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Substance abuse, also known as drug abuse, refers to excessive use of agents that 

cause harm to self, society, or both. Some of the commonly used substances of abuse 

include: Opioids, Cocaine, Lysergic acid diethylamide (LSD), marijuana and alcohol. 

Substance abuse can lead to addiction thereby triggering significant negative effects 

on the brain and the body. The gastrointestinal (GI) tract harbors a complex array 

of microorganisms, called the gut microbiota which play a critical role in regulating 

homeostasis in the body and disease. Extensive use of next‐generation sequencing 

technology has enabled the discovery of how dysbiosis caused by environmental 

factors can impact the development and severity of many clinical disorders. Such 

studies have also led to the detection of gut-brain axis, a bidirectional communication 

pathway between the Central Nervous System and the Gastrointestinal System in 

which the gut microbiota play a critical role. The gut microbiota can regulate the 

brain functions through microbial metabolites, including the short-chain fatty acids 

which can cross the blood-brain barrier. Additionally, the brain can regulate the gut 

microbiota through neural, endocrine and cytokine pathways. How does substance 

abuse fit into the complex cross-talk between the gut microbiota and the brain? This 

is an exciting area of research that is drawing a lot of attention. Some substances 

of abuse such as alcohol have already been shown to cause dysbiosis which may 

influence alcoholic liver disease through leaky gut. Such findings also raise an exciting 

possibility of using probiotics, reversing dysbiosis, or fecal microbiota transplantation 

as a therapeutic modality to reverse the negative impacts of substance abuse.

This Special Issue is focused on how substance use disorder can alter gut microbiota 

and impact functions of the Central Nervous and other organ systems. It is also the 

goal to explore how stabilization of gut microbiota can prevent the negative effects 

of substance abuse.
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Editorial on the Special Issue

Substance abuse and the microbiome

The gastrointestinal (GI) tract harbors a highly complex array of microorganisms that

play a critical role in regulating homeostasis in the body. Thus, any perturbations or

imbalance, termed dysbiosis, can trigger disease. While the direct effects of abused

substances on various organ systems such as the brain, have been well-recognized,

whether drug misuse can also lead to dysbiosis, resulting in clinical disorders remains an

interesting possibility that is actively researched. This Special Issue was therefore focused

on how substance use disorders (SUD) are linked to dysbiosis, and how altered gut

microbial composition can influence the functions of the Central Nervous System (CNS)

and the immune system. It was also the goal of this Special Issue to explore whether the

stabilization of gut microbiota could lead to the restoration of clinical disorders that are

triggered by drugs of abuse.

In this Special Topic Issue, we present four articles: In the first article, Varsha et al.

describe how the ability of cannabinoids to suppress inflammation could likely be

mediated, in part, through the alterations in the gut microbiome and metabolome.

There is significant evidence demonstrating that cannabinoids such as delta-9-

tetrahydrocannabinol (THC), and Cannabidiol (CBD) act as anti-inflammatory

agents. Also, these cannabinoids have been approved by the FDA to treat several

clinical disorders. For example, THC has been approved by the FDA to treat HIV/

AIDS-induced anorexia as well as chemotherapy-induced nausea and vomiting in cancer

patients undergoing chemotherapy. CBD has also been approved by the FDA to treat

certain types of epilepsy syndromes. Moreover, several states in the US have legalized

cannabis for medicinal and/or recreational use. Thus, it is important to understand

whether the anti-inflammatory effects of cannabinoids are mediated via the regulation of

dysbiosis and, if so, the impact of this on health. This review captures the mechanism(s)

that trigger dysbiosis following exposure to cannabinoids. Additionally, it highlights how

cannabinoids can induce microbial secondary bile acids, short-chain fatty acids (SCFA),

and indole metabolites, that can have an immunoregulatory role even in distant organs.

The second review by Ellermann is closely related to the first article in that the review

focuses on endocannabinoids. An important highlight of this article is the demonstration
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that changes in the gut microbiome caused by external factors

such as diet or disease can have a significant impact on the

endocannabinoid tone. This is critical inasmuch as

endocannabinoids regulate a wide array of important bodily

functions such as memory, sleep, temperature control, pain

control, appetite, and immune functions. The article also

highlights endocannabinoid-mediated regulation of naturally

occuring bacteria within the gut microbiome. Additional

exciting areas covered by this article include the preclinical

studies demonstrating that engineered gut bacteria

synthesizing the host N-acylethanolamides could be

potentially used to treat diseases that involve aberrant lipid

signaling, including obesity and inflammatory bowel diseases.

Drug abuse by HIV-1/AIDS patients has been shown to

increase viral load and accelerate the disease progression. The

third article by Ray et al. highlights the evidence that the gut

microbiome plays an important role in the pathogenesis of HIV-

1-linked drug abuse and subsequent neuroinflammation and

neurodegeneration. It is well documented that drug abuse can

disrupt the gut-brain axis resulting in dysbiosis, and altered

expression of neurotransmitters, bile acids, and metabolites,

including SCFA. Such alterations can activate a wide range of

pro-inflammatory signaling pathways, which, in turn, can impact

the CNS through the hypothalamic-pituitary axis, ultimately

resulting in pain, stress, and anxiety. The article highlights

how understanding the mechanism(s) underlying how drugs

of abuse alter the microbiota in HIV-1/AIDS patients could

aid in the development of better treatment modalities for drug

abuse-related disorders.

The fourth article by Herlihy and Roy focuses on opioid-

mediated microbial dysbiosis and its impact on behavior. The

review highlights how drug-induced dysbiosis can lead to an

increased prevalence of pathogenic bacteria, in turn, manifesting

as a compromised gut barrier with consequent systemic

translocation of bacteria that trigger proinflammatory cytokine

release. The microbiome also communicates with the brain by

sending signals through the vagus nerve. The article also

discusses how the microbiome can increase microglial

activation in the brain as well as dysregulation of brain-

derived neurotrophic factor (BDNF) signaling during drug

use. All such alterations in the microbiome also impact the

behavioral consequences of drug use. Together, these studies

suggest that preventing dysbiosis could likely attenuate

behavioral symptoms associated with drug use.

In summary, this Special Issue consisting of four review

articles comprehensively discusses the complex interactions

between drug use and microbial dysbiosis. It also highlights

how dysbiosis is closely associated with the endocannabinoid

and immune system while communicating with the brain

through the gut-brain axis, thereby regulating pain, anxiety,

and behavior. The articles highlight the challenges and

opportunities to advance this research to better understand

and control drug use and behavioral disorders.
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Role of Gut Microbiota in
Cannabinoid-Mediated Suppression
of Inflammation
Kontham Kulangara Varsha, Mitzi Nagarkatti and Prakash Nagarkatti *

Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC,
United States

Cannabinoids and the endocannabinoid system have been well established to play a
crucial role in the regulation of the immune response. Also, emerging data from numerous
investigations unravel the imperative role of gut microbiota and their metabolites in the
maintenance of immune homeostasis and gut barrier integrity. In this review, we concisely
report the immunosuppressive mechanisms triggered by cannabinoids, and how they are
closely associated with the alterations in the gut microbiome and metabolome following
exposure to endogenous or exogenous cannabinoids. We discuss how cannabinoid-
mediated induction of microbial secondary bile acids, short chain fatty acids, and indole
metabolites, produced in the gut, can suppress inflammation even in distal organs. While
clearly, more clinical studies are necessary to establish the cross talk between exo- or
endocannabinoid system with the gut microbiome and the immune system, the current
evidence opens a new avenue of cannabinoid-gut-microbiota-based therapeutics to
regulate immunological disorders.

Keywords: inflammation, cannabinoids, microbiota, drug abuse, endocannabinoids

INTRODUCTION

Cannabis sativa, otherwise known as marijuana, has a rich history of being used for medical and
recreational purposes. The complex biochemical metabolism of cannabis leads to the production
of over 550 chemical constituents of which over 100 are identified as phytocannabinoids (1). The
chemical structure of the non-psychoactive cannabinoid compound, cannabidiol (CBD) was
first deduced in 1963 followed by the identification of the psychoactive cannabinoid, δ9-
tertrahydrocannabinol (THC), in 1964 (2). Cannabinoids accomplish their physiological and
behavioral consequences via their binding to the cannabinoid G-protein-coupled receptors
(GPCRs), CB1 and CB2 (CBRs). The existence of these receptors and their endogenous ligands,
named endocannabinoids (eCBs), in the human system was discovered in the 1990s thus
revealing the functions of eCB system in neuronal and immunomodulatory functions. eCBs such
as anandamide (AEA) and 2-arachydonoylglycerol (2-AG), which are native lipid-based
retrograde neurotransmitters, as well as exogenous cannabinoids such as THC, act as strong
agonists of CBRs. CBD, unlike THC, is not psychoactive and considered to be a negative
allosteric modulator of the CB1 receptors (3). Fatty acid amide hydrolase (FAAH) and
monoacylglycerol acid lipase that break down AEA and 2–AG, respectively, are the two
other important participants of the eCB signaling system (4-6). The CB1 and CB2 receptors
are expressed primarily in the brain and immune cells respectively and mediate nearly all the
effects of both endogenous and exogenous cannabinoids (6, 7).
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The downstream signaling initiated by CBRs involves the
inactivation of protein kinase A following inhibition of adenyl
cyclase activity and a decrease in cyclic adenosine
monophosphate (cAMP) levels. In addition, CBRs trigger an
array of various mechanisms in the wake of activation. This
includes multiple effector protein kinase signaling cascades
related to cell proliferation and survival such as
phosphoinositide-3-kinase–protein kinase B/Akt (PI3K-PKB/
AKT), p38 mitogen-activated protein (p38 MAP) kinases,
extracellular signal-regulated kinase (ERK) as well as focal
adhesion kinase (FAK) (8). Coupling to ion channels,
phospholipase-cb activation, and ceramide biosynthesis are
certain other pathways activated by CBRs (7–11). It is
demonstrated that eCBs can also bind to non-CBRs, of which
the most investigated are transient receptor potential vanilloid 1
(TRPV1) channel along with peroxisome proliferator-activated
receptor and orphan GPCRs (9, 12). Most of these pathways
mentioned above are entwined with maintenance of immune
homeostasis. For example, certain subsets of effector CD4+ T cells
depend on the PI3K signaling activation for their differentiation
and steering of effector functions. Additionally, PI3K and
p38MAPK signaling are involved in the production of
inflammatory cytokines (13, 14), ERK signaling plays a role in
resistance to immunomodulatory drugs (15), and nuclear
translocation of FAK is important to regulate inflammatory
gene expression of chemokines and cytokines (16). Such
studies demonstrate that the downstream signaling pathways
initiated by CBRs can lead to immunomodulation.

