (52, 53). Thus, alterations in the microbiota, called dysbiosis, caused by nutrition, stress, environmental factors, and drugs, can have either beneficial or deleterious effects on the inflammatory status of the host. Gut-brain axis, which is the bidirectional crosstalk between the central and enteric nervous systems is influenced by gut microbiota via neural, endocrine, and immune networks (54). Emerging data establishes the influence of gut microbiota in anxiety and depression-like behavior (55). Clinical studies denote the abundance of pro-inflammatory and reduced SCFA producing bacterial species in these disease conditions, and this pathophysiology relates to the transmission of peripheral inflammation to the brain (56). There are recent reviews which have discussed the effects of cannabinoids, including CBD and alcohol in the microbiota-gut-brain axis (57) and therefore not further discussed this topic in this review.
It has been widely recognized that eCB is dynamically involved in the regulation of glucose and energy metabolism. It is also important to note that the immunomodulatory effects of eCBs are not always mediated via CBRs. Metabolism of 2-AG and AEA generates lipid components and hence acts as a source of arachidonic acid in the biosynthesis of additional pro-inflammatory lipids (58). Advanced research in the field of eCB system and immune modulation indicates the contribution of bio lipid members of eCB system in the onset or progression of various diseases such as obesity, diabetes, inflammatory bowel disease (IBD), and multiple sclerosis (MS) which are also reported to be augmented by alterations in the microbiota (59). Elevated eCBs level impedes excitatory and inhibitory neurotransmitters release which affects immune homeostasis and energy balance while increasing gut permeability (59, 60). Direct evidence of intestinal microbe-mediated eCB system manipulation comes from a recent study where Candida albicans manifestation altered the levels of lipid and eCBs in the brain and gastrointestinal (GI) tract leading to increased anxiety-like behavior in mice (61). Considering the relevance of eCB system and gut microbiota in the manipulation of the immune system, it is inevitable to explore the possible relationships and mechanisms between both systems from the perspective of inflammatory diseases.
ALTERATION OF THE GUT MICROBIOTA BY CANNABINOIDS
Various lines of ongoing research have connected the gut microbiota with metabolic and neurological disorders (52). Dietary interventions with specific fatty acids have been reported to increase the level of eCBs in human observational studies. These changes in eCBs have been attributed to variations in Peptostreptococcaceae, Veillonellaceae, and Akkermansiaceae (62). Cannabis consumption has been demonstrated to alter eCB tone and induce mucosal healing in ulcerative colitis (UC) patients in addition to improving quality of life (63). Modulation of eCB system using cannabinoids has been demonstrated to favor immune suppression in vivo (64). Present-day research targets to unravel the role of exogenous as well as endogenous cannabinoids in gut microbiota modulations and their impact on neurological and inflammatory conditions. Our lab has published multiple research articles on the alterations of microbiome and inflammation employing endogenous and exogenous cannabinoids (64, 65). A recent study demonstrated that the eCB, AEA, reversed the adverse microbiota perturbations instigated by SEB-mediated ARDS in mice. AEA treatment increased the abundance of beneficial bacteria producing SCFAs such as butyrate. In addition, AEA treatment curbed inflammation in the lungs and in the gut-associated mesenteric lymph node (MLN). Production of antimicrobial peptides (AMPs) and tight junction proteins (TJPs) which are key molecules sustaining epithelial barrier integrity in lung epithelial cells, as validated by single-cell RNA (Sc-RNA) sequencing were reported to attenuate the inflammation. Also, in this study, pathogenic Enterobacteriaceae and Pseudomonas were seen in the lungs of mice with ARDS while treatment with AEA led to their disappearance. Furthermore, the relative abundance of butyrate producing Lachnospiraceae and Clostridia were enhanced with AEA treatment (64). Emphasizing this observation, the abundance of butyrate-producing Firmicutes compared to Bacteroides was discovered following THC treatment of mice with diet-induced obesity (DIO) (66). In a similar line of study, the efficacy of THC to ease SEB-induced ARDS was examined. THC treatment improved the abundance of beneficial bacteria, Ruminococcus gnavus, while reducing pathogenic Akkermansia muciniphila in the lungs and gut. THC administration enriched SCFAs, specifically propionic acid, which attenuated the inflammatory response and protected mice from fatality. This study concluded that THC-induced reversal of microbial dysbiosis played a central role in the diminution of SEB-induced ARDS (65).
Colitis is another noteworthy disease model where the influence of cannabinoids on microbiota has been effectively demonstrated (67, 68). One study from our lab explored the effects of CBR activation following administration of THC and CBD either alone or in combination, in a chemically-induced murine colitis model. THC improved colonic barrier integrity as a result of higher mucus, AMPs, and TJPs production. Albeit alteration of the gut microbiota towards gram-negative bacteria was observed, the authors noted that the favorable effects of THC were not associated with microbiome modulation (67). A recent study presented the synergistic effect of fish oil and CBD treatment in the murine model of colitis. Co-administration of fish oil and CBD reduced inflammatory markers and ameliorated intestinal permeability in dextran sulfate sodium (DSS) model of mouse colitis. However, independent treatment with either of these failed to generate a favorable effect. The colonic inflammation was alleviated independent of the increased abundance of A. muciniphila. Of note is that the combination therapy reduced the abundance of Marinifilaceae, Desulfovibrionaceae, and Ruminococcaceae. Interestingly, Desulfovibrionaceae abundance has been reported in IBD and UC patients suggesting the functional role these microbial families play in GI diseases (68, 69). Another study investigated the role of gut microbiota in tempering clinical symptoms of paralysis and inflammation following cannabinoids treatment in an experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A combination of THC and CBD alleviated the symptoms of EAE and decreased pro-inflammatory cytokines while enhancing anti-inflammatory cytokine production. The EAE disease model showed abundant mucin degrading A. muciniphila which was considerably decreased following treatment with THC and CBD. A higher level of LPS was found in the brains of EAE mice while this scenario was reversed with cannabinoids treatment (70). The potential of cannabis extract to improve gut barrier function was investigated in the poultry industry where necrotic enteritis caused by Clostridium perfringens caused mortality in birds leading to economic loss along with the potential hazard of pathogen transmission to the consumer via the food chain. A combination of cannabis extract and selenium nanoparticles altered the response of chickens towards C. perfringens. This treatment upregulated the expression of genes involved in gut barrier function and improved collagenase activity. However, the extract alone could not generate significant beneficial effects (71).
Synthetic cannabinoids have also been extensively studied for their anti-inflammatory properties and their ability to alter the gut microbiota. Treatment with the CB2R agonist, JWH133 alleviated overgrowth of bacteria, bacterial translocation, and bacterial peritonitis, up-regulated intestinal TJPs, and reduced intestinal oxidative stress in cirrhotic rats. Furthermore, the treatment considerably diminished the levels of TNFα and inflammatory facilitators, intestinal mucosal impairment, and infection (72). Blockade of CB1R using the antagonist, Rimonabant reduced DIO and inflammatory cytokines. Trafficking of M1 macrophages and decreased intestinal permeability were also observed with CB1R blocking. Further metagenomics analysis demonstrated an elevated relative abundance of A. muciniphila and reduced abundance of Lanchnospiraceae and Erysipelotrichaceae in the gut (73). Nabilone, a CB1R agonist, was found useful in the treatment of post-traumatic stress disorder (PTSD), nausea, and vomiting associated with chemotherapy and pain management (74, 75). Administration of nabilone for 3 months improved health and alleviated diarrheal symptoms in patients. Although microbial dysbiosis was not investigated in this study, it encourages further clinically-oriented investigations on the effect of cannabinoids on such disease models as related to microbial dysbiosis (76).
IMMUNOMODULATORY MECHANISMS OF GUT MICROBIOTA
Endogenous, as well as exogenous cannabinoids, have been widely recognized to regulate inflammation and mucosal permeability of the GI tract where they possibly interact with the gut microbiome. In this section, we have tried to pull together the known mechanisms through which cannabinoids control microbial dysbiosis and accompanying inflammation. The indispensable role of gut microbiota on immune regulation has been excellently validated by multiple investigations. For example, one such study demonstrated the ability of commensal segmented filamentous bacterium (SFB) to induce CD4+ T cells to produce IL-17 and IL-22 in the lamina propria of mice. SFB adhered to the Th17 cells and induced inflammation and production of antimicrobial defensins (77). In the gut, under normal circumstances, eCB system is regulated by CB1R. However, both CB1R and CB2R get activated during inflammation leading to anti-inflammatory cytokine production that suppresses inflammation and intestinal damage (78).
The crosstalk between eCB system and gut microbiota has been established with murine models of obesity where low-grade inflammation and increased eCB system tone are reported. Obese mice exhibited higher colonic CB1R colonic mRNA and the modulation of gut microbiota with the use of prebiotics reduced this scenario. Moreover, prebiotic treatment alleviated CB1R mRNA and concentration of AEA in genetically obese mice explaining the involvement of the gut microbial community on CB1R and eCB expression. The same study disclosed the maintenance of intestinal barrier integrity by eCB system (79). Reduction in the number of TJPs increases the space between epithelial cells promoting paracellular translocation of microbial metabolites from the intestinal lumen to circulation and other organs, and elevated LPS levels impair adipogenesis and promote inflammation (79). THC administration has been reported to reduce LPS levels in mice while increasing TJPs. THC mediated CBR modulation reduced plasma LPS levels by altering the distribution and localization of TJPs which led to improved gut barrier function (65, 70).