It is well documented that the gut microbiome plays a crucial
role in host metabolism as well as the balance between pro- and
anti-inflammatory responses, thereby controlling disease
pathogenesis (17). Short-chain fatty acids (SCFAs),
lipopolysaccharides (LPS), and other biologically active
metabolites generated by various microbial species contribute
toward immune regulation, activation or suppression (18). Thus,
dietary and medical interventions that manipulate the
composition of the microbiome have been shown to cause
pro- or anti-inflammatory milieu (19). There is emerging
evidence that the gut microbiome and eCB system
communicate via signaling pathways involved in nutrient
processing and energy metabolism (17). In this mini-review,
we briefly recite an account of the effects and mechanisms of
endogenous and exogenous cannabinoids on
immunosuppression via microbiome-mediated activities.

MECHANISMS AND NATURE OF
IMMUNOMODULATION CAUSED BY
CANNABINOIDS
Cannabinoids are well established as anti-inflammatory agents
with a significant and wide range of immunosuppressive
properties that have been meticulously reviewed before
(20–25). CBD, the nonpsychotic cannabinoid, was shown to
induce myeloid-derived suppressor cells (MDSCs) which
suppressed T cell proliferation in vitro and in vivo (26).
MDSCs mostly express CD11b and Gr-1 and represent a

heterogeneous population of immature myeloid cells which
produce arginase 1 and inducible nitric oxide synthase that
enables them to suppress T cell proliferation (27).
Cannabinoid-induced MDSCs upon adoptive transfer were
shown to attenuate LPS-induced acute inflammation in vivo
(26, 28). The psychoactive THC was also shown to induce
MDSCs independent of TLR4. THC mobilized MDSCs from
bonemarrow and caused their expansion in the periphery (29). In
addition to the generation of MDSCs, cannabinoids have also
been shown to induce regulatory T cells (Tregs) (30–33). Such
T cells express FoxP3, a transcription factor that plays a critical
role in their differentiation and functions, and secrete
immunosuppressive cytokines such as interleukin (IL)-10 and
transforming growth factor β (TGF-β) (34). Additionally,
cannabinoids can also induce apoptosis of immune cells such
as T and B lymphocytes, macrophages, and dendritic cells (DCs)
leading to immunosuppression (35). THC triggered DC
apoptosis via reduction of mitochondrial membrane
permeability, cleavage of Bid, activation of caspase cascade,
and release of cytochrome-c (36). THC treatment caused
phosphorylation of IkappaB-alpha and augmented apoptotic
gene transcription regulated by NF-kappaB (35–38). Moreover,
agonists of CBRs can disrupt the balance of pro and anti-
inflammatory cytokines. THC exposure restrained the
production of IL2, IL-12, and interferon-gamma (IFN-γ), and
altered the equilibrium of T helper 1 (Th1)/T helper 2 (Th2)
cytokines in a CB2R dependent manner (39, 40). Also, THC and
AEA were shown to suppress inflammatory Th1 and Th17
response during delayed-type hypersensitivity response (41, 42).

Epigenetic modulations are additional mechanisms of
immunosuppression triggered by cannabinoids (43). The eCB
system undergoes epigenetic modifications and such variations
are observed in pathological disorders such as Diabetes,
Parkinson’s, Alzheimer’s, and colorectal cancer. The main
targets of these modifications are the genes CNR1 and CNR2
that encode for CB1R and CB2R along with FAAH (44–46).
Recent investigations provide insights into cannabinoid-
mediated epigenome modifications and their impact on the
suppression of the immune system. THC treatment increased
methylation of the promoter region of DNA methyl transferases,
DNMT3a and DNMT3b in MDSCs leading to subsequent
reduction in DNMT3a and DNMT3b expressions in C57BL/6
mice. Moreover, a decrease in the methylation of Arg1 and
STAT3 promoter regions was observed that led to over-
expression of Arg1 and STAT3 (47). THC was shown to
activate or suppress the expression of genes via histone
modifications. THC treatment led to histone modifications
that led to increases in Th2 cytokine genes while suppressing
Th1 cytokine genes, thereby switching the immune response from
Th1 to Th2 (48).

Up-regulation or down-regulation of microRNAs (miRNAs)
are another major route of epigenetic alterations prompted by
cannabinoids. Treatment of C57BL/6 mice with THC elevated
miR-21 while lowered miR-29b expression that was associated
with a corresponding increase in SMAD7 and decrease in IFN-γ
expressions. This in turn inhibited Th1/Th17 activation in
delayed-type hypersensitivity reaction (47). The eCB, AEA
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mitigated Staphylococcal enterotoxin B (SEB)-induced acute
respiratory distress syndrome (ARDS) in mice via down-
regulation of miRNA-23a-3p, which up-regulated arginase and
TGF-β2, and miRNA-34a-5p that prompted FoxP3 induction. A
reduction in pro-inflammatory cytokines such as IL-2, TNF-α,
and IFN-γ, while an increase in MDSCs was detected following
AEA treatment (49). THC administration into SEB-injected
C3H/HeJ mice was reported to down-regulate miR-17/92 and
miR-374b/421 clusters while up-regulating miR146a leading to
the release of PTEN thus acting as an AKT inhibitor leading to a
reduction in IFN-γ production (31). Another study reported that
THC altered expressions of the members of miR-17-92 cluster,
particularly miR-18a that directed the release of PTEN (50). A
detailed description of cannabinoid-mediated epigenetic
modulations pertaining to immune suppression has been
recently published (43). It is interesting to note that the
intestinal microbiota and their metabolites have been shown
to regulate several epigenetic pathways (51). This raises the
question of whether the cannabinoid-mediated changes in the
epigenetic pathways are linked to the gut microbiota.

GUT MICROBIOTA, ECB SYSTEM, AND
GUT-BRAIN AXIS

The diverse intestinal microbial population found in the gut
shares a mutual symbiotic relationship with the host. The
microbiota benefits the host by modulation of gut motility,
intestinal barrier function, and nutrient absorption. Moreover,
gut microbiota plays a major role in host metabolism and is
associated with regulation of the inflammatory status of the host
not only in the gut but also in other organs such as the brain (52,
53). Thus, alterations in the microbiota, called dysbiosis, caused
by nutrition, stress, environmental factors, and drugs, can have
either beneficial or deleterious effects on the inflammatory status
of the host. Gut-brain axis, which is the bidirectional crosstalk
between the central and enteric nervous systems is influenced by
gut microbiota via neural, endocrine, and immune networks (54).
Emerging data establishes the influence of gut microbiota in
anxiety and depression-like behavior (55). Clinical studies denote
the abundance of pro-inflammatory and reduced SCFA
producing bacterial species in these disease conditions, and
this pathophysiology relates to the transmission of peripheral
inflammation to the brain (56). There are recent reviews which
have discussed the effects of cannabinoids, including CBD and
alcohol in the microbiota-gut-brain axis (57) and therefore not
further discussed this topic in this review.

It has been widely recognized that eCB is dynamically involved
in the regulation of glucose and energy metabolism. It is also
important to note that the immunomodulatory effects of eCBs are
not always mediated via CBRs. Metabolism of 2-AG and AEA
generates lipid components and hence acts as a source of
arachidonic acid in the biosynthesis of additional pro-
inflammatory lipids (58). Advanced research in the field of
eCB system and immune modulation indicates the
contribution of bio lipid members of eCB system in the onset
or progression of various diseases such as obesity, diabetes,

inflammatory bowel disease (IBD), and multiple sclerosis (MS)
which are also reported to be augmented by alterations in the
microbiota (59). Elevated eCBs level impedes excitatory and
inhibitory neurotransmitters release which affects immune
homeostasis and energy balance while increasing gut
permeability (59, 60). Direct evidence of intestinal microbe-
mediated eCB system manipulation comes from a recent study
where Candida albicans manifestation altered the levels of lipid
and eCBs in the brain and gastrointestinal (GI) tract leading to
increased anxiety-like behavior in mice (61). Considering the
relevance of eCB system and gut microbiota in the manipulation
of the immune system, it is inevitable to explore the possible
relationships and mechanisms between both systems from the
perspective of inflammatory diseases.

ALTERATION OF THE GUT MICROBIOTA
BY CANNABINOIDS

Various lines of ongoing research have connected the gut
microbiota with metabolic and neurological disorders (52).
Dietary interventions with specific fatty acids have been
reported to increase the level of eCBs in human observational
studies. These changes in eCBs have been attributed to variations
in Peptostreptococcaceae, Veillonellaceae, and Akkermansiaceae
(62). Cannabis consumption has been demonstrated to alter eCB
tone and induce mucosal healing in ulcerative colitis (UC)
patients in addition to improving quality of life (63).
Modulation of eCB system using cannabinoids has been
demonstrated to favor immune suppression in vivo (64).
Present-day research targets to unravel the role of exogenous
as well as endogenous cannabinoids in gut microbiota
modulations and their impact on neurological and
inflammatory conditions. Our lab has published multiple
research articles on the alterations of microbiome and
inflammation employing endogenous and exogenous
cannabinoids (64, 65). A recent study demonstrated that the
eCB, AEA, reversed the adverse microbiota perturbations
instigated by SEB-mediated ARDS in mice. AEA treatment
increased the abundance of beneficial bacteria producing
SCFAs such as butyrate. In addition, AEA treatment curbed
inflammation in the lungs and in the gut-associated
mesenteric lymph node (MLN). Production of antimicrobial
peptides (AMPs) and tight junction proteins (TJPs) which are
key molecules sustaining epithelial barrier integrity in lung
epithelial cells, as validated by single-cell RNA (Sc-RNA)
sequencing were reported to attenuate the inflammation. Also,
in this study, pathogenic Enterobacteriaceae and Pseudomonas
were seen in the lungs of mice with ARDS while treatment with
AEA led to their disappearance. Furthermore, the relative
abundance of butyrate producing Lachnospiraceae and
Clostridia were enhanced with AEA treatment (64).
Emphasizing this observation, the abundance of butyrate-
producing Firmicutes compared to Bacteroides was discovered
following THC treatment of mice with diet-induced obesity
(DIO) (66). In a similar line of study, the efficacy of THC to
ease SEB-induced ARDS was examined. THC treatment
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improved the abundance of beneficial bacteria, Ruminococcus
gnavus, while reducing pathogenic Akkermansia muciniphila in
the lungs and gut. THC administration enriched SCFAs,
specifically propionic acid, which attenuated the inflammatory
response and protected mice from fatality. This study concluded
that THC-induced reversal of microbial dysbiosis played a central
role in the diminution of SEB-induced ARDS (65).

Colitis is another noteworthy disease model where the
influence of cannabinoids on microbiota has been effectively
demonstrated (67, 68). One study from our lab explored the
effects of CBR activation following administration of THC and
CBD either alone or in combination, in a chemically-induced
murine colitis model. THC improved colonic barrier integrity as a
result of higher mucus, AMPs, and TJPs production. Albeit
alteration of the gut microbiota towards gram-negative
bacteria was observed, the authors noted that the favorable
effects of THC were not associated with microbiome
modulation (67). A recent study presented the synergistic
effect of fish oil and CBD treatment in the murine model of
colitis. Co-administration of fish oil and CBD reduced
inflammatory markers and ameliorated intestinal permeability
in dextran sulfate sodium (DSS) model of mouse colitis. However,
independent treatment with either of these failed to generate a
favorable effect. The colonic inflammation was alleviated
independent of the increased abundance of A. muciniphila. Of
note is that the combination therapy reduced the abundance of
Marinifilaceae, Desulfovibrionaceae, and Ruminococcaceae.
Interestingly, Desulfovibrionaceae abundance has been
reported in IBD and UC patients suggesting the functional
role these microbial families play in GI diseases (68, 69).
Another study investigated the role of gut microbiota in
tempering clinical symptoms of paralysis and inflammation
following cannabinoids treatment in an experimental
autoimmune encephalomyelitis (EAE), a mouse model of MS.
A combination of THC and CBD alleviated the symptoms of EAE
and decreased pro-inflammatory cytokines while enhancing anti-
inflammatory cytokine production. The EAE disease model
showed abundant mucin degrading A. muciniphila which was
considerably decreased following treatment with THC and CBD.
A higher level of LPS was found in the brains of EAE mice while
this scenario was reversed with cannabinoids treatment (70). The
potential of cannabis extract to improve gut barrier function was
investigated in the poultry industry where necrotic enteritis
caused by Clostridium perfringens caused mortality in birds
leading to economic loss along with the potential hazard of
pathogen transmission to the consumer via the food chain. A
combination of cannabis extract and selenium nanoparticles
altered the response of chickens towards C. perfringens. This
treatment upregulated the expression of genes involved in gut
barrier function and improved collagenase activity. However, the
extract alone could not generate significant beneficial effects (71).

Synthetic cannabinoids have also been extensively studied for
their anti-inflammatory properties and their ability to alter the
gut microbiota. Treatment with the CB2R agonist, JWH133
alleviated overgrowth of bacteria, bacterial translocation, and
bacterial peritonitis, up-regulated intestinal TJPs, and reduced
intestinal oxidative stress in cirrhotic rats. Furthermore, the

treatment considerably diminished the levels of TNFα and
inflammatory facilitators, intestinal mucosal impairment, and
infection (72). Blockade of CB1R using the antagonist,
Rimonabant reduced DIO and inflammatory cytokines.
Trafficking of M1 macrophages and decreased intestinal
permeability were also observed with CB1R blocking. Further
metagenomics analysis demonstrated an elevated relative
abundance of A. muciniphila and reduced abundance of
Lanchnospiraceae and Erysipelotrichaceae in the gut (73).
Nabilone, a CB1R agonist, was found useful in the treatment
of post-traumatic stress disorder (PTSD), nausea, and vomiting
associated with chemotherapy and pain management (74, 75).
Administration of nabilone for 3 months improved health and
alleviated diarrheal symptoms in patients. Although microbial
dysbiosis was not investigated in this study, it encourages
further clinically-oriented investigations on the effect of
cannabinoids on such disease models as related to microbial
dysbiosis (76).

IMMUNOMODULATORY MECHANISMS OF
GUT MICROBIOTA

Endogenous, as well as exogenous cannabinoids, have been
widely recognized to regulate inflammation and mucosal
permeability of the GI tract where they possibly interact with
the gut microbiome. In this section, we have tried to pull together
the known mechanisms through which cannabinoids control
microbial dysbiosis and accompanying inflammation. The
indispensable role of gut microbiota on immune regulation
has been excellently validated by multiple investigations. For
example, one such study demonstrated the ability of
commensal segmented filamentous bacterium (SFB) to induce
CD4+ T cells to produce IL-17 and IL-22 in the lamina propria of
mice. SFB adhered to the Th17 cells and induced inflammation
and production of antimicrobial defensins (77). In the gut, under
normal circumstances, eCB system is regulated by CB1R.
However, both CB1R and CB2R get activated during
inflammation leading to anti-inflammatory cytokine
production that suppresses inflammation and intestinal
damage (78).

The crosstalk between eCB system and gut microbiota has
been established with murine models of obesity where low-grade
inflammation and increased eCB system tone are reported. Obese
mice exhibited higher colonic CB1R colonic mRNA and the
modulation of gut microbiota with the use of prebiotics
reduced this scenario. Moreover, prebiotic treatment alleviated
CB1RmRNA and concentration of AEA in genetically obese mice
explaining the involvement of the gut microbial community on
CB1R and eCB expression. The same study disclosed the
maintenance of intestinal barrier integrity by eCB system (79).
Reduction in the number of TJPs increases the space between
epithelial cells promoting paracellular translocation of microbial
metabolites from the intestinal lumen to circulation and other
organs, and elevated LPS levels impair adipogenesis and promote
inflammation (79). THC administration has been reported to
reduce LPS levels in mice while increasing TJPs. THC mediated
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CBR modulation reduced plasma LPS levels by altering the
distribution and localization of TJPs which led to improved
gut barrier function (65, 70).

Microbial-derived SCFAs, neurotransmitters, and amino acids
take part in the immune, endocrinal, and neuronal signaling
pathways via binding to host receptors (80, 81). Multiple
investigations have validated the potential of AEA and THC to
enhance the levels of SCFAs and AMPs in murine models of
inflammation (64–67). SCFAs are produced in the colon by
fermentation and subsequent degradation of undigested
dietary fibers by gut harboring bacteria and they contribute to
the regulation of both innate and adaptive immunity of the host.
Acetate and propionate, produced by Bacteroidetes, and butyrate,
produced by Firmicutes are the major SCFAs involved in host-
bacterial communications (82). Blocking of histone deacetylases
(HDAC) and activation of GPCRs are two main signaling
pathways modulated by microbial SCFAs (80–82).
Interestingly, GPCRs such as GPR43 and GPR109A are
expressed by adipose tissue macrophages and dendritic cells
(DCs). The binding of SCFAs to these receptors induces K+

efflux and membrane hyperpolarization which in turn stimulates
NLRP3 inflammasome in primed macrophages to produce IL-18
(83, 84). Butyrate-dependent activation of GPR109A induces
apoptosis of colon cancer cells. Furthermore, these receptor/

ligand complexes inhibit nuclear factor-kappaB (NF-κB)
activation in the colon of mice (85). Butyrate enhanced the
function of human TGFβ1 in the intestinal epithelial cells
(IECs) which in turn directed the accumulation of Treg cells
in the lumen, and the study suggested inhibition of HDAC as the
major mechanism behind this activity. Butyrate-induced HDAC
inhibition down-regulated the generation of LPS-triggered pro-
inflammatory cytokines such as IL-6 and IL-12 (86, 87). Another
study demonstrated that butyrate enhanced the expression of
AMPs, LL-37, and CAP-18 by IECs in rabbits (88). In a similar
manner, activation of genes encoding host defense peptides in
HD11 macrophages and monocytes has been observed in
chickens following butyrate consumption (89). Succinate,
another SCFA produced by the gut bacteria, Prevotella copri
was shown to be involved in gut gluconeogenesis and
improved glucose homeostasis (90). Once transported into
circulation, SCFAs exert their effect on distant organs as well.
For example, circulating propionate modified bone marrow
hematopoiesis by increasing levels of macrophages and DCs
precursors. The phagocytic DCs invaded the lung but lacked
Th2 effector cell differentiation ability and controlled
inflammation (91). SCFAs, as evident from numerous studies,
represent the most important connecting link between gut
microbiome and host immune homeostasis.