Microbial-derived SCFAs, neurotransmitters, and amino acids take part in the immune, endocrinal, and neuronal signaling pathways via binding to host receptors (80, 81). Multiple investigations have validated the potential of AEA and THC to enhance the levels of SCFAs and AMPs in murine models of inflammation (64–67). SCFAs are produced in the colon by fermentation and subsequent degradation of undigested dietary fibers by gut harboring bacteria and they contribute to the regulation of both innate and adaptive immunity of the host. Acetate and propionate, produced by Bacteroidetes, and butyrate, produced by Firmicutes are the major SCFAs involved in host-bacterial communications (82). Blocking of histone deacetylases (HDAC) and activation of GPCRs are two main signaling pathways modulated by microbial SCFAs (80–82). Interestingly, GPCRs such as GPR43 and GPR109A are expressed by adipose tissue macrophages and dendritic cells (DCs). The binding of SCFAs to these receptors induces K+ efflux and membrane hyperpolarization which in turn stimulates NLRP3 inflammasome in primed macrophages to produce IL-18 (83, 84). Butyrate-dependent activation of GPR109A induces apoptosis of colon cancer cells. Furthermore, these receptor/ligand complexes inhibit nuclear factor-kappaB (NF-κB) activation in the colon of mice (85). Butyrate enhanced the function of human TGFβ1 in the intestinal epithelial cells (IECs) which in turn directed the accumulation of Treg cells in the lumen, and the study suggested inhibition of HDAC as the major mechanism behind this activity. Butyrate-induced HDAC inhibition down-regulated the generation of LPS-triggered pro-inflammatory cytokines such as IL-6 and IL-12 (86, 87). Another study demonstrated that butyrate enhanced the expression of AMPs, LL-37, and CAP-18 by IECs in rabbits (88). In a similar manner, activation of genes encoding host defense peptides in HD11 macrophages and monocytes has been observed in chickens following butyrate consumption (89). Succinate, another SCFA produced by the gut bacteria, Prevotella copri was shown to be involved in gut gluconeogenesis and improved glucose homeostasis (90). Once transported into circulation, SCFAs exert their effect on distant organs as well. For example, circulating propionate modified bone marrow hematopoiesis by increasing levels of macrophages and DCs precursors. The phagocytic DCs invaded the lung but lacked Th2 effector cell differentiation ability and controlled inflammation (91). SCFAs, as evident from numerous studies, represent the most important connecting link between gut microbiome and host immune homeostasis.
Bile acid metabolism is another activity implemented by a variety of gut microbes harboring the gut. Microbes convert primary bile acid to secondary and tertiary bile acids via various mechanisms that include deconjugation of glycine and taurine by bile salt hydrolase, de-hydroxylation as well as dehydrogenation and epimerization of cholesterol core (92). Members of the genera Bifidobacterium, Clostridium, and Lactobacillus are reported to efficiently metabolize primary bile acids (92, 93). Secondary bile acid metabolism and prevention of bile acid production in the liver by activating nuclear receptor farnesoid X receptor (FXR) in the ileum by gut microbiota controls liver inflammation. Also, intestinal microbiota decreases the levels of pro-inflammatory cytokines which are involved in reducing the transcription of FXR target genes (94). Proteins and peptides in the diets are digested to free amino acids as a result of microbial fermentation and major amino acid of such kind is tryptophan. Tryptophan metabolites are another set of biologically active metabolites generated by intestinal bacteria that affect intestinal epithelial barrier integrity as well as the organogenesis of intestinal lymphoid follicles. Members of the phylum Firmicutes convert tryptophan to tryptamine and other indole derivatives (95, 96). A recent study showed that tryptamine can attenuate neuroinflammation in the murine model of MS (97). Lactobacillus strains were found to efficiently metabolize Tryptophan to its derivatives which act as aryl hydrocarbon receptor (AhR) ligands in the colitis mouse model (98). These metabolites, mostly indoles, act as AhR agonists and regulate type-1 IFN signaling in astrocytes leading to suppression of central nervous system (CNS) inflammation (99). AhR signaling mediates IL-22 production in the gut by activating innate lymphoid cell 3 (ILC3) (100). In addition, AhR has been shown to play a vital role in the development of ILC and intraepithelial lymphocytes (100, 101). How AhR activation leads to suppression of inflammation has been the topic of recent reviews (102, 103). Figure 1 illustrates a summary of cannabinoid mediated microbiome modulation and the immunomodulatory mechanism of microbial metabolites.
[image: Figure 1]FIGURE 1 |  Cannabinoids and gut microbiota. (A) Cannabinoid mediated microbiome modulation: endogenous or exogenous cannabinoids increase the beneficial bacteria which produce TJPs that improve gut barrier integrity and AMPs that eliminate pathogens. (B) Immunomodulatory mechanisms of microbial metabolites: microbiota generated secondary bile acids, SCFAs, and indole metabolites modulate various receptors leading to decreased pro-inflammatory cytokines and immune suppression. AhR, aryl hydrocarbon receptor; AMP, antimicrobial protein; CBR, cannabinoid receptor; CBs, cannabinoids; CNS, central nervous system; eCBs, endocannabinoids; FXR, farnesoid X receptor; GPR, G-protein-coupled receptors; HDACs, histone deacetylases; IFN, interferon; IL, interleukin; K, potassium; TJP, tight junction proteins; T-reg, regulatory T cell.
While most of the studies that we have reviewed above have shown an association between the administration of cannabinoids and suppression of inflammation to changes in the microbiota, one can question whether these studies merely indicate a relationship between these events or whether the cannabinoid-mediated alterations in the microbiota are actually responsible for inducing attenuation of inflammation. The association between microbial changes seen following exposure to cannabinoids and the consequent impact of such changes in immunomodulation can only be proven through fecal microbiota transplants (FMT).
There is evidence to suggest the role of microbiota on eCB signaling through use of FMT. Multiple studies reported that FMT-mediated microbial dysbiosis can modify eCB signaling (104, 105). One study clearly investigated the impact of FMT from conventionally raised mice to germ-free mice. Endocannabinoidome gene expression and lipidomics were analyzed by transcriptomics and LC-MS/MS before and after FMT. Age-dependent endocannabinoidome gene expression and lipid variations in the germ-free mice were reversed following FMT from age-matched conventionally raised donor mice (106). In another study, FMT from murine models of EAE disease treated with THC and CBD, into antibiotics treated, microbe depleted mice demonstrated that the recipient mice showed decreased EAE disease severity (70). A similar kind of study was conducted in a murine model of SEB-mediated ARDS. The microbiota transplanted from THC-treated ARDS mice into antibiotic-treated, microbiome-depleted recipient mice showed better survival from ARDS than those that received FMT from the control group. FMT from THC-treated groups caused a decrease in inflammatory CD4+ and CD8+ T cells and an increase in immune suppressive MDSCs and Tregs in the lungs (65). Such studies clearly demonstrate that endogenous and exogenous cannabinoids can promote beneficial microbiota in the gut that can attenuate inflammatory diseases even in distal organs.
CONCLUSION
The communications among eCB system, immune regulation, and gut microbiota are intricately interconnected. CBRs agonists/antagonists have been pre-clinically validated to be useful in the treatment of metabolic conditions, such as obesity and diabetes as well as in disease models of colitis and cardiometabolic malfunctions. Also, well-established is the role of intestinal microbial community in the onset or progression of these disorders. The numerous groups of microbial clusters and the myriad of biologically active metabolites produced by them along with their receptors trigger extensive signaling pathways that affect the energy balance and immune homeostasis of the host. The microbiome-eCB signaling modulation exploiting exo- or endogenous cannabinoids opens a new avenue of cannabinoid-gut microbiota-based therapeutics to curb metabolic and immune-oriented conditions. However, more clinical investigations are essential to validate this concept.
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GLOSSARY
2-AG 2-arachydonoylglycerol
AEA anandamide
AhR aryl hydrocarbon receptor
AMPs antimicrobial peptides
ARDS acute respiratory distress syndrome
cAMP cyclic adenosine monophosphate
CBD cannabidiol
CNS central nervous system
CBR cannabinoid receptors
DCs dendritic cells
DIO diet-induced obesity
DNMT DNA methyl transferases
DSS dextran sulfate sodium
EAE experimental autoimmune encephalomyelitis
ERK extracellular signal-regulated kinase
FAAH fatty acid amide hydrolase
FAK focal adhesion kinase
FMT fecal microbiota transplants
FXR farnesoid X receptor
GPCRs G-protein-coupled receptors
GI gastrointestinal
HDAC histone deacetylase
IBD inflammatory bowel disease
IECs intestinal epithelial cells
IFN-γ interferon-gamma
IL interleukin
ILC3 innate lymphoid cell 3
LPS lipopolysaccharides
MDSCs myeloid-derived suppressor cells
miRNAs microRNAs
MLN mesenteric lymph node
MS multiple sclerosis
PI3K-PKB/AKT phosphoinositide-3-kinase–protein kinase B/Akt
p38 MAP p38 mitogen-activated protein
PTSD post-traumatic stress disorder
SCFAs short-chain fatty acids
Sc-RNA single-cell RNA
SEB staphylococcal enterotoxin B
SFB segmented filamentous bacterium
TGF-β transforming growth factor β
Th1 T helper 1
Th2 T helper 2
THC δ9-tertrahydrocannabinol 
TJPs tight junction proteins
Tregs regulatory T cells
TRPV1 transient receptor potential vanilloid 1
UC ulcerative colitis
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Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
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INTRODUCTION
Host-associated microbial communities and their functional capabilities, collectively referred to as the host microbiome, play integral roles in modulating the health of their hosts and susceptibility to disease. Germ-free experimental models have elegantly demonstrated the dramatic consequences that result from the absence of microbes on host development, metabolism, anatomy, physiology, and behavior. The clear impacts of endogenous microbes on host biology have been further substantiated by gnotobiology, where the introduction of known populations or communities of microbes into germ-free animals promotes defined host responses and health outcomes [1]. Powerful ‘omics approaches such as 16S rRNA sequencing, metagenomics, metatranscriptomics, and metabolomics have been instrumental in correlating specific compositional and functional changes to the host microbiome with certain disease states. These studies have further inspired hypothesis-driven investigations aimed at defining the microbial functions and interactions that contribute to disease pathogenesis. Taken together, studies within the microbiome field have unequivocally demonstrated the importance of these complex and fascinating microbial communities to host biology.
In recent decades, the endocannabinoid system has emerged as an important modulator of gut physiology and homeostasis through its effects on immunity, motility, barrier function, and host metabolism [2]. The endocannabinoid system is comprised of G-protein coupled receptors that are activated by endogenous lipid hormones known as endocannabinoids [3]. The two most well-studied endocannabinoids are 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide (AEA)—commonly referred to as anandamide [4, 5]. The structure of 2-AG is a monoacylglycerol (MAG) comprised of an arachidonic acid moiety esterified to a glycerol backbone. AEA is an N-acyl ethanolamide (NAE) comprised of an arachidonic acid moiety esterified to an ethanolamine backbone. NAEs and MAGs of other acyl lengths and saturation states are also produced by the host including 2-palmitoyl glycerol (2-PG), 2-oleoyl glycerol (2-OG), palmitoyl ethanolamide (PEA), and oleoyl ethanolamide (OEA) [6]. These compounds also act as bioactive lipids that regulate diverse host functions. This mini review will discuss how these two classes of bioactive lipids may also impact the growth and functions of bacteria within the host microbiome, thus expanding the potential effects of these lipids on host physiology.