FIGURE 1 | Cannabinoids and gut microbiota. (A) Cannabinoid mediated microbiome modulation: endogenous or exogenous cannabinoids increase the
beneficial bacteria which produce TJPs that improve gut barrier integrity and AMPs that eliminate pathogens. (B) Immunomodulatory mechanisms of microbial
metabolites: microbiota generated secondary bile acids, SCFAs, and indole metabolites modulate various receptors leading to decreased pro-inflammatory cytokines
and immune suppression. AhR, aryl hydrocarbon receptor; AMP, antimicrobial protein; CBR, cannabinoid receptor; CBs, cannabinoids; CNS, central nervous
system; eCBs, endocannabinoids; FXR, farnesoid X receptor; GPR, G-protein-coupled receptors; HDACs, histone deacetylases; IFN, interferon; IL, interleukin; K,
potassium; TJP, tight junction proteins; T-reg, regulatory T cell.
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Bile acid metabolism is another activity implemented by a
variety of gut microbes harboring the gut. Microbes convert
primary bile acid to secondary and tertiary bile acids via
various mechanisms that include deconjugation of glycine and
taurine by bile salt hydrolase, de-hydroxylation as well as
dehydrogenation and epimerization of cholesterol core (92).
Members of the genera Bifidobacterium, Clostridium, and
Lactobacillus are reported to efficiently metabolize primary bile
acids (92, 93). Secondary bile acid metabolism and prevention of
bile acid production in the liver by activating nuclear receptor
farnesoid X receptor (FXR) in the ileum by gut microbiota
controls liver inflammation. Also, intestinal microbiota
decreases the levels of pro-inflammatory cytokines which are
involved in reducing the transcription of FXR target genes (94).
Proteins and peptides in the diets are digested to free amino acids
as a result of microbial fermentation and major amino acid of
such kind is tryptophan. Tryptophan metabolites are another set
of biologically active metabolites generated by intestinal bacteria
that affect intestinal epithelial barrier integrity as well as the
organogenesis of intestinal lymphoid follicles. Members of the
phylum Firmicutes convert tryptophan to tryptamine and other
indole derivatives (95, 96). A recent study showed that tryptamine
can attenuate neuroinflammation in the murine model of MS
(97). Lactobacillus strains were found to efficiently metabolize
Tryptophan to its derivatives which act as aryl hydrocarbon
receptor (AhR) ligands in the colitis mouse model (98). These
metabolites, mostly indoles, act as AhR agonists and regulate
type-1 IFN signaling in astrocytes leading to suppression of
central nervous system (CNS) inflammation (99). AhR
signaling mediates IL-22 production in the gut by activating
innate lymphoid cell 3 (ILC3) (100). In addition, AhR has
been shown to play a vital role in the development of ILC and
intraepithelial lymphocytes (100, 101). How AhR activation leads
to suppression of inflammation has been the topic of recent
reviews (102, 103). Figure 1 illustrates a summary of cannabinoid
mediated microbiome modulation and the immunomodulatory
mechanism of microbial metabolites.

While most of the studies that we have reviewed above have
shown an association between the administration of
cannabinoids and suppression of inflammation to changes in
the microbiota, one can question whether these studies merely
indicate a relationship between these events or whether the
cannabinoid-mediated alterations in the microbiota are
actually responsible for inducing attenuation of inflammation.
The association between microbial changes seen following
exposure to cannabinoids and the consequent impact of such
changes in immunomodulation can only be proven through fecal
microbiota transplants (FMT).

There is evidence to suggest the role of microbiota on eCB
signaling through use of FMT. Multiple studies reported that
FMT-mediated microbial dysbiosis can modify eCB signaling
(104, 105). One study clearly investigated the impact of FMT
from conventionally raised mice to germ-free mice.
Endocannabinoidome gene expression and lipidomics were
analyzed by transcriptomics and LC-MS/MS before and after
FMT. Age-dependent endocannabinoidome gene expression and

lipid variations in the germ-free mice were reversed following
FMT from age-matched conventionally raised donor mice (106).
In another study, FMT from murine models of EAE disease
treated with THC and CBD, into antibiotics treated, microbe
depleted mice demonstrated that the recipient mice showed
decreased EAE disease severity (70). A similar kind of study
was conducted in a murine model of SEB-mediated ARDS. The
microbiota transplanted from THC-treated ARDS mice into
antibiotic-treated, microbiome-depleted recipient mice showed
better survival fromARDS than those that received FMT from the
control group. FMT from THC-treated groups caused a decrease
in inflammatory CD4+ and CD8+ T cells and an increase in
immune suppressive MDSCs and Tregs in the lungs (65). Such
studies clearly demonstrate that endogenous and exogenous
cannabinoids can promote beneficial microbiota in the gut
that can attenuate inflammatory diseases even in distal organs.

CONCLUSION

The communications among eCB system, immune regulation,
and gut microbiota are intricately interconnected. CBRs agonists/
antagonists have been pre-clinically validated to be useful in the
treatment of metabolic conditions, such as obesity and diabetes as
well as in disease models of colitis and cardiometabolic
malfunctions. Also, well-established is the role of intestinal
microbial community in the onset or progression of these
disorders. The numerous groups of microbial clusters and the
myriad of biologically active metabolites produced by them along
with their receptors trigger extensive signaling pathways that
affect the energy balance and immune homeostasis of the host.
The microbiome-eCB signaling modulation exploiting exo- or
endogenous cannabinoids opens a new avenue of cannabinoid-
gut microbiota-based therapeutics to curb metabolic and
immune-oriented conditions. However, more clinical
investigations are essential to validate this concept.
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GLOSSARY

2-AG 2-arachydonoylglycerol

AEA anandamide

AhR aryl hydrocarbon receptor

AMPs antimicrobial peptides

ARDS acute respiratory distress syndrome

cAMP cyclic adenosine monophosphate

CBD cannabidiol

CNS central nervous system

CBR cannabinoid receptors

DCs dendritic cells

DIO diet-induced obesity

DNMT DNA methyl transferases

DSS dextran sulfate sodium

EAE experimental autoimmune encephalomyelitis

ERK extracellular signal-regulated kinase

FAAH fatty acid amide hydrolase

FAK focal adhesion kinase

FMT fecal microbiota transplants

FXR farnesoid X receptor

GPCRs G-protein-coupled receptors

GI gastrointestinal

HDAC histone deacetylase

IBD inflammatory bowel disease

IECs intestinal epithelial cells

IFN-γ interferon-gamma

IL interleukin

ILC3 innate lymphoid cell 3

LPS lipopolysaccharides

MDSCs myeloid-derived suppressor cells

miRNAs microRNAs

MLN mesenteric lymph node

MS multiple sclerosis

PI3K-PKB/AKT phosphoinositide-3-kinase–protein kinase B/Akt

p38 MAP p38 mitogen-activated protein

PTSD post-traumatic stress disorder

SCFAs short-chain fatty acids

Sc-RNA single-cell RNA

SEB staphylococcal enterotoxin B

SFB segmented filamentous bacterium

TGF-β transforming growth factor β

Th1 T helper 1

Th2 T helper 2

THC δ9-tertrahydrocannabinol

TJPs tight junction proteins

Tregs regulatory T cells

TRPV1 transient receptor potential vanilloid 1

UC ulcerative colitis
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Emerging mechanisms by which
endocannabinoids and their
derivatives modulate bacterial
populations within the gut
microbiome
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Bioactive lipids such as endocannabinoids serve as important modulators of

host health and disease through their effects on various host functions including

central metabolism, gut physiology, and immunity. Furthermore, changes to the

gut microbiome caused by external factors such as diet or by disease

development have been associated with altered endocannabinoid tone and

disease outcomes. These observations suggest the existence of reciprocal

relationships between host lipid signaling networks and bacterial populations

that reside within the gut. Indeed, endocannabinoids and their congeners such

as N-acylethanolamides have been recently shown to alter bacterial growth,

functions, physiology, and behaviors, therefore introducing putative

mechanisms by which these bioactive lipids directly modulate the gut

microbiome. Moreover, these potential interactions add another layer of

complexity to the regulation of host health and disease pathogenesis that

may be mediated by endocannabinoids and their derivatives. This mini

review will summarize recent literature that exemplifies how N-

acylethanolamides and monoacylglycerols including endocannabinoids can

impact bacterial populations in vitro and within the gut microbiome. We also

highlight exciting preclinical studies that have engineered gut bacteria to

synthesize host N-acylethanolamides or their precursors as potential

strategies to treat diseases that are in part driven by aberrant lipid signaling,

including obesity and inflammatory bowel diseases.

KEYWORDS
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Introduction

Host-associated microbial communities and their functional capabilities, collectively

referred to as the host microbiome, play integral roles in modulating the health of their

hosts and susceptibility to disease. Germ-free experimental models have elegantly

demonstrated the dramatic consequences that result from the absence of microbes on
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host development, metabolism, anatomy, physiology, and

behavior. The clear impacts of endogenous microbes on host

biology have been further substantiated by gnotobiology, where

the introduction of known populations or communities of

microbes into germ-free animals promotes defined host

responses and health outcomes [1]. Powerful ‘omics

approaches such as 16S rRNA sequencing, metagenomics,

metatranscriptomics, and metabolomics have been

instrumental in correlating specific compositional and

functional changes to the host microbiome with certain

disease states. These studies have further inspired hypothesis-

driven investigations aimed at defining the microbial functions

and interactions that contribute to disease pathogenesis. Taken

together, studies within the microbiome field have unequivocally

demonstrated the importance of these complex and fascinating

microbial communities to host biology.