Endocannabinoid activity is modulated by biosynthetic and degradative enzymes that alter tissue concentrations of these hormones, which function as ligands at cannabinoid receptors through which they exert their physiological effects [7]. Tissue expression profiles of cannabinoids receptors and these biosynthetic and degradative enzymes also impact endocannabinoid tone. Numerous factors have been linked with altered endocannabinoid tone such as diet, stress, and inflammation status [8–12], although the precise molecular mechanisms remain to be elucidated. The gut microbiome is an additional factor that may modulate the endocannabinoid system [13]. Compositional changes to the gut microbiome triggered by dietary interventions or antibiotic treatment correlate with differential expression of endocannabinoid system components and altered profiles of bioactive lipids in the blood stream and in intestinal tissues [14–17]. Moreover, endocannabinoid tone in intestinal tissues is significantly altered in germ free mice compared to conventional mice colonized with a microbiome, suggesting that microbes somehow impact the degradation and/or biosynthesis of NAEs and MAGs [18, 19]. Conversely, pharmacological and genetic interventions that alter host endocannabinoid activity is correlated with an altered gut microbiome [20–27]. Together, these findings suggest that incompletely defined reciprocal relationships exist between the host endocannabinoid system and the gut microbiome. Moreover, the effects of these relationships on host health and susceptibility to disease remain to be fully elucidated.
More recently, experimental evidence has emerged demonstrating that endocannabinoids and their congeners can modulate bacterial functions, physiology, and behaviors (Figure 1). These findings introduce the exciting possibility that these host lipid hormones may directly modulate bacterial populations within host-associated microbial communities such as the gut microbiome. The mini review will summarize literature that exemplifies how endocannabinoids and their derivatives impact bacterial populations in vitro and within rodent models. This mini review will also highlight a collection of preclinical studies that have designed genetically engineered bacteria to modulate host NAE levels to treat metabolic and inflammatory diseases. Included research articles were located using the following search terms in the PubMed database: endocannabinoid + bacteria; endocannabinoid + gut microbiome; N-acylethanolamide + bacteria; 2-arachidonoyl glycerol + bacteria; anadamide + bacteria. The mechanisms by which the gut microbiome modulates the host endocannabinoid system and the consequent effects on disease development have been reviewed in a companion article for this special issue [24].
[image: Figure 1]FIGURE 1 | Endocannabinoids and their derivatives directly modulate bacterial populations. Schematic summarizing the mechanisms by which endocannabinoids and their derivatives or breakdown products can influence the growth, physiology, and function of endogenous bacteria within the microbiome.
EFFECTS ON BACTERIAL GROWTH AND METABOLISM
Numerous studies have correlated compositional changes to the gut microbiome with altered host endocannabinoid tone [20–27]. These ecological changes to the microbial community are likely driven by multiple factors including the indirect effects of host cannabinoid signaling on the gut environment and the direct effects of endocannabinoids on endogenous bacteria. Untargeted metabolomics and metagenomics analyses on fecal samples collected from an IBD patient cohort revealed that NAEs including the endocannabinoid AEA were increased in Crohn’s disease patients relative to ulcerative colitis patients and non-IBD controls [28, 29]. Further experimentation in a murine T-cell transfer colitis model revealed that NAEs are also increased following induction of disease relative to the pre-colitic state [28]. The increased concentrations of luminal NAEs in the inflamed gut corresponded with community-wide changes in the relative abundances of diverse bacterial taxa [28, 29]. These observations prompted the authors to test whether NAEs directly modulate the growth kinetics of gut bacteria [28]. In vitro mono-cultures revealed that NAEs—in particular, OEA and linoleoyl ethanolamine (LEA)—enhanced the growth rates and population densities of several bacterial taxa that are elevated in Crohn’s disease patients, including Escherichia coli, Lactobacillus gasseri, and Ruminococcus gnavus [28]. In contrast, NAEs generally exerted growth inhibitory effects on bacterial taxa depleted in Crohn’s disease patients, including Streptococcus salivarius, Ruminococcus lactaris, and Alistipes shahii [28]. In a separate collection of studies that sought to investigate the antimicrobial properties of AEA on clinical Staphylococcus aureus isolates, AEA exerted bacteriostatic effects on strains grown planktonically and within biofilms [30, 31]. Further analyses via scanning electron microscopy revealed that AEA arrested S. aureus replication during late-stage cell division, resulting in larger cells with fully formed septa [30]. Notably, all studies reported strain level variations when evaluating the effects of NAEs on bacterial growth [28, 30–32], therefore suggesting that bacterial strains harbor distinct capabilities in responding to NAEs within their environments.
To evaluate the effects of NAEs on bacterial populations residing within complex microbial communities, Fornelos et al. introduced various combinations of NAEs into an in vitro model of the gut microbiota [28], which eliminates any effects of NAEs on the host that may also alter the microbial community. The addition of NAEs to the chemostat cultures altered community composition within 12 h. This was characterized by an increase in several taxa including Escherichia, Enterococcus, and Veillonella species and the depletion of several taxa including Bacteroides, Allistipes, Ruminococcus, and Clostridium species. Notably, several of these compositional changes recapitulated putative pathological features of the gut microbiome in Crohn’s disease patients [28, 29, 33, 34]. Together, these findings support the idea that changes in NAE availability within the intestinal lumen during inflammation may promote and/or sustain the ecological changes that drive microbiome dysfunction. To our knowledge, similar studies focused on MAGs have not yet been published. Considering that altered gut endocannabinoid tone and microbiome dysfunction are both associated with numerous disease states including obesity, cardiovascular diseases, metabolic dysfunction, and neurological diseases [14, 24, 35–39], it will be interesting to learn whether the direct effects of NAEs and other endocannabinoid-like molecules on bacterial growth contribute to the pathogenesis of these complex diseases.
The chemical structures of NAEs and MAGs contain potential bacterial nutrients (i.e., long-chain fatty acids—LCFAs, ethanolamine, glycerol) and antimicrobial agents (i.e., LCFAs). This introduces the possibility that NAEs and MAGs may be hydrolyzed into their constituent components to exert their growth inducing or inhibitory effects. In support of this hypothesis, functional bacterial lipases with structural homology to mammalian monoacylglycerol lipases have been reported in environmental bacteria and in Mycobacterium species [40–44]. Similarly, Pseudomonas aeruginosa encodes an ABHD6-like lipase that can hydrolyze MAGs [45]. Together, these findings demonstrate the potential for bacterial metabolism of endocannabinoids and their congeners within the gut microbiome. In an in vitro chemostat model of the gut microbiota, metatranscriptomics analyses revealed that NAEs significantly alter the community transcriptome, which notably included the differential expression of genes involved in LCFA and ethanolamine metabolism [28]. These transcriptional responses suggest that NAEs may be metabolized by certain members within the bacterial community to liberate free LCFAs and ethanolamine. These nutrients may then be consumed by other bacterial taxa, thus exemplifying a putative cooperative interspecific interaction driven by NAE metabolism.
In contrast, transcriptomics studies performed with the gut bacterium Bacteroides fragilis cultivated in vitro in monocultures revealed that exposure to LEA and AEA induced the upregulation of efflux pumps and the downregulation of the LCFA transporter FadL [28]. Notably, both NAEs inhibited B. fragilis growth, suggesting that this bacterium may respond to NAEs by limiting their import and increasing their export to counteract their toxic effects. Notably, free linoleic acid and arachidonic acid can both exert growth inhibitory effects on various bacterial taxa [46, 47]. This introduces the possibility that NAE hydrolysis within the gut microbiome may also be disadvantageous for bacteria that are susceptible to these poly-unsaturated fatty acids.
To summarize, the few studies that have evaluated the effects of endocannabinoids and their congeners on bacterial growth have demonstrated that their effects on microbial ecology are likely complex. Further studies are clearly needed to investigate how NAEs and MAGs impact the growth of bacterial populations within a complex community, both in vitro and within a host. Moreover, it will be interesting to investigate how the effects of these bioactive lipids on microbial ecology ultimately modulates host physiology and susceptibility to disease.
EFFECTS ON BACTERIAL PHYSIOLOGY AND MULTI-CELLULAR BEHAVIORS
The cellular membranes of host-associated bacteria are generally composed of phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and cardiolipin as the major phospholipid species [48]. The fatty acids that are esterified to these phospholipids vary between bacterial strains, but usually range between 14 and 18 carbons and are typically in saturated or mono-unsaturated states. Environmental conditions including stressors that alter membrane function and exogenous lipid availability can modify the relative abundances of specific phospholipids and their fatty acid content within cellular membranes [49, 50]. These structural changes to the membrane can then impact several bacterial functions that including growth, susceptibility to extracellular stressors, and biofilm formation—all of which can subsequently influence host-microbial interactions.
In vitro studies performed on bacterial monocultures have demonstrated that host-derived fluids rich in LCFAs—such as bile and serum—impact acyl-LCFA content within bacterial membranes [51–53]. For example, when grown in a nutrient rich medium, the Enterococcus faecalis membrane is dominated by vaccenic acid, which comprises approximately 40% of all fatty acid species present [52]. However, when bile is supplemented into this same medium, the percentage of vaccenic acid decreases to about 3%. This corresponds with significant increases in several LCFA species present within the bile including palmitic acid, oleic acid, and stearic acid [52]. These observations suggest that LCFAs within bile are imported by E. faecalis and incorporated into phospholipids during membrane biosynthesis. Indeed, when supplied individually, each LCFA dominates fatty acid content within the membrane [52, 54, 55] Similarly, the membrane lipid profile of the nosocomial pathogen Acinetobacter baumannii is significantly altered following recovery from pleural lavage fluid in the lungs compared to growth in standard laboratory media [56]. In particular, A. baumannii growth within the lungs corresponds with an increase in polyunsaturated LCFA content within membrane PEs. Notably, de novo synthesis of polyunsaturated LCFAs was not detected following in vitro cultivation in LCFA-free media, suggesting that A. baumannii utilizes host-derived PUFAs for membrane biosynthesis during in vivo growth. Supporting this hypothesis, genetic inactivation of the main exogenous LCFA transporter FadL conferred a growth defect in A. baumannii within several host microenvironments [56]. Notably, studies performed in diverse bacterial taxa—including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Lactobacillus species—have demonstrated that exogenous LCFA availability influences membrane structure [54, 55, 57–65]. Taken together, these studies clearly demonstrate that LCFAs within host environments can be utilized by bacterial organisms to modify their membrane structures, which in turn may impact host-microbial interactions.