In recent decades, the endocannabinoid system has emerged

as an important modulator of gut physiology and homeostasis

through its effects on immunity, motility, barrier function, and

host metabolism [2]. The endocannabinoid system is comprised

of G-protein coupled receptors that are activated by endogenous

lipid hormones known as endocannabinoids [3]. The two most

well-studied endocannabinoids are 2-arachidonoyl glycerol (2-

AG) and arachidonoyl ethanolamide (AEA)—commonly

referred to as anandamide [4, 5]. The structure of 2-AG is a

monoacylglycerol (MAG) comprised of an arachidonic acid

moiety esterified to a glycerol backbone. AEA is an N-acyl

ethanolamide (NAE) comprised of an arachidonic acid moiety

esterified to an ethanolamine backbone. NAEs and MAGs of

other acyl lengths and saturation states are also produced by the

host including 2-palmitoyl glycerol (2-PG), 2-oleoyl glycerol (2-

OG), palmitoyl ethanolamide (PEA), and oleoyl ethanolamide

(OEA) [6]. These compounds also act as bioactive lipids that

regulate diverse host functions. This mini review will discuss how

these two classes of bioactive lipids may also impact the growth

and functions of bacteria within the host microbiome, thus

expanding the potential effects of these lipids on host physiology.

Endocannabinoid activity is modulated by biosynthetic and

degradative enzymes that alter tissue concentrations of these

hormones, which function as ligands at cannabinoid receptors

through which they exert their physiological effects [7]. Tissue

expression profiles of cannabinoids receptors and these

biosynthetic and degradative enzymes also impact

endocannabinoid tone. Numerous factors have been linked

with altered endocannabinoid tone such as diet, stress, and

inflammation status [8–12], although the precise molecular

mechanisms remain to be elucidated. The gut microbiome is

an additional factor that may modulate the endocannabinoid

system [13]. Compositional changes to the gut microbiome

triggered by dietary interventions or antibiotic treatment

correlate with differential expression of endocannabinoid

system components and altered profiles of bioactive lipids in

the blood stream and in intestinal tissues [14–17]. Moreover,

endocannabinoid tone in intestinal tissues is significantly altered

in germ free mice compared to conventional mice colonized with

a microbiome, suggesting that microbes somehow impact the

degradation and/or biosynthesis of NAEs and MAGs [18, 19].

Conversely, pharmacological and genetic interventions that alter

host endocannabinoid activity is correlated with an altered gut

microbiome [20–27]. Together, these findings suggest that

incompletely defined reciprocal relationships exist between the

host endocannabinoid system and the gut microbiome.

Moreover, the effects of these relationships on host health and

susceptibility to disease remain to be fully elucidated.

More recently, experimental evidence has emerged

demonstrating that endocannabinoids and their congeners can

modulate bacterial functions, physiology, and behaviors

(Figure 1). These findings introduce the exciting possibility

that these host lipid hormones may directly modulate

bacterial populations within host-associated microbial

communities such as the gut microbiome. The mini review

will summarize literature that exemplifies how

endocannabinoids and their derivatives impact bacterial

populations in vitro and within rodent models. This mini

review will also highlight a collection of preclinical studies

that have designed genetically engineered bacteria to modulate

host NAE levels to treat metabolic and inflammatory diseases.

Included research articles were located using the following search

terms in the PubMed database: endocannabinoid + bacteria;

endocannabinoid + gut microbiome; N-acylethanolamide +

bacteria; 2-arachidonoyl glycerol + bacteria; anadamide +

bacteria. The mechanisms by which the gut microbiome

modulates the host endocannabinoid system and the

consequent effects on disease development have been reviewed

in a companion article for this special issue [24].

Effects on bacterial growth and
metabolism

Numerous studies have correlated compositional changes to

the gut microbiome with altered host endocannabinoid tone

[20–27]. These ecological changes to the microbial community

are likely driven by multiple factors including the indirect effects

of host cannabinoid signaling on the gut environment and the

direct effects of endocannabinoids on endogenous bacteria.

Untargeted metabolomics and metagenomics analyses on fecal

samples collected from an IBD patient cohort revealed that NAEs

including the endocannabinoid AEA were increased in Crohn’s

disease patients relative to ulcerative colitis patients and non-IBD

controls [28, 29]. Further experimentation in a murine T-cell

transfer colitis model revealed that NAEs are also increased

following induction of disease relative to the pre-colitic state

[28]. The increased concentrations of luminal NAEs in the

inflamed gut corresponded with community-wide changes in

the relative abundances of diverse bacterial taxa [28, 29]. These
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observations prompted the authors to test whether NAEs directly

modulate the growth kinetics of gut bacteria [28]. In vitromono-

cultures revealed that NAEs—in particular, OEA and linoleoyl

ethanolamine (LEA)—enhanced the growth rates and population

densities of several bacterial taxa that are elevated in Crohn’s

disease patients, including Escherichia coli, Lactobacillus gasseri,

and Ruminococcus gnavus [28]. In contrast, NAEs generally

exerted growth inhibitory effects on bacterial taxa depleted in

Crohn’s disease patients, including Streptococcus salivarius,

Ruminococcus lactaris, and Alistipes shahii [28]. In a separate

collection of studies that sought to investigate the antimicrobial

properties of AEA on clinical Staphylococcus aureus isolates,

AEA exerted bacteriostatic effects on strains grown

planktonically and within biofilms [30, 31]. Further analyses

via scanning electron microscopy revealed that AEA arrested S.

aureus replication during late-stage cell division, resulting in

larger cells with fully formed septa [30]. Notably, all studies

reported strain level variations when evaluating the effects of

NAEs on bacterial growth [28, 30–32], therefore suggesting that

bacterial strains harbor distinct capabilities in responding to

NAEs within their environments.

To evaluate the effects of NAEs on bacterial populations

residing within complex microbial communities, Fornelos et al.

introduced various combinations of NAEs into an in vitromodel

of the gut microbiota [28], which eliminates any effects of NAEs

on the host that may also alter the microbial community. The

addition of NAEs to the chemostat cultures altered community

composition within 12 h. This was characterized by an increase

in several taxa including Escherichia, Enterococcus, and

Veillonella species and the depletion of several taxa including

Bacteroides, Allistipes, Ruminococcus, and Clostridium species.

Notably, several of these compositional changes recapitulated

putative pathological features of the gut microbiome in Crohn’s

disease patients [28, 29, 33, 34]. Together, these findings support

the idea that changes in NAE availability within the intestinal

lumen during inflammation may promote and/or sustain the

ecological changes that drive microbiome dysfunction. To our

knowledge, similar studies focused on MAGs have not yet been

published. Considering that altered gut endocannabinoid tone

and microbiome dysfunction are both associated with numerous

disease states including obesity, cardiovascular diseases,

metabolic dysfunction, and neurological diseases [14, 24,

35–39], it will be interesting to learn whether the direct effects

of NAEs and other endocannabinoid-like molecules on bacterial

growth contribute to the pathogenesis of these complex diseases.

The chemical structures of NAEs and MAGs contain

potential bacterial nutrients (i.e., long-chain fatty

acids—LCFAs, ethanolamine, glycerol) and antimicrobial

agents (i.e., LCFAs). This introduces the possibility that NAEs

andMAGsmay be hydrolyzed into their constituent components

to exert their growth inducing or inhibitory effects. In support of

this hypothesis, functional bacterial lipases with structural

homology to mammalian monoacylglycerol lipases have been

reported in environmental bacteria and in Mycobacterium

species [40–44]. Similarly, Pseudomonas aeruginosa encodes

an ABHD6-like lipase that can hydrolyze MAGs [45].

FIGURE 1
Endocannabinoids and their derivatives directly modulate bacterial populations. Schematic summarizing the mechanisms by which
endocannabinoids and their derivatives or breakdown products can influence the growth, physiology, and function of endogenous bacteria within
the microbiome.
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Together, these findings demonstrate the potential for bacterial

metabolism of endocannabinoids and their congeners within the

gut microbiome. In an in vitro chemostat model of the gut

microbiota, metatranscriptomics analyses revealed that NAEs

significantly alter the community transcriptome, which notably

included the differential expression of genes involved in LCFA

and ethanolamine metabolism [28]. These transcriptional

responses suggest that NAEs may be metabolized by certain

members within the bacterial community to liberate free LCFAs

and ethanolamine. These nutrients may then be consumed by

other bacterial taxa, thus exemplifying a putative cooperative

interspecific interaction driven by NAE metabolism.

In contrast, transcriptomics studies performed with the gut

bacterium Bacteroides fragilis cultivated in vitro in monocultures

revealed that exposure to LEA and AEA induced the

upregulation of efflux pumps and the downregulation of the

LCFA transporter FadL [28]. Notably, both NAEs inhibited B.

fragilis growth, suggesting that this bacterium may respond to

NAEs by limiting their import and increasing their export to

counteract their toxic effects. Notably, free linoleic acid and

arachidonic acid can both exert growth inhibitory effects on

various bacterial taxa [46, 47]. This introduces the possibility that

NAE hydrolysis within the gut microbiome may also be

disadvantageous for bacteria that are susceptible to these poly-

unsaturated fatty acids.

To summarize, the few studies that have evaluated the effects

of endocannabinoids and their congeners on bacterial growth

have demonstrated that their effects on microbial ecology are

likely complex. Further studies are clearly needed to investigate

howNAEs andMAGs impact the growth of bacterial populations

within a complex community, both in vitro and within a host.

Moreover, it will be interesting to investigate how the effects of

these bioactive lipids on microbial ecology ultimately modulates

host physiology and susceptibility to disease.

Effects on bacterial physiology and
multi-cellular behaviors

The cellularmembranes of host-associated bacteria are generally

composed of phosphatidylglycerol (PG), phosphatidylethanolamine

(PE), and cardiolipin as the major phospholipid species [48]. The

fatty acids that are esterified to these phospholipids vary between

bacterial strains, but usually range between 14 and 18 carbons and

are typically in saturated or mono-unsaturated states.

Environmental conditions including stressors that alter

membrane function and exogenous lipid availability can modify

the relative abundances of specific phospholipids and their fatty acid

content within cellular membranes [49, 50]. These structural

changes to the membrane can then impact several bacterial

functions that including growth, susceptibility to extracellular

stressors, and biofilm formation—all of which can subsequently

influence host-microbial interactions.

In vitro studies performed on bacterial monocultures have

demonstrated that host-derived fluids rich in LCFAs—such as

bile and serum—impact acyl-LCFA content within bacterial

membranes [51–53]. For example, when grown in a nutrient

rich medium, the Enterococcus faecalis membrane is dominated

by vaccenic acid, which comprises approximately 40% of all fatty

acid species present [52]. However, when bile is supplemented

into this same medium, the percentage of vaccenic acid decreases

to about 3%. This corresponds with significant increases in

several LCFA species present within the bile including

palmitic acid, oleic acid, and stearic acid [52]. These

observations suggest that LCFAs within bile are imported by

E. faecalis and incorporated into phospholipids during

membrane biosynthesis. Indeed, when supplied individually,

each LCFA dominates fatty acid content within the membrane

[52, 54, 55] Similarly, the membrane lipid profile of the

nosocomial pathogen Acinetobacter baumannii is significantly

altered following recovery from pleural lavage fluid in the lungs

compared to growth in standard laboratory media [56]. In

particular, A. baumannii growth within the lungs corresponds

with an increase in polyunsaturated LCFA content within

membrane PEs. Notably, de novo synthesis of polyunsaturated

LCFAs was not detected following in vitro cultivation in LCFA-

free media, suggesting that A. baumannii utilizes host-derived

PUFAs for membrane biosynthesis during in vivo growth.

Supporting this hypothesis, genetic inactivation of the main

exogenous LCFA transporter FadL conferred a growth defect

in A. baumannii within several host microenvironments [56].

Notably, studies performed in diverse bacterial taxa—including

Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa,

Klebsiella pneumonia, and Lactobacillus species—have

demonstrated that exogenous LCFA availability influences

membrane structure [54, 55, 57–65]. Taken together, these

studies clearly demonstrate that LCFAs within host

environments can be utilized by bacterial organisms to modify

their membrane structures, which in turn may impact host-

microbial interactions.

The molecular structure of endocannabinoids and their

congeners include an LCFA moiety, and therefore, it is

conceivable that these molecules may also impact bacterial

membrane physiology and function. In a recent collection of

studies, the authors demonstrated that exposure to the

endocannabinoid AEA alters lipid content, fluidity,

bioenergetics, and permeability of the cytoplasmic membrane

in clinical Staphylococcus aureus isolates [30–32, 66]. AEA

exposure corresponded with increased cardiolipin content

within the S. aureus membrane [30]. Cardiolipins can form

microdomains within bacterial membranes, which in turn can

impact the functionality of membrane proteins such as

transporters [48]. The addition of AEA to in vitro cultures

also resulted in decreased efflux of various toxic compounds,

including antibiotics, from S. aureus cells [30, 31]. These

observations corresponded with lower membrane potential,
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decreased membrane ATPase activity, and increased cardiolipin

content, all of which can modulate the functionality of efflux

pumps. Decreased efflux associated with AEA also corresponded

with the differential expression of various efflux pump genes,

which may also contribute to this response [31]. AEA also

sensitized clinical S. aureus isolates to various antibiotics

including beta-lactams, gentamicin, tetracycline, and

fluoroquinolones through a mechanism that likely involves

compromising efflux pump function [30–32]. The addition of

AEA and LEA to in vitro cultures also modulated the expression

of efflux genes in B. fragilis [28]. Together, these studies

demonstrate that AEA impacts several compositional and

functional aspects of the bacterial cellular membrane.

Outstanding questions include whether other NAEs impart

similar effects on S. aureus growth and membrane function.

More broadly, it will be interesting to investigate the effects of

NAEs and MAGs on membrane composition and function in

other bacterial taxa present within host associated microbial

communities and whether these alterations in bacterial

physiology impact host disease development.

Within host environments, commensal bacteria and

invading pathogens can grow within multicellular structures

such as cellular aggregates and biofilms. The formation of

these structures involves the biosynthesis and export of

components that comprise the eventual extracellular matrix,

which serves to adhere bacterial cells together while also

acting as a thick protective barrier against environmental

insults including the host immune response and

antimicrobials. Recent studies have demonstrated that NAEs

can exert anti-biofilm effects against S. aureus and the oral

commensal bacterium Streptococcus mutans [30–32, 66, 67].

AEA and arachidonoyl serine both synergized with several

types of antimicrobial agents to inhibit biofilm formation in

clinical S. aureus isolates [30–32]. When supplied individually,

both compounds inhibited several S. aureus behaviors associated

with enhanced biofilm formation including surface motility and

cell-to-cell aggregation [66]. AEA also altered the gene

expression of several biofilm-associated genes and decreased

extracellular matrix production in S. aureus [31]. Notably,

efflux pumps can contribute to biofilm formation by exporting

components needed to construct the extracellular matrix.

Therefore, it is possible that the inhibitory effects of AEA on

efflux pumps as described above may also explain its anti-biofilm

effects in S. aureus. In S. mutans, exposure to either OEA or AEA

exacerbated the anti-biofilm effects of the antimicrobial

compound poly-L-lysine [67]. In contrast, the NAEs PEA and

stearoylethanolamide (SEA) did not impact S. mutans biofilm

formation, therefore suggesting that this inhibitory effect is

unique to NAEs with a monounsaturated LCFA moiety.

Taken together, in addition to their effects on membrane

physiology, NAEs can also antagonize bacterial behaviors that

lead to the formation of biofilms and other multi-cellular

structures. Future studies are warranted to investigate how

NAEs and other endocannabinoid-like molecules modulate

these behaviors within host environments.

Effects on bacterial signaling

Bioactive lipids function as signaling molecules that are

sensed by bacterial organisms to elicit a particular cellular

response. Nutrients such as sugars, amino acids, and fatty

acids are also sensed by membrane-bound and intracellular

receptors that couple nutrient availability with the

transcriptional regulation of metabolic pathways and other

functions. Bacterial sensing of these environmental cues plays

a central role in bacterial pathogenesis and in host-microbial

interactions within the gut [68].

A collection of studies over the past decade have

demonstrated that free LCFAs act as both nutrients and

signals that can modulate a variety of bacterial

functions—recently reviewed here [47, 69, 70]. More recently,

the endocannabinoid 2-AG was shown to function as a host-

derived hormone that is directly sensed by several gut bacterial

pathogens including Citrobacter rodentium and

enterohemorrhagic E. coli (EHEC) [71]. In vitro functional

and biochemical approaches revealed that 2-AG inhibits the

membrane-bound bacterial receptor QseC, which functions to

stimulate intracellular signaling cascades that activate virulence

programs in response to the catecholamines epinephrine and

norepinephrine and to the quorum sensing hormone

autoinducer-3 [71–75]. In a mouse model of intestinal

infection, Magl-deficient mice with elevated levels of 2-AG

developed attenuated disease in response to C. rodentium

challenge [71]. These protective effects were no longer

observed when Magl-deficient mice were challenged with

qseC-deficient C. rodentium, suggesting that 2-AG exerts its

anti-virulence effects in the gut by inhibiting QseC-dependent

virulence. Interestingly, free arachidonic acid—a product

released following 2-AG hydrolysis—also exerts anti-virulence

effects on EHEC [76]. When imported into EHEC, arachidonic

acid is esterified to coenzyme A and then allosterically inhibits

the lipid-responsive transcription factor FadR, which in turn

represses the expression of virulence genes [76, 77]. Notably,

QseC and FadR homologues are present in other bacterial

pathogens and commensals [78–81], which introduces the

possibility that endocannabinoids and their derivatives may

directly modulate the behaviors of many other bacterial

organisms.

Engineering bacteria to modulate
host lipid signaling

The first three sections of this mini review summarized

experimental evidence that demonstrates how bioactive lipids
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may directly modulate bacterial populations. Many bacterial taxa

within the gut microbiome are currently genetically tractable,

therefore introducing the possibility of designing probiotics that

specifically target these lipid signaling networks. This last section

will summarize two collections of studies that apply this concept

to diseases that are in part driven by aberrant NAE

signaling—obesity and inflammatory bowel diseases.

Certain NAE species and their N-acyl-

phosphatidylethanolamine (NAPE) precursors function as

satiety signals that are synthesized in the small intestines to

regulate host feeding behaviors [82–84]. In rodent models,

chronic administration of exogenous NAEs exerts various

anorexigenic effects including decreased food consumption

and improved host metabolic parameters in rodent models

[85]. In one collection of studies, the probiotic E. coli strain

Nissle was engineered to synthesize and secrete NAEs or their

N-acyl-phosphatidylethanolamine (NAPE) precursors as a

novel therapeutic strategy to treat obesity [86–89]. Chronic

administration of NAPE-producing Nissle resulted in

decreased weight gain and adiposity in diet-induced and

genetic obesity models in a NAPE-PLD dependent manner

and in a cardiometabolic disease model [86, 88, 89]. These

results corresponded with increased hepatic NAE levels,

decreased lipid accumulation and inflammation markers in

the liver, and improved metabolic parameters such as glucose

tolerance and insulin sensitivity [88]. Similar anti-obesogenic

effects were observed with the NAE-producing Nissle

strain [89].