The molecular structure of endocannabinoids and their congeners include an LCFA moiety, and therefore, it is conceivable that these molecules may also impact bacterial membrane physiology and function. In a recent collection of studies, the authors demonstrated that exposure to the endocannabinoid AEA alters lipid content, fluidity, bioenergetics, and permeability of the cytoplasmic membrane in clinical Staphylococcus aureus isolates [30–32, 66]. AEA exposure corresponded with increased cardiolipin content within the S. aureus membrane [30]. Cardiolipins can form microdomains within bacterial membranes, which in turn can impact the functionality of membrane proteins such as transporters [48]. The addition of AEA to in vitro cultures also resulted in decreased efflux of various toxic compounds, including antibiotics, from S. aureus cells [30, 31]. These observations corresponded with lower membrane potential, decreased membrane ATPase activity, and increased cardiolipin content, all of which can modulate the functionality of efflux pumps. Decreased efflux associated with AEA also corresponded with the differential expression of various efflux pump genes, which may also contribute to this response [31]. AEA also sensitized clinical S. aureus isolates to various antibiotics including beta-lactams, gentamicin, tetracycline, and fluoroquinolones through a mechanism that likely involves compromising efflux pump function [30–32]. The addition of AEA and LEA to in vitro cultures also modulated the expression of efflux genes in B. fragilis [28]. Together, these studies demonstrate that AEA impacts several compositional and functional aspects of the bacterial cellular membrane. Outstanding questions include whether other NAEs impart similar effects on S. aureus growth and membrane function. More broadly, it will be interesting to investigate the effects of NAEs and MAGs on membrane composition and function in other bacterial taxa present within host associated microbial communities and whether these alterations in bacterial physiology impact host disease development.
Within host environments, commensal bacteria and invading pathogens can grow within multicellular structures such as cellular aggregates and biofilms. The formation of these structures involves the biosynthesis and export of components that comprise the eventual extracellular matrix, which serves to adhere bacterial cells together while also acting as a thick protective barrier against environmental insults including the host immune response and antimicrobials. Recent studies have demonstrated that NAEs can exert anti-biofilm effects against S. aureus and the oral commensal bacterium Streptococcus mutans [30–32, 66, 67]. AEA and arachidonoyl serine both synergized with several types of antimicrobial agents to inhibit biofilm formation in clinical S. aureus isolates [30–32]. When supplied individually, both compounds inhibited several S. aureus behaviors associated with enhanced biofilm formation including surface motility and cell-to-cell aggregation [66]. AEA also altered the gene expression of several biofilm-associated genes and decreased extracellular matrix production in S. aureus [31]. Notably, efflux pumps can contribute to biofilm formation by exporting components needed to construct the extracellular matrix. Therefore, it is possible that the inhibitory effects of AEA on efflux pumps as described above may also explain its anti-biofilm effects in S. aureus. In S. mutans, exposure to either OEA or AEA exacerbated the anti-biofilm effects of the antimicrobial compound poly-L-lysine [67]. In contrast, the NAEs PEA and stearoylethanolamide (SEA) did not impact S. mutans biofilm formation, therefore suggesting that this inhibitory effect is unique to NAEs with a monounsaturated LCFA moiety. Taken together, in addition to their effects on membrane physiology, NAEs can also antagonize bacterial behaviors that lead to the formation of biofilms and other multi-cellular structures. Future studies are warranted to investigate how NAEs and other endocannabinoid-like molecules modulate these behaviors within host environments.
EFFECTS ON BACTERIAL SIGNALING
Bioactive lipids function as signaling molecules that are sensed by bacterial organisms to elicit a particular cellular response. Nutrients such as sugars, amino acids, and fatty acids are also sensed by membrane-bound and intracellular receptors that couple nutrient availability with the transcriptional regulation of metabolic pathways and other functions. Bacterial sensing of these environmental cues plays a central role in bacterial pathogenesis and in host-microbial interactions within the gut [68].
A collection of studies over the past decade have demonstrated that free LCFAs act as both nutrients and signals that can modulate a variety of bacterial functions—recently reviewed here [47, 69, 70]. More recently, the endocannabinoid 2-AG was shown to function as a host-derived hormone that is directly sensed by several gut bacterial pathogens including Citrobacter rodentium and enterohemorrhagic E. coli (EHEC) [71]. In vitro functional and biochemical approaches revealed that 2-AG inhibits the membrane-bound bacterial receptor QseC, which functions to stimulate intracellular signaling cascades that activate virulence programs in response to the catecholamines epinephrine and norepinephrine and to the quorum sensing hormone autoinducer-3 [71–75]. In a mouse model of intestinal infection, Magl-deficient mice with elevated levels of 2-AG developed attenuated disease in response to C. rodentium challenge [71]. These protective effects were no longer observed when Magl-deficient mice were challenged with qseC-deficient C. rodentium, suggesting that 2-AG exerts its anti-virulence effects in the gut by inhibiting QseC-dependent virulence. Interestingly, free arachidonic acid—a product released following 2-AG hydrolysis—also exerts anti-virulence effects on EHEC [76]. When imported into EHEC, arachidonic acid is esterified to coenzyme A and then allosterically inhibits the lipid-responsive transcription factor FadR, which in turn represses the expression of virulence genes [76, 77]. Notably, QseC and FadR homologues are present in other bacterial pathogens and commensals [78–81], which introduces the possibility that endocannabinoids and their derivatives may directly modulate the behaviors of many other bacterial organisms.
ENGINEERING BACTERIA TO MODULATE HOST LIPID SIGNALING
The first three sections of this mini review summarized experimental evidence that demonstrates how bioactive lipids may directly modulate bacterial populations. Many bacterial taxa within the gut microbiome are currently genetically tractable, therefore introducing the possibility of designing probiotics that specifically target these lipid signaling networks. This last section will summarize two collections of studies that apply this concept to diseases that are in part driven by aberrant NAE signaling—obesity and inflammatory bowel diseases.
Certain NAE species and their N-acyl-phosphatidylethanolamine (NAPE) precursors function as satiety signals that are synthesized in the small intestines to regulate host feeding behaviors [82–84]. In rodent models, chronic administration of exogenous NAEs exerts various anorexigenic effects including decreased food consumption and improved host metabolic parameters in rodent models [85]. In one collection of studies, the probiotic E. coli strain Nissle was engineered to synthesize and secrete NAEs or their N-acyl-phosphatidylethanolamine (NAPE) precursors as a novel therapeutic strategy to treat obesity [86–89]. Chronic administration of NAPE-producing Nissle resulted in decreased weight gain and adiposity in diet-induced and genetic obesity models in a NAPE-PLD dependent manner and in a cardiometabolic disease model [86, 88, 89]. These results corresponded with increased hepatic NAE levels, decreased lipid accumulation and inflammation markers in the liver, and improved metabolic parameters such as glucose tolerance and insulin sensitivity [88]. Similar anti-obesogenic effects were observed with the NAE-producing Nissle strain [89].
In addition to their effects on central host metabolism, certain NAE species such as PEA also exhibit anti-inflammatory properties in experimental colitis models through incompletely defined mechanisms [90–96]. As a strategy to augment local levels of PEA, a second group genetically engineered the probiotic Lactobacillus paracasei substrain Paracasei F19 to synthesize and secrete PEA when the strain was supplied exogenous palmitic acid [97]. Using a chemically induced model of colitis, the authors demonstrated that co-administration of the PEA-producing L. paracasei with palmitate significantly increased intestinal concentrations of PEA and resulted in attenuated colitis development. These protective effects were no longer apparent in mice lacking the PEA receptor PPAR-alpha. In a follow-up study, the authors also demonstrated that this PEA-producing probiotic protected against colitis development induced by the TcdA toxin from Clostridioides difficile in a PPAR-alpha dependent manner [98].
Taken together, these studies demonstrate how intestinal probiotic strains can serve as bacterial platforms for delivering NAEs or their precursors to host tissues to treat metabolic and inflammation driven diseases that are characterized by low NAE tone. Because endogenous bacteria within the microbiome likely also synthesize and metabolize NAEs [28, 99], it will be interesting to investigate whether the endogenous microbial production of these bioactive lipids also serve as inputs into host lipid signaling networks, which in turn may also impact the disease development.
DISCUSSION
This mini review has highlighted the numerous ways in which endocannabinoids and their derivatives directly impact bacterial growth, physiology, and behaviors (Figure 1). These effects have primarily been investigated using in vitro single bacterial populations, rather than within polymicrobial communities and/or host environments. Bacterial growth and behaviors are substantially different within host environments and complex microbial community in comparison to in vitro conditions. Therefore, future studies are warranted to investigate how these bioactive lipids impact bacteria populations within the gut microbiome in animal models to evaluate whether the effects observe in vitro also occur in vivo. Approaches to address this question could include microbial sequencing, metabolomics, bacterial and mouse genetics, and gnotobiology. The application of these approaches to established animal models of disease would also begin to address how the regulation of bacterial growth and behaviors by these bioactive lipids may impact disease pathogenesis and susceptibility. Finally, while not the focus of this mini review, it is important to acknowledge that endocannabinoid activity also impacts the function of host cell populations within the intestines, which in turn can modulate gut physiology and microbiome function. However, it remains unclear how the distinct effects of endocannabinoid activity on host tissues and microbial populations, and on the reciprocal interactions between host and microbe, together ultimately impact the establishment and maintenance of gut homeostasis and the development of disease. This represents an additional exciting avenue of research highly worth exploring.
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Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation
Sudipta Ray, Susmita Sil†, Muthukumar Kannan†, Palsamy Periyasamy* and Shilpa Buch*
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
Edited by:
Emmanuel Onaivi, William Paterson University, United States
Reviewed by:
Yuri Persidsky, Temple University, United States
Laura Orio, Complutense University of Madrid, Spain
* Correspondence: Palsamy Periyasamy, palsamy.periyasamy@unmc.edu; Shilpa Buch, sbuch@unmc.edu
†These authors have contributed equally to this work
Received: 01 December 2022
Accepted: 23 February 2023
Published: 03 March 2023
Citation: Ray S, Sil S, Kannan M, Periyasamy P and Buch S (2023) Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation. Adv. Drug. Alco. Res. 3:11092. doi: 10.3389/adar.2023.11092

Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.