In addition to their effects on central host metabolism,

certain NAE species such as PEA also exhibit anti-

inflammatory properties in experimental colitis models

through incompletely defined mechanisms [90–96]. As a

strategy to augment local levels of PEA, a second group

genetically engineered the probiotic Lactobacillus paracasei

substrain Paracasei F19 to synthesize and secrete PEA when

the strain was supplied exogenous palmitic acid [97]. Using a

chemically induced model of colitis, the authors demonstrated

that co-administration of the PEA-producing L. paracasei with

palmitate significantly increased intestinal concentrations of PEA

and resulted in attenuated colitis development. These protective

effects were no longer apparent in mice lacking the PEA receptor

PPAR-alpha. In a follow-up study, the authors also demonstrated

that this PEA-producing probiotic protected against colitis

development induced by the TcdA toxin from Clostridioides

difficile in a PPAR-alpha dependent manner [98].

Taken together, these studies demonstrate how intestinal

probiotic strains can serve as bacterial platforms for delivering

NAEs or their precursors to host tissues to treat metabolic and

inflammation driven diseases that are characterized by low NAE

tone. Because endogenous bacteria within the microbiome likely

also synthesize and metabolize NAEs [28, 99], it will be

interesting to investigate whether the endogenous microbial

production of these bioactive lipids also serve as inputs into

host lipid signaling networks, which in turn may also impact the

disease development.

Discussion

This mini review has highlighted the numerous ways in

which endocannabinoids and their derivatives directly impact

bacterial growth, physiology, and behaviors (Figure 1). These

effects have primarily been investigated using in vitro single

bacterial populations, rather than within polymicrobial

communities and/or host environments. Bacterial growth and

behaviors are substantially different within host environments

and complex microbial community in comparison to in vitro

conditions. Therefore, future studies are warranted to investigate

how these bioactive lipids impact bacteria populations within the

gut microbiome in animal models to evaluate whether the effects

observe in vitro also occur in vivo. Approaches to address this

question could include microbial sequencing, metabolomics,

bacterial and mouse genetics, and gnotobiology. The

application of these approaches to established animal models

of disease would also begin to address how the regulation of

bacterial growth and behaviors by these bioactive lipids may

impact disease pathogenesis and susceptibility. Finally, while not

the focus of this mini review, it is important to acknowledge that

endocannabinoid activity also impacts the function of host cell

populations within the intestines, which in turn canmodulate gut

physiology and microbiome function. However, it remains

unclear how the distinct effects of endocannabinoid activity

on host tissues and microbial populations, and on the

reciprocal interactions between host and microbe, together

ultimately impact the establishment and maintenance of gut

homeostasis and the development of disease. This represents

an additional exciting avenue of research highly worth exploring.
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Drug abuse and related disorders are a global public health crisis affecting

millions, but to date, limited treatment options are available. Abused drugs

include but are not limited to opioids, cocaine, nicotine, methamphetamine,

and alcohol. Drug abuse and human immunodeficiency virus-1/acquired

immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive

research has been done to understand the effect of prolonged drug use on

neuronal signaling networks and gut microbiota. Recently, there has been rising

interest in exploring the interactions between the central nervous system and

the gut microbiome. This review summarizes the existing research that points

toward the potential role of the gut microbiome in the pathogenesis of HIV-1-

linked drug abuse and subsequent neuroinflammation and neurodegenerative

disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse

in the context of HIV-1 has been discussed in detail, alongwith its implications in

various neurodegenerative disorders. Understanding this interplay will help

elucidate the etiology and progression of drug abuse-induced

neurodegenerative disorders. This will consequently be beneficial in

developing possible interventions and therapeutic options for these drug

abuse-related disorders.

KEYWORDS

microbiome, drug abuse, neuroinflammation, HIV-1, gut-brain axis

Introduction

Drug abuse is a significant global problem prevalent in those infected with Human

Immunodeficiency Virus-1 (HIV-1). The most commonly abused drugs in HIV-1 infected

individuals are opioids, alcohol, cocaine, cannabis, methamphetamine (Meth), and

nicotine. Among all the drugs used, opioid abuse is a growing problem since opioids

are often the mainstay of pain management in infected individuals. While these drugs

effectively control the pain associated with HIV-1, their long-term use is associated with

addiction, tolerance, and neurocognitive impairment, adding to the burden of behavioral

deficits in HIV-1-infected individuals. When HIV-1-affected individuals use morphine, it

may cause a loss of functional connectivity between the amygdala and the frontal cortex of

the brain, insula, and striatum leading to neurodegenerative effects (1). Alcohol
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consumption in the form of ethanol is both toxic and has

metabolic and addictive effects on the brain, accumulating over

time with age, dose, and duration of exposure. Severe debilitating

diseases of the central nervous system (CNS) and the peripheral

nervous system are known to manifest due to alcohol

consumption. For example, it is well established that prenatal

alcohol exposure paves the way for lifelong behavioral, cognitive,

and psychological problems, which account for a range of

cognitive dysfunctions referred to as fetal alcohol spectrum

disorders (2). Prolonged heavy alcohol abuse has been shown

to lead to neurodegeneration and proportionate loss of cerebral

white matter. The affected regions in chronic alcohol-related

metabolic injury and degeneration include the cerebellum

(especially the vermis), cortical-limbic circuits, skeletal muscle,

and peripheral nerves (3). Specifically, alcohol impairs neuronal

and glial cell functionality (3). Also, alcohol exerts prolonged

effects at the cellular and systemic levels of the neurological

networks, leading to neurodegeneration. Excess alcohol

exposure is associated with specific diseases such as dementias,

ataxias, and Niemann-Pick disease (4). Both excess and heavy

alcohol consumption contribute to the development of

neurodegenerative diseases, such as amyotrophic lateral

sclerosis (ALS) and Alzheimer’s disease (AD). The brain is a

major organ of alcohol accumulation, and this is linked to brain

damage. Long-term alcohol abuse increases glutamate

excitotoxicity and oxidative stress, resulting in neuronal

damage (5). Besides alcohol, psychostimulants like cocaine,

amphetamines, and nicotine have also been implicated in

disruption of blood-brain-barrier (BBB), neural plasticity, and

neuroinflammation (6, 7). There are case reports suggesting the

association of cocaine overuse with accelerated neurodegeneration

exhibiting symptoms similar to that found in Parkinson’s disease

(8). It has also been shown that iron metabolism regulation and

storage lead to dopamine accumulation in cocaine-abusing

individuals, resulting in neuroadaptive changes in the basal

ganglia (9). Other than genetic events, epigenetic events also

play a major role in neurodegeneration mediated by abuse of

substances such as cocaine and Meth, as well as opioids.

Epigenetic changes are established by classical pathways,

including the class III histone deacetylase-sirtuin family

modifications by the stimulatory effects of drugs in the form of

psychostimulants (10). Drugs of abuse have also been extensively

reported to cause dysbiosis of the gut microbiome and, there is

significant amount of evidence that links the dysbiotic gut

microbiome to mental health and neurodegeneration (11-14).

In this review, we summarize existing research, including

preclinical and clinical studies about correlation between HIV-

1-linked drug abuse and the intestinal microbiota, and the

potential role of the resultant dysbiotic gut microbiome in the

pathogenesis of neurodegenerative disorders (Figure 1).

FIGURE 1
Schematic depicting the gut microbiome dysbiosis and its effects on the gut-brain axis in the context of HIV-1 and drug abuse.
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Gut microbiome and the gut-brain
axis

The gut microbiome comprises a highly diverse repertoire of

trillions of microbes that dwell in the gut linings and has been

identified as a marker associated with various disease conditions.

There is a standard composition of microbes in the gut for the

metabolism and energy assimilation of the body. Several

environmental, nutritional and genetic factors influence the

multiplication of gut microorganisms and their compositional

modifications (15). The human gut microbiome consists of

various microbes that are beneficial to the body for

metabolism and involved in a communication pathway to the

CNS via the bidirectional “microbiota-gut-brain axis,”which was

initially termed the “gut-brain axis.” In the 1960s, the brain was

thought to control gut function which served as the basis for

coining the term “gut-brain axis.” Later, bidirectional

interactions between the gut microbiota and the CNS was

discovered and was defined as the “microbiota-gut-brain axis

(16-19). Recent findings implicate the role of the gut-brain axis in

regulating behavior and responses to drugs and, thus,

underpinning its role in reward and satiety (20-22). The vagus

nerve physically connects the gut and the brain through an

interplay of neurotransmitters and metabolites (23-26). The

existence of specific microbes in the gut is known to regulate

both the immune system (27-30) and inflammation (31-34).

Both preclinical and clinical studies have demonstrated a pivotal

role of the gut microbiota in brain functioning (35), mood (36),

and behavior (37, 38). Gut microbiota regulates the

differentiation and function of immune cells of the intestine,

periphery, and brain (39-41). Growing evidence also points to the

critical role of the gut microbiota and the immune system in

regulating the pathogenesis of neurodevelopmental and

neurodegenerative diseases (12).