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INTRODUCTION
Drug abuse is a significant global problem prevalent in those infected with Human Immunodeficiency Virus-1 (HIV-1). The most commonly abused drugs in HIV-1 infected individuals are opioids, alcohol, cocaine, cannabis, methamphetamine (Meth), and nicotine. Among all the drugs used, opioid abuse is a growing problem since opioids are often the mainstay of pain management in infected individuals. While these drugs effectively control the pain associated with HIV-1, their long-term use is associated with addiction, tolerance, and neurocognitive impairment, adding to the burden of behavioral deficits in HIV-1-infected individuals. When HIV-1-affected individuals use morphine, it may cause a loss of functional connectivity between the amygdala and the frontal cortex of the brain, insula, and striatum leading to neurodegenerative effects (1). Alcohol consumption in the form of ethanol is both toxic and has metabolic and addictive effects on the brain, accumulating over time with age, dose, and duration of exposure. Severe debilitating diseases of the central nervous system (CNS) and the peripheral nervous system are known to manifest due to alcohol consumption. For example, it is well established that prenatal alcohol exposure paves the way for lifelong behavioral, cognitive, and psychological problems, which account for a range of cognitive dysfunctions referred to as fetal alcohol spectrum disorders (2). Prolonged heavy alcohol abuse has been shown to lead to neurodegeneration and proportionate loss of cerebral white matter. The affected regions in chronic alcohol-related metabolic injury and degeneration include the cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves (3). Specifically, alcohol impairs neuronal and glial cell functionality (3). Also, alcohol exerts prolonged effects at the cellular and systemic levels of the neurological networks, leading to neurodegeneration. Excess alcohol exposure is associated with specific diseases such as dementias, ataxias, and Niemann-Pick disease (4). Both excess and heavy alcohol consumption contribute to the development of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). The brain is a major organ of alcohol accumulation, and this is linked to brain damage. Long-term alcohol abuse increases glutamate excitotoxicity and oxidative stress, resulting in neuronal damage (5). Besides alcohol, psychostimulants like cocaine, amphetamines, and nicotine have also been implicated in disruption of blood-brain-barrier (BBB), neural plasticity, and neuroinflammation (6, 7). There are case reports suggesting the association of cocaine overuse with accelerated neurodegeneration exhibiting symptoms similar to that found in Parkinson’s disease (8). It has also been shown that iron metabolism regulation and storage lead to dopamine accumulation in cocaine-abusing individuals, resulting in neuroadaptive changes in the basal ganglia (9). Other than genetic events, epigenetic events also play a major role in neurodegeneration mediated by abuse of substances such as cocaine and Meth, as well as opioids. Epigenetic changes are established by classical pathways, including the class III histone deacetylase-sirtuin family modifications by the stimulatory effects of drugs in the form of psychostimulants (10). Drugs of abuse have also been extensively reported to cause dysbiosis of the gut microbiome and, there is significant amount of evidence that links the dysbiotic gut microbiome to mental health and neurodegeneration (11-14). In this review, we summarize existing research, including preclinical and clinical studies about correlation between HIV-1-linked drug abuse and the intestinal microbiota, and the potential role of the resultant dysbiotic gut microbiome in the pathogenesis of neurodegenerative disorders (Figure 1).
[image: Figure 1]FIGURE 1 | Schematic depicting the gut microbiome dysbiosis and its effects on the gut-brain axis in the context of HIV-1 and drug abuse.
GUT MICROBIOME AND THE GUT-BRAIN AXIS
The gut microbiome comprises a highly diverse repertoire of trillions of microbes that dwell in the gut linings and has been identified as a marker associated with various disease conditions. There is a standard composition of microbes in the gut for the metabolism and energy assimilation of the body. Several environmental, nutritional and genetic factors influence the multiplication of gut microorganisms and their compositional modifications (15). The human gut microbiome consists of various microbes that are beneficial to the body for metabolism and involved in a communication pathway to the CNS via the bidirectional “microbiota-gut-brain axis,” which was initially termed the “gut-brain axis.” In the 1960s, the brain was thought to control gut function which served as the basis for coining the term “gut-brain axis.” Later, bidirectional interactions between the gut microbiota and the CNS was discovered and was defined as the “microbiota-gut-brain axis (16-19). Recent findings implicate the role of the gut-brain axis in regulating behavior and responses to drugs and, thus, underpinning its role in reward and satiety (20-22). The vagus nerve physically connects the gut and the brain through an interplay of neurotransmitters and metabolites (23-26). The existence of specific microbes in the gut is known to regulate both the immune system (27-30) and inflammation (31-34). Both preclinical and clinical studies have demonstrated a pivotal role of the gut microbiota in brain functioning (35), mood (36), and behavior (37, 38). Gut microbiota regulates the differentiation and function of immune cells of the intestine, periphery, and brain (39-41). Growing evidence also points to the critical role of the gut microbiota and the immune system in regulating the pathogenesis of neurodevelopmental and neurodegenerative diseases (12).
There is an altered influx and efflux of microbial metabolites and immune mediators between the gut and brain, leading to impaired neurotransmission and the advent of many neuropsychiatric and neurological disorders (42). Microbiome changes, termed dysbiosis, result in acute and chronic stages of several diseases, such as depression (43). Further, dysfunctional glutamate neurotransmission is involved in the D-glutamate signaling pathway observed in AD models in which the gut microbiome metabolized D-glutamate influences the glutamate N-methyl-D-aspartate receptors and cognitive function in dementia patients (44). The gut microbiota has also been linked to the development of schizophrenia (42). The “gut-brain axis” encompasses several key signaling pathways. The immune system, the vagus nerve, or microbiota-modulating neuroactive compounds may drive these pathways. Existing literature also points toward the fact that bacteria present in the gut microbiome are responsible for the production and consumption of several mammalian neurotransmitters, such as dopamine, serotonin, norepinephrine, or gamma-aminobutyric acid (GABA). Reports suggest that, on the one hand, any change in the levels of these neurotransmitters by bacteria could impact host physiology, while on the other hand, any form of microbiota-based interventions could also alter neurotransmitter levels (45). A prime example of this regulation is the impact of the gut microbiome on tryptophan metabolism and the serotonergic system (46). In such a scenario, the interaction between gut microbes with drugs of abuse is complex since gut microbes can directly impact the response of an individual to a specific drug by enzymatically modifying the structure of the drug and, in turn, affecting its availability, activity, or toxicity in the system. The drugs of abuse can also influence the microbiome composition (47-51).
DRUG ABUSE AND GUT MICROBIOME
Recent evidence implicates the gut-brain axis in the regulation of not only behavior but also a response to drugs in terms of reward and satiety. The vagus nerve connects the gut and brain, but several metabolites, hormones, and neurotransmitters regulate this connection. Such an influence of gut microbes on brain functions has been supported by studies in both preclinical and clinical models (52). During drug abuse, the gut-brain axis is disrupted, leading to modifications in the normal microbiota composition and dysregulated expression of neurotransmitters, bile acids, and metabolites, such as short-chain fatty acids (SCFA). Alterations in SCFA levels mediate tight junction dysfunction resulting in aberrant permeability of the gut epithelium, which can activate a wide range of proinflammatory signaling pathways (53). The hypothalamic-pituitary axis is linked to this inflammation in the gut, which subsequently sends feedback to the CNS, resulting in pain, stress, and anxiety (52). Herein, we discuss the role of the microbiota-gut-brain communication in the context of drug abuse in people living with HIV-1 (PLWH).
OPIOIDS AND HIV
Opioids comprise a large class of compounds with different mechanisms of action and include heroin, morphine, oxycodone, fentanyl, methadone, buprenorphine, and nalorphine, among several others (54). Opioid receptors are widely distributed in the central and peripheral nervous systems and the digestive tract (55, 56). Prescription opioid drugs are used to treat moderate to severe chronic pain. Recently, the use of various opioid drugs and their abuse, which can lead to tolerance and dependence, has become a severe public health issue (57). According to the Centers for Disease Control and Prevention, out of the 92000 people who died from a drug overdose in 2020, 75% were due to prescription or illicit opioid use (58). Most studies on the gut-brain axis and opioid abuse are based on the exogenous opioid compound morphine. Severe constipation is a primary physiological manifestation of chronic morphine use and has been linked to disruption of the gut epithelium and microbial dysbiosis (59). Animal models commonly used to study the pathways involved in the interaction between the host-gut microbiome and opioid drugs involve rodents, particularly mice and rats, primarily for economic reasons. However, recent studies have also focused on non-human primates (NHPs) as they are both physiologically and genetically closer to humans (60). The major outcome of these studies is a gut microbial imbalance or dysbiosis due to opioid use. Preclinical animal studies show that morphine exposure increases the abundance of pathogenic bacteria (Flavobacterium, Enterococcus, Fusobacterium, Sutterella, Clostridium, Rikenellaceae, and Ruminococcus). Once tolerance is developed, it causes a significant decrease in the quantities of beneficial bacteria (Lactobacillus and Bifidobacterium) (59, 61). It is difficult to extrapolate the data from the rodent preclinical models to the effect of morphine on human microbiota due to several factors such as genetic background, geographical setting, and lifestyle (60, 62). Human clinical studies also display variations in the presence of Bacteroidetes, Firmicutes, and Actinobacteria phylum of microbiota, consistent with rodent studies. However, there are only a limited number of studies utilizing NHPs to comment on any close association between the effect of opioids on gut microbiota in humans and that of NHPs.
It has been reported that opioid-induced gut dysbiosis, which causes structural changes in the gut epithelium, is responsible for tolerance and withdrawal behaviors. Disruption of the gut epithelium, in turn, allows bacteria and their toxic products to enter the host circulatory system, subsequently activating several inflammatory pathways and neuroinflammation. Withdrawal and tolerance linked to chronic opioid use have been related to this neuroinflammation (61, 63). The integrity of the gut epithelium depends on several factors, like the disruption of tigh-junction (TJ) organization and the restoration of the depleted epithelial layer by intestinal stem cells. The toll-like receptor (TLR) signaling is responsible for regulating intestinal TJ protein (TJP) organization. It has also been reported that morphine can disrupt the arrangement of the TJPs via modulation of myosin light chain kinase signaling (MLCK) in a TLR-dependent manner (64).
Opioid-induced microbial dysbiosis is responsible for continuous immune activation leading to HIV-1 disease progression. Several studies report that opioid addicts are at a greater risk of HIV-1 infection (65). Several factors, including the usage of contaminated needles and the nutritional status of the infected individual, could likely play a role in the heightened susceptibility of opioid abusers to HIV-1 infection. However, reports indicate that opioid use alone can also increase the risk of HIV-1 infection (66). There is ample evidence suggesting that HIV-1 infection disrupts the structure and function of the gut epithelium, leading to AIDS progression. Reports suggest that HIV-1 modulates tight junctions by disrupting CD4+ T cells, which are responsible for maintaining tight junctions (67). HIV-1 proteins such as Tat (transactivator of transcription) and gp120 have also been reported to disrupt tight junctions on epithelial cells in culture (68). Studies also report that simian immunodeficiency virus (SIV) infection results in early upregulation of proinflammatory cytokine IL-1β in the colon of the rhesus macaques (69) as well as in the intestine of HIV-1-infected patients (70), which, in turn, could activate the MLCK, resulting in mucosal damage. SIV-infected African green monkeys exhibit an accelerated depletion of CD4+ T cells in the intestine (71). An identical phenomenon is found in HIV-1-infected humans and SIV-infected rhesus macaques, suggesting that microbial translocation through the disrupted gut epithelium affects SIV disease progression.
Opioid users have been reported to display rapid HIV-1 disease progression while demonstrating severe long-term effects such as neurocognitive disorders (72). Certain opioid abusers infected with HIV-1 show elevated levels of lipopolysaccharide (LPS) in their serum compared to non-users, thus underscoring that disruption of the gut epithelium is more acute in HIV-1 patients who use opioid drugs (73). Preclinical and clinical studies done in HIV-1-infected patients indicate that morphine-mediated disruption of intestinal tight junctions involves activation of MLCK. This has also been validated in rodent models where combination of opioids and HIV-1 infection either synergistically and/or additively activate MLCK, leading to increased gut epithelium permeability, which is observed in HIV-1-infected patients misusing opioids (74). Opioids have also been reported to promote HIV-1 disease progression by disrupting the intestinal epithelial self-repair mechanism and reducing epithelial proliferation in bone marrow-liver-thymus humanized mice and in opioid-using HIV-1+ patients (75). Cumulatively these studies underscore the pivotal role of gut microbiota in the disease progression of HIV-1 infection while also demonstrating that opioid abuse by HIV-1 patients can lead to severe disruption of gut homeostasis, resulting in an accelerated progression of the disease in comparison to drug naïve, infected individuals.
CANNABIS AND HIV
Despite controlling the HIV-1 viral load with combined antiretroviral therapy (cART), gut epithelium defects and intestinal CD4+ cell depletion continue to persist. In HIV-1 infected patients compromised gut barrier function is aided by the increase in apoptosis, and chronic inflammatory signals on the one hand and the decrease in proliferation and repair of epithelial cells, on the other hand. Alterations in tryptophan metabolism leading to defects in microbes that produce butyrate in PLWH and likely contribute to increased gut permeability have been reported (76-78). A dysfunctional gut epithelium allows inflammatory microbial products such as LPS in the periphery to be translocated (79-82). In particular, defects in the gut epithelium make HIV-1+ individuals vulnerable to increased exposure to proinflammatory ligands produced by gut microbiota (78, 83, 84). These alterations lead to poor HIV-1 disease outcomes, including associated neurocognitive disorders (77).
Cannabis effectively alleviates symptoms associated with HIV-1 disease and other conditions such as cancer and neuropathic pain (85). Cannabinoids act on inflammatory pathways through mechanisms distinct from agents such as non-steroidal anti-inflammatory drugs (NSAIDs) (86). Naturally occurring endocannabinoids, including cannabis, have antioxidative and anti-inflammatory characteristics that help in healing and restoration and thus can be used as adjunctive therapy. As a class, cannabinoids are generally free from the adverse effects of NSAIDs. A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol has been reported (85-90). Meta-analyses of several clinical trials have established the efficacy of cannabis in HIV-1-related neuropathic pain and nausea (85-92), although dosing and administration routes varied widely. Some studies suggest that titrating dosing to effectiveness and side effects is a valuable strategy for dose selection. While acute cannabis exposure disturbs cognition, how its long-term use affects brain function in the context of HIV-1 is yet to be elucidated clearly (93, 94). Medicinal use of cannabis is becoming rapidly accepted, and a state-level authorized disease management strategy (95, 96). Healthcare providers identify the potential benefits of cannabis by understanding the potential benefits of symptom management. However, a few clinical studies on patients using cannabis as therapy showed potential dependence or possible adverse effects (93, 97). A better understanding of the strategic use of cannabis could aid clinicians in better treatment and therapeutic options with their patients. Since not much research has been done to assess the effects of cannabis in PLWH, there is a dearth of reliable data for cannabis use recommendations in the clinical field.
The endocannabinoid system is a complex network of receptors and enzymes involved in synthesizing and detecting endogenous lipid ligands (98-100). Most human tissues express cannabinoid (type-1 and -2) receptors (98, 99). Cannabinoid receptors type-2 are densely expressed in diverse immune cell types, including macrophages, microglia, splenocytes, monocytes, and T-cells resident in the thymus, spleen, and bone marrow tonsils (98-100). Endocannabinoid system signaling pathways are essential in HIV-1 infection for several reasons and has been pursued as a target for future pharmacotherapy to reduce inflammation (98-100). In HIV-1 infection, cannabis use has been shown to reduce systemic inflammation and activate the immune system (101). Furthermore, HIV-1 DNA is reported to decline more rapidly in individuals taking antiretroviral therapy and using cannabis than those not using cannabis (102). Cannabis use in PLWH leads to aggravated dysbiosis and epithelial barrier dysfunction of the gut, along with chronic inflammation and consequential ill effect on overall health (79, 81, 82, 103). Chronic cannabis use is reported to lower the abundance of Prevotella and increase the abundance of Bacteriodes bacteria in the gut microbiome. Lower abundance of Prevotella leads to systemic mitochondrial dysfunction and reduction of gut SCFA production in cannabis users which is linked to impairment in cognitive function (104). It is also reported that administration of cannabidiol-rich cannabis extract resulted in increased abundance of A. muciniphila and significant decrease in Alistipes finegoldii, Lachnoclostridium sp. YL32, and Ruminiclostridium sp. KB18 alongwith remarkable downregulation of mucin-2 which is associated with maintenance of gut integrity. The study also found upregulation of inflammatory markers IL-1β, CXCL1, and CXCL2 which points towards the disruptive effect of long-term cannabis use (105).
COCAINE AND HIV
Cocaine is one of the most commonly abused drugs among PLWH, and it has been suggested that it accelerates AIDS progression. Based on the evidence that the limbic system of the brain, comprising a set of interconnected regions regulating pleasure and motivation, is the primary site of action for cocaine helps explain its high potential for addiction and relapse. Cocaine, a commonly used psychostimulant among PLWH, is a cofactor for HIV-1 infection and progression to AIDS. Globally almost 22.5 million people worldwide are affected by cocaine use disorder, thus making it a significant public health crisis with a high socioeconomic burden (106). Although cocaine is known to have immunomodulatory functions (107-109), the underlying mechanism(s) by which cocaine accentuates HIV-1 replication remains unclear. There are reports that cocaine increases HIV-1 infection/replication by inhibiting HIV-1 protective chemokines and/or upregulating the HIV-1 entry co-receptor (110, 111). Cocaine is a potent vasoconstrictor and brain stimulant. Its abuse leads to severe neurological (fainting attacks, hemorrhagic brain strokes, CNS vasculitis, and encephalopathies), cardiovascular (cardiac arrhythmia and heart attacks), and gastrointestinal complications (112-117).
Cocaine abuse has been reported to alter the gut microbiota composition which in turn affects the uptake and clearence of neurotransmitters. One particular study reports higher accumulation of norepinephrine in intestines of cocaine-administred mice helped the resident Citrobacter rodentium to flourish which resulted in depletion of the intestinal neurotransmitter glycine. This also resulted in glycine depletion in circulation and cerebrospinal fluid of cocaine-administered mice, which was in correlation with increased hyperlocomotion and escalation of drug-seeking behavior (118). The authors also reported alteration of synaptic plasticity pathways at the transcriptome-level in the nucleus accumbens of the cocaine-administered mice, and also that the behavioral changes were reversed with dietary supplementation of glycine or sarcosine (118). Another study reports that cocaine administration in mice reduces the abundance of Mucispirillum, Butrycicoccus, Ruminococcaceae, Pseudoflavonifractor, and Lachnospiracea species of bacteria in the gut microbiota which are the involved in the synthesis of SCFAs involved in maintaining mucosal epithelium integrity. Cocaine administration resulted in alteration of TJPs of the gut membrane, upregulated expression of proinflammatory markers NF-ĸB and IL-1β, and also disruption of the mucosal permeability via MAPK/ERK1/2 signaling pathway (106). Also, in case of mice with reduced gut-bacteria, cocaine admistration resulted in increased sensitivity towards drug reward as well as increased locomotor-sensitivity (119). These studies reveal the critical role of gut microbiome in the behavioral effects of cocaine addiction. The research on the gut microbiome and its relationship with drug abuse is currently in its infancy with a bright future, and still a long way to go.
METHAMPHETAMINE AND HIV
Similar to other drugs of abuse, several preclinical and clinical studies have demonstrated that Meth induces alterations in the gut microbiome (49,120-123). However, there is a lack of evidence directly linking the gut microbiota with Meth-induced brain dysfunction (124). Meth has been reported to promote the release of norepinephrine and dopamine, leading to a markedly decreased intestinal contractility and motor capacity (125). This decrease in intestinal muscle tone is associated with oxidative and nitrosative stress, which, in turn, can cause neuronal injury and death in the intestine and disrupt intestinal barrier functioning (126). Disruption of the intestinal mucosal barrier increases the permeability of the gut epithelium and plays an essential role in contributing to anxiogenic behavior (127), stress (128), depression (129), cognitive decline (130), and eating and sleep disorders (131). Disruption of the intestinal barrier also leads to the leakage of several inflammatory factors (like TNF-α, interferon-γ, IL-6), microbes, and metabolites from the gut epithelium to the circulatory and lymphatic systems (132). It has been reported that Meth use can increase the permeability of the blood-brain barrier (133), thereby facilitating the entry of microbial communities and metabolites to enter the brain (134). In mouse models, Meth-exposure has been reported to increase the abundance of pathogenic bacteria in the fecal microbiota (120), with increased inflammation, reduced TJP expression in the intestine, and decreased relative quantity of probiotics and fecal metabolites. Further, Meth exposure was also shown to enhance the intestinal autophagy-associated flora, concomitantly leading to the induction of autophagy in the CNS (123). Intestinal inflammatory biomarkers, including the proinflammatory cytokines, are upregulated in Meth abusers and have been reported to infiltrate the brain regions related to depression (135), causing alterations in neurotransmitter metabolism, neuroendocrine function, and neuroplasticity. A recent study has also shown that gene sequencing of the 16S rRNA of the rectal swab samples collected from individuals using Meth, showed increased presence of bacterial species such as Finegoldia, Peptoniphilus, Parvimonas, and Porphyromonas and depletion of species like Faecalibacterium and Butyricicoccus (122). In line with this study, other studies have also shown that there were alterations in the composition of microbes present in the gut of Meth users with decrease in quantity of Bacteroidaceae and Deltaproteobacteria, and increased abundance of Sphingomonadales, Xanthomonadales, Romboutsia and Lachnospiraceae (49). Interestingly, these alterations have been reported in those bacterial species which had previously been demonstrated to be altered in individuals with psychotic syndromes, thus pointing towards a potential link between Meth abuse and psychotic disorders (49). Forouzan et al. showed that Meth exposure and withdrawal in rats resulted in gut dysbiosis, which was linked to depression-like behavior as evidenced by the forced swim test. However, the authors reported no alterations in anxiety-like behaviors which was assessed by either the elevated plus maze or the open field test (136).
HIV-1 has been reported to alter the human intestinal microbiome. An exciting study showed significant changes in the microbiome in the context of drug abuse and sexual behavior during HIV-1 infection. Rectal swab samples, urine drug test results, along with responses to substance use and sex behavior questionnaires were collected from 37 HIV-1-positive individuals at two-time points, in a 6-month gap period, in a group that was being evaluated for the effects of drug abuse in men who have sex with men. The samples were subjected to 16S ribosomal RNA gene sequencing, and the association of the data with behavioral factors was examined using 0-inflated negative binomial regression. Further analyses demonstrated that abuse of Meth and marijuana exhibit unique associations. Meth use was linked with increased Granulicatella and Porphyromonas organisms in HIV-1 patients and a decrease in abundance of Collinsella, Ruminococcus, and Parabacteroides organisms. In contrast, marijuana use was associated with an increased abundance of Clostridium cluster IV, Ruminococcus, Fusobacterium, and Solobacterium organisms and decreased Acidaminococcus, Dialister, Prevotella, Anaerostipes, and Dorea organisms. From this study, it can be concluded that drug use and sexual behavior are important factors associated with intestinal dysbiosis during chronic HIV-1 infection among young men who have sex with men (137). Further, studies are warranted in the field, specifically in association with HIV-1 infection and drug abuse-related disorders.
NICOTINE AND HIV
Several reports have, on the other hand, demonstrated an association between nicotine and microbiome dysregulation (138-142). In one study aimed at assessing the link between the smoking status of an individual and their intensity of smoking with the relative abundance of gut microbial species in 249 Bangladesh participants, it was reported that there was an increase in the relative abundance of Erysipelotrichi and Catenibacterium in current smokers in comparison to those who had never smoked (139). Another interesting study showed that long-term nicotine administration in rats resulted in alterations of gut microbiota, which was more prominent in rodents fed a high-fat diet than a regular chow diet, thus indicating diet-dependent changes (142). In line with this study, another study showed that cigarette smoke altered gut microbiota composition, which was linked to modifications in the distribution of primary bile acids and cholesterol homeostasis (138). Another study also showed that oral administration of nicotine in mice differentially reorganized the gut microbiome in a gender-specific manner and, furthermore, modified the levels of metabolites such as GABA and glutamate, which are involved in gut-brain communication (142). A recent study has also demonstrated that nicotine altered the gut microbiome and metabolites involved in the gut-brain axis in a sex-specific manner. This study employed high-throughput sequencing and gas chromatography-mass spectrometry to evaluate the effect of nicotine exposure on the gut microbiome and its metabolism in C57BL/6J mice in a sex-dependent manner, with special emphasis on the signaling pathways involved in the gut-brain axis. The 16S sequencing results from this study indicated that the composition of the gut microbiome was differentially altered by nicotine in both females and males. Also, the differential changes in the bacterial carbohydrate metabolic pathways were consistent with lower body weight gain in nicotine-administered males. Genes related to oxidative stress response and DNA repair were also explicitly upregulated in the gut microbiome of the nicotine-treated male mice. Analysis of the fecal metabolome demonstrated that several neurotransmitters, such as glutamate, GABA, and glycine, and neuroactive metabolites-leucine and uric acid, were also differentially altered in female versus male mice. This study showed a sex-dependent effect of nicotine on gut microbiome composition, functional bacterial genes, and the fecal metabolome (141). However, studies are lacking on gut-brain axis in the context of nicotine and HIV.
CONCLUSION AND FUTURE PERSPECTIVES
Understanding the impact of the gut microbiome on gut-brain axis communication has been the topic of momentous research over the past few years. There is a mounting effort to delineate the mechanism(s) of this communication at all axis nodes. It has been now well-established that gut microbiota is crucial for the proper development and maintenance of brain functions. Additionally, as discussed above, there is accumulating evidence from preclinical and clinical studies that implicate the role of microbial dysbiosis in various psychiatric, neurological, and neurodegenerative diseases in the context of HIV-1 and drug abuse. However, it is still a very nascent field of research, and caution must be exerted in over-interpreting these studies. Many unanswered questions remain regarding the beneficial effects of probiotics, with extensive work required to test optimal dosing, strain, and timing in therapeutic applications. The emphasis in the field must shift from correlative analyses to prospective longitudinal study design, causative and mechanistic investigations, and larger-scale trials of potential therapeutic approaches, especially in the case of HIV-1 and drug abuse comorbidity. One big conundrum in microbiota-based research is the ideal definition of healthy microbiota. Inter-individual differences in the gut microbiota composition can be very critical, making it challenging to apply a “one size fits all” approach to target the microbiota. However, this also provides future opportunities for practical personalized medicine approaches. We have also moved from focusing on single bacterial strains as pathogens to an emphasis on nurturing an entire community of microbes, lest they become pathological entities. There are many challenges to conventional wisdom at play, with the possibility that the alterations in the gut microbiota noted in many CNS disorders may have a causal role in symptomatology and that many of the drugs used to treat those disorders could be toxic to or support the diversity of our gut microbes.
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Substance use disorder (SUD) is a prevalent disease that has caused hundreds of thousands of deaths and affected the lives of even more. Despite its global impact, there is still no known cure for SUD, or the psychological symptoms associated with drug use. Many of the behavioral consequences of drug use prevent people from breaking the cycle of addiction or cause them to relapse back into the cycle due to the physical and psychological consequences of withdrawal. Current research is aimed at understanding the cause of these drug related behaviors and therapeutically targeting them as a mechanism to break the addiction cycle. Research on opioids suggests that the changes in the microbiome during drug use modulated drug related behaviors and preventing these microbial changes could attenuate behavioral symptoms. This review aims to highlight the relationship between the changes in the microbiome and behavior during opioid treatment, as well as highlight the additional research needed to understand the mechanism in which the microbiome modulates behavior to determine the best therapeutic course of action.
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THE MICROBIOME AND BEHAVIOR
There is a well-studied relationship between the gut microbiome and mental health disorders such as anxiety and depression (1–3). Both anxiety and depression induce changes to the composition and proper functioning of the gut microbiota (4–6). Stress disorders, like anxiety, cause disruptions to the integrity of the gut barrier, which can allow translocation of gut bacterial products, commonly referred to as “leaky gut” (7,8). This likely results in a microbiota-driven proinflammatory response. Animal studies also show an increase of Bacteroidetes and a decrease of Firmicutes in mice expressing depressive like behavior, indicating a state of microbial dysbiosis (9–11). Interestingly antidepressant medications such as monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs) have antimicrobial properties, suggesting gut modulation as a potential therapeutic target (12,13). Additionally, specific antibiotics show antidepressant properties in both human and rodent studies (14,15).
Animal studies using germ free mice further investigate the role of the microbiome in anxiety and depression. Numerous studies show that germ free mice display lower levels of anxiety-like behavior across multiple models of anxiety: Elevated Plus Maze, Open Field Test, and Light Dark test (16–18). Upon reconstitution of the microbiome in these germ-free mice, anxiety like behavior was only normalized if the reconstitution happened in early life (16,17,19). Reconstitution during adulthood resulted in the persistence of lower anxiety-like behavior. This indicates specific developmental windows in which the microbiome alters neuronal circuitry important for anxiety-like behavior. However, alterations to a healthy microbiome in adulthood can still show alterations to anxiety-like behavior (20). Antibiotic depletion of the microbiome using a broad spectrum antibiotics causes reduced levels of anxiety-like behavior, and once antibiotic administration ceases, the anxiety-like response normalizes as the microbiome replenishes (20). Antibiotic treatment does not affect anxiety-like behavior in germ-free mice, confirming behavioral changes are due to changes in the microbiome. While eliminating harmful bacteria with antibiotics can reduce anxiety-like behavior, it has also been shown that supplementing the microbiome with beneficial bacteria via probiotic treatment can also reduce anxiety-like and depressive-like behavior. Probiotic treatment causes a reduction of anxiety-like and depressive-like behaviors, even in rats experiencing maternal separation during neonatal development, an event known to increase depressive like behavior in adulthood (21,22). The probiotic effects are comparable to results from antidepressant treatment. Clinically, studies show similar antidepressant effects of probiotics with healthy participants displaying less psychological distress when treated with probiotics, and subjects initially scoring highest in depression, showing significant improvement in symptoms (23). Additionally, patients with chronic fatigue syndrome, which has a high comorbidity with anxiety, show a disrupted microbiome composition, and also see improvement of anxiety severity with the treatment of probiotics (24).
Other disruptions to the gut-homeostasis, such as infection and inflammation, are also seen to change anxiety-like behavior. Infections with C. rodentium and C. jejuni increased anxiety-like behaviors as early as 8 h post infection, lasting up to 2 days (25,26). Interestingly this behavioral change is seen even without a periphery immune response, suggesting that pathogenic bacteria in the gut can produce behavioral changes independently from an immune response (27). Increased anxiety-like behavior is also seen when there is an increase in GI inflammation. This behavioral change was reversed with probiotic treatment.
This relationship between the microbiome and anxiety and depression has great interest in opioid research, as anxiety and depression both have high comorbidity with opioid use disorder, and elevated levels of anxiety and depression are common throughout the stages of opioid use (28). Initial drug is often used as a form of self-medication to alleviate stress and anxieties (29). However, these effects of opioids are short lived, and consumption of drugs can lead to increased depression symptoms instead (30). Once opioid dependence is formed, the abstinence of opioids in the body induces a withdrawal response, which can result in elevated anxiety and depression symptoms, even after the physical symptoms of withdrawal have passed (31–34). For many the severity of anxiety and depression during withdrawal drives continued drug use to alleviate the symptoms (33). The implication of microbiome in these behaviors are especially interesting considering the impact that opioid use has on the gut microbiome.
MORPHINE INDUCED CHANGES TO THE MICROBIOME
Opioid use has been shown to disrupt multiple areas of gut homeostasis. Animal studies show that morphine treatment results in specific changes to the relative abundance of bacteria (35). Morphine exposure, even in the short-term, causes an increased abundance of pathogenic bacteria (Flavobacterium, Enterococcus, Fusobacterium, Sutterella, Clostridium, Rikenellaceae, and Ruminococcus). Once tolerance is developed a significant decrease in the abundance of beneficial bacteria (Lactobacillus and Bifidobacterium) is observed as well (36). This pattern of microbial change is an indication of microbial dysbiosis (37,38). Additional changes in abundance of individual bacteria are seen across morphine exposure time and doses, all indicating the same pattern of increasing of harmful bacteria and decreasing of beneficial bacteria (36,38–46). The functional consequences of the dysbiosis of the microbiome include a decrease in gut motility and an increase in gut-barrier permeability, creating a risk of bacterial translocation and proinflammatory signaling (47).
The diversity of the gut microbiota is also greatly impacted by morphine treatment. Functional and taxonomic diversity of the microbiota are very important for maintaining gut-homeostasis, and a non-diverse microbiota is associated with inflammatory bowel disease and obesity (48,49). Opioid treatment causes a decrease in the alpha diversity of the gut-microbiota, which signifies diminished species richness and a less diverse array of present bacteria within the microbiome (35). Additionally, the beta diversity measuring the similarities or dissimilarities of microbiome composition between groups shows distinct clustering in morphine treated animals as compared to placebo treated controls. This is additional confirmation of a dysbiosis of the gut microbiome caused by morphine treatment.
Studies have been targeting these opioid induced changes in the gut to understand their relevance to the behavioral consequences of opioid use. Tolerance development is the most well studied relationship between the morphine induced dysbiosis and drug related behavior. Germ free mice showed an attenuation of morphine tolerance and the reconstitution of the microbiome via a fecal matter transplant (FMT) of a healthy microbiome reinstated the tolerance development, indicating the microbiome is necessary to the development of morphine tolerance (36). Antibiotic depletion of the microbiome in specific pathogen-free (SPF) mice also shows an attenuation of morphine tolerance, however a FMT of a healthy microbiome does not recover the tolerance development. Instead, the FMT of a morphine treated microbiome is needed for the proper development of morphine tolerance. Additionally, treatment with a probiotic cocktail of the bacteria that showed significantly reduced abundance during morphine exposure, both prevents the dysbiosis effects of morphine as well as attenuates morphine tolerance (36). This suggests the state of the microbiome during morphine induced dysbiosis is a requirement for tolerance development. Similar relationships have been seen in other stages of drug use as well. Research shows that antibiotic depletion of the microbiome causes impaired cocaine reward processing, suggesting a need for the microbiome in the rewarding pathways involved in addiction, though no studies have examined the impact of the microbiome in any addiction paradigms for morphine specifically (44). Studies examining addiction paradigms such as Conditioned Place Preference (CPP) show that mice that display higher CPP scores have a unique microbial composition compared to mice that display lower CPP scores (50). A new area of research is the relationship of the morphine induced gut changes on the withdrawal response. However, the limited research shows conflicting results on antibiotics effects on the withdrawal severity. Withdrawal symptoms are seen to both decrease and remain the same depending on the morphine treatment regimen and the specifics of antibiotic treatment (46,51). Though the withdrawal state of morphine use does still show changes to the microbiome as well as neuronal changes that may be linked to gut dysbiosis (52).
The well-studied relationship of the microbiome’s influence on morphine tolerance, as well as emerging evidence of its roles in addition and withdrawal behavior, show that the dysbiosis of the microbiome caused by opioids has an impact on drug related behaviors (36,38,46,51). While researchers are still investigating the extent to which this opioid induced dysbiosis contributes to the severity and development of these behaviors, the importance of this relationship between drug use, microbial changes, and behavior is paramount. Understanding this relationship can lead to the development of gut targeted therapeutic strategies to treat the behavioral symptoms of drug use, an area that is lacking in therapeutic intervention. However, additional research on the mechanisms in which the microbiome is modulating behavior during opioid use is needed. Potential mechanisms are understudied in opioid research, however research with other drugs of misuse has discovered some potential links between microbial and behavioral changes.
POSSIBLE LINKS BETWEEN MICROBIAL AND BEHAVIORAL CHANGES
The exact mechanism in which the microbiome influences behavioral changes is unknown, though there are many potential links currently being researched (53–59). One possible connection is the inflammatory response that results from drug induced disruption to the epithelial barrier. The microbial changes that occur during use of opioids, and other drugs of misuse, cause damage to the tight junction proteins (47,60–62). This leads to a compromised integrity of the epithelial lining, allowing for translocation of bacteria. Additionally, there is a higher risk of the translocation of pathogenic bacteria, due to the microbial dysbiosis caused by drug exposure. Host epithelial cells recognize the bacteria and initiate a toll-like receptor (TLR) modulated immune response, resulting in the release of proinflammatory cytokines (63). Studies suggest that these cytokines can cross the blood brain barrier and modulate behavior to contribute to the behavioral consequences of drug use (53,54). However, not all proinflammatory cytokines produce the same behavioral responses. Activation of the TLR4 signaling driven by interleukin 1 beta (IL-1b) results in an increase of CPP and self-administration to cocaine. This indicates that proinflammatory activation drives the addiction process, but conflicting results are found for proinflammatory TNF-a. An increase of TNF-a levels results in a decrease of CPP response to morphine, as well as a decrease of behavioral drug response to both morphine and cocaine. These inconsistent findings suggest the role of inflammation in drug related behavior could depend on the specific cytokine or drug being studied (64–66).
Another potential link is the vagus nerve, as it provides direct communication between the brain and gut. Even though the vagus nerve does not cross the gut epithelial layer and have direct contact with the microbiome, studies have shown that the vagus nerve may be sensitive to signals from the microbiome (55,56). Antimicrobial treatment of the microbiome, resulting in an increase of Lactobacilli, modified GABA expression in numerous brain areas and decreased anxiety-like behavior. These findings are thought to be a result of vagal signaling, and additional studies have shown that vagal nerve integrity is crucial to the successful attenuation of anxiety-like behavior by probiotic treatment (21,57). There is also preliminary evidence that shows vagal nerve stimulation facilitates the extinction of drug seeking behavior during the withdrawal process of cocaine treatment (67). While research shows the vagus nerve may be important to the behavioral responses of drug use, there is limited evidence to prove microbiome is relying on the vagus nerve to modulate behavior, or if the microbiome alone can stimulate the vagus nerve enough to produce behavioral changes. Others believe the microbiome modulates behavior via hippocampal brain-derived neurotropic factor (BDNF), independent of vagal nerve stimulation (20). Cocaine studies show an epigenetic regulation of BDNF levels during drug use, and BDNF has been shown to mediate cocaine self-administration, and drug seeking (68). Expression of BDNF also changes in response to changes in the microbiome, and these changes are associated with altered behavioral responses to alcohol and cocaine (69–71). A FMT of a microbiome samples of alcohol exposed donors to healthy recipients, resulted in a decrease of BDNF levels in the hippocampus, as well as an increase of anxiety and depressive-like withdrawal behaviors (70). There are many correlations of drug exposure and microbial changes with changes in BDNF expression levels, however causal studies to determine a mechanism in which the microbiome is influencing the BDNF expression have not been done (71).
There is a wealth of data implementing microglial activation as a mechanism that drives microbiome modulated drug related behaviors. It is well documented that the microbiome is crucial for the proper development of microglia (72,73). In fact, germ free mice display deformed microglial cells as well as slight behavioral differences that may be a result of the lack of properly matured microglia (72). On a less severe model, microglial defects can be seen with prolonged antibiotic treatment, and microglial function can be restored with probiotic treatment (72). Also, microglia become significantly more activated during drug exposure (52,58,59,74). Elevated microglial activation occurs as a result of chronic ethanol treatment, and microglia remain overactive throughout long-term ethanol withdrawal (74). Methamphetamine treatment also results in microglia activation, and upon inhibition of microglia cells, locomotor sensitization to methamphetamine attenuated (58). Additionally, high levels of microglial activation in the nucleus accumbens are observed during cocaine treatment (59). This change in microglia activation could be a response to the drug presence itself or a consequence of drug induced microbial changes. The elevation of microglial activation is seen in many brain areas crucial to addiction and reward pathways, and inhibition of microglia has attenuated some behaviors related to drug use. Further research is needed to understand the implications of the gut-microbiome in microglial modulation of drug related behaviors.
SUMMARY
Drug use causes dysregulation from the gut to the brain (Figure 1). Research shows a drug induced dysbiosis of the gut microbiome, causing the diverse microbial environment to become overpopulated with pathogenic bacteria (35,36). The consequence of the microbial shift leads to a compromised gut barrier, resulting in a translocation of bacteria that trigger a proinflammatory cytokine release (47). While the microbiome is activating an inflammatory response, it also communicates with the vagus nerve to send signals to the brain (55,56). Additionally, the microbiome may be responsible for the increase in microglial activation as well as dysregulation of BDNF signaling during drug use (52,68,74). All of these factors affected by drug use also have behavioral implications that are relevant to behavioral consequences of drug use. Thus, the dysregulation of these factors during drug use may be during the behavioral consequences of drug use.
[image: Figure 1]FIGURE 1 | This schematic shows the microbial and neuronal changes that occur during drug use. Exposure to drugs cause a dysbiosis of the microbiome and impaired gut barrier function which leads to the translocation of pathogenic bacteria, resulting in a release of pro-inflammatory cytokines. The vagus nerve sends communications from the gut microbiome to the brain. Additionally, within the brain there is an increased activation of microglia and alterations to BDNF signaling. All of these factors seem to play in a role in drug related behavior, leading to tolerance development, addiction and reward signaling, withdrawal symptoms, anxiety, and depression. Image created with BioRender.com.
In conclusion, there is a lot of evidence showing a relationship between the microbiome and behavior, and the microbiome undergoes substantial changes when exposed to opioids that may further modulate drug related behaviors, such as reward processing, tolerance, withdrawal, anxiety, and depression. However, the exact mechanism between microbial changes and behavior is still not understood, especially for opioids specifically. The collective literature for drugs of misuse, provide potential links between the microbiome and the brain: inflammation, the vagus nerve, BDNF, and microglia. These are areas that need additional research for opioids, as well as every drug individually, to determine how the gut and brain are communicating and regulating drug related behaviors. Understanding this relationship could lead to potential treatment options for the psychiatric symptoms of SUD and provide an easier path out of the cycle of addition.
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