There is an altered influx and efflux of microbial metabolites

and immune mediators between the gut and brain, leading to

impaired neurotransmission and the advent of many

neuropsychiatric and neurological disorders (42). Microbiome

changes, termed dysbiosis, result in acute and chronic stages of

several diseases, such as depression (43). Further, dysfunctional

glutamate neurotransmission is involved in the D-glutamate

signaling pathway observed in AD models in which the gut

microbiome metabolized D-glutamate influences the glutamate

N-methyl-D-aspartate receptors and cognitive function in

dementia patients (44). The gut microbiota has also been

linked to the development of schizophrenia (42). The “gut-

brain axis” encompasses several key signaling pathways. The

immune system, the vagus nerve, or microbiota-modulating

neuroactive compounds may drive these pathways. Existing

literature also points toward the fact that bacteria present in

the gut microbiome are responsible for the production and

consumption of several mammalian neurotransmitters, such as

dopamine, serotonin, norepinephrine, or gamma-aminobutyric

acid (GABA). Reports suggest that, on the one hand, any change

in the levels of these neurotransmitters by bacteria could impact

host physiology, while on the other hand, any form of

microbiota-based interventions could also alter

neurotransmitter levels (45). A prime example of this

regulation is the impact of the gut microbiome on tryptophan

metabolism and the serotonergic system (46). In such a scenario,

the interaction between gut microbes with drugs of abuse is

complex since gut microbes can directly impact the response of

an individual to a specific drug by enzymatically modifying the

structure of the drug and, in turn, affecting its availability,

activity, or toxicity in the system. The drugs of abuse can also

influence the microbiome composition (47-51).

Drug abuse and gut microbiome

Recent evidence implicates the gut-brain axis in the

regulation of not only behavior but also a response to drugs

in terms of reward and satiety. The vagus nerve connects the gut

and brain, but several metabolites, hormones, and

neurotransmitters regulate this connection. Such an influence

of gut microbes on brain functions has been supported by studies

in both preclinical and clinical models (52). During drug abuse,

the gut-brain axis is disrupted, leading to modifications in the

normal microbiota composition and dysregulated expression of

neurotransmitters, bile acids, and metabolites, such as short-

chain fatty acids (SCFA). Alterations in SCFA levels mediate tight

junction dysfunction resulting in aberrant permeability of the gut

epithelium, which can activate a wide range of proinflammatory

signaling pathways (53). The hypothalamic-pituitary axis is

linked to this inflammation in the gut, which subsequently

sends feedback to the CNS, resulting in pain, stress, and

anxiety (52). Herein, we discuss the role of the microbiota-

gut-brain communication in the context of drug abuse in

people living with HIV-1 (PLWH).

Opioids and HIV

Opioids comprise a large class of compounds with different

mechanisms of action and include heroin, morphine, oxycodone,

fentanyl, methadone, buprenorphine, and nalorphine, among

several others (54). Opioid receptors are widely distributed in the

central and peripheral nervous systems and the digestive tract

(55, 56). Prescription opioid drugs are used to treat moderate to

severe chronic pain. Recently, the use of various opioid drugs and

their abuse, which can lead to tolerance and dependence, has

become a severe public health issue (57). According to the

Centers for Disease Control and Prevention, out of the

92000 people who died from a drug overdose in 2020, 75%

were due to prescription or illicit opioid use (58).Most studies on

the gut-brain axis and opioid abuse are based on the exogenous
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opioid compound morphine. Severe constipation is a primary

physiological manifestation of chronic morphine use and has

been linked to disruption of the gut epithelium and microbial

dysbiosis (59). Animal models commonly used to study the

pathways involved in the interaction between the host-gut

microbiome and opioid drugs involve rodents, particularly

mice and rats, primarily for economic reasons. However,

recent studies have also focused on non-human primates

(NHPs) as they are both physiologically and genetically closer

to humans (60). The major outcome of these studies is a gut

microbial imbalance or dysbiosis due to opioid use. Preclinical

animal studies show that morphine exposure increases the

abundance of pathogenic bacteria (Flavobacterium,

Enterococcus, Fusobacterium, Sutterella, Clostridium,

Rikenellaceae, and Ruminococcus). Once tolerance is

developed, it causes a significant decrease in the quantities of

beneficial bacteria (Lactobacillus and Bifidobacterium) (59, 61). It

is difficult to extrapolate the data from the rodent preclinical

models to the effect of morphine on human microbiota due to

several factors such as genetic background, geographical setting,

and lifestyle (60, 62). Human clinical studies also display

variations in the presence of Bacteroidetes, Firmicutes, and

Actinobacteria phylum of microbiota, consistent with rodent

studies. However, there are only a limited number of studies

utilizing NHPs to comment on any close association between the

effect of opioids on gut microbiota in humans and that of NHPs.

It has been reported that opioid-induced gut dysbiosis, which

causes structural changes in the gut epithelium, is responsible for

tolerance and withdrawal behaviors. Disruption of the gut

epithelium, in turn, allows bacteria and their toxic products to

enter the host circulatory system, subsequently activating several

inflammatory pathways and neuroinflammation. Withdrawal

and tolerance linked to chronic opioid use have been related

to this neuroinflammation (61, 63). The integrity of the gut

epithelium depends on several factors, like the disruption of tigh-

junction (TJ) organization and the restoration of the depleted

epithelial layer by intestinal stem cells. The toll-like receptor

(TLR) signaling is responsible for regulating intestinal TJ protein

(TJP) organization. It has also been reported that morphine can

disrupt the arrangement of the TJPs via modulation of myosin

light chain kinase signaling (MLCK) in a TLR-dependent

manner (64).

Opioid-induced microbial dysbiosis is responsible for

continuous immune activation leading to HIV-1 disease

progression. Several studies report that opioid addicts are at a

greater risk of HIV-1 infection (65). Several factors, including the

usage of contaminated needles and the nutritional status of the

infected individual, could likely play a role in the heightened

susceptibility of opioid abusers to HIV-1 infection. However,

reports indicate that opioid use alone can also increase the risk of

HIV-1 infection (66). There is ample evidence suggesting that

HIV-1 infection disrupts the structure and function of the gut

epithelium, leading to AIDS progression. Reports suggest that

HIV-1 modulates tight junctions by disrupting CD4+ T cells,

which are responsible for maintaining tight junctions (67). HIV-

1 proteins such as Tat (transactivator of transcription) and

gp120 have also been reported to disrupt tight junctions on

epithelial cells in culture (68). Studies also report that simian

immunodeficiency virus (SIV) infection results in early

upregulation of proinflammatory cytokine IL-1β in the colon

of the rhesus macaques (69) as well as in the intestine of HIV-1-

infected patients (70), which, in turn, could activate the MLCK,

resulting in mucosal damage. SIV-infected African green

monkeys exhibit an accelerated depletion of CD4+ T cells in

the intestine (71). An identical phenomenon is found in HIV-1-

infected humans and SIV-infected rhesus macaques, suggesting

that microbial translocation through the disrupted gut

epithelium affects SIV disease progression.

Opioid users have been reported to display rapid HIV-1

disease progression while demonstrating severe long-term effects

such as neurocognitive disorders (72). Certain opioid abusers

infected with HIV-1 show elevated levels of lipopolysaccharide

(LPS) in their serum compared to non-users, thus underscoring

that disruption of the gut epithelium is more acute in HIV-1

patients who use opioid drugs (73). Preclinical and clinical

studies done in HIV-1-infected patients indicate that

morphine-mediated disruption of intestinal tight junctions

involves activation of MLCK. This has also been validated in

rodent models where combination of opioids and HIV-1

infection either synergistically and/or additively activate

MLCK, leading to increased gut epithelium permeability,

which is observed in HIV-1-infected patients misusing opioids

(74). Opioids have also been reported to promote HIV-1 disease

progression by disrupting the intestinal epithelial self-repair

mechanism and reducing epithelial proliferation in bone

marrow-liver-thymus humanized mice and in opioid-using

HIV-1+ patients (75). Cumulatively these studies underscore

the pivotal role of gut microbiota in the disease progression of

HIV-1 infection while also demonstrating that opioid abuse by

HIV-1 patients can lead to severe disruption of gut homeostasis,

resulting in an accelerated progression of the disease in

comparison to drug naïve, infected individuals.

Cannabis and HIV

Despite controlling the HIV-1 viral load with combined

antiretroviral therapy (cART), gut epithelium defects and

intestinal CD4+ cell depletion continue to persist. In HIV-1

infected patients compromised gut barrier function is aided by

the increase in apoptosis, and chronic inflammatory signals on

the one hand and the decrease in proliferation and repair of

epithelial cells, on the other hand. Alterations in tryptophan

metabolism leading to defects in microbes that produce butyrate

in PLWH and likely contribute to increased gut permeability

have been reported (76-78). A dysfunctional gut epithelium
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allows inflammatory microbial products such as LPS in the

periphery to be translocated (79-82). In particular, defects in

the gut epithelium make HIV-1+ individuals vulnerable to

increased exposure to proinflammatory ligands produced by

gut microbiota (78, 83, 84). These alterations lead to poor

HIV-1 disease outcomes, including associated neurocognitive

disorders (77).

Cannabis effectively alleviates symptoms associated with

HIV-1 disease and other conditions such as cancer and

neuropathic pain (85). Cannabinoids act on inflammatory

pathways through mechanisms distinct from agents such as

non-steroidal anti-inflammatory drugs (NSAIDs) (86).

Naturally occurring endocannabinoids, including cannabis,

have antioxidative and anti-inflammatory characteristics that

help in healing and restoration and thus can be used as

adjunctive therapy. As a class, cannabinoids are generally free

from the adverse effects of NSAIDs. A concise survey of the anti-

inflammatory actions of the phytocannabinoids Δ9-

tetrahydrocannabinol (THC), cannabidiol, cannabichromene,

and cannabinol has been reported (85-90). Meta-analyses of

several clinical trials have established the efficacy of cannabis

in HIV-1-related neuropathic pain and nausea (85-92), although

dosing and administration routes varied widely. Some studies

suggest that titrating dosing to effectiveness and side effects is a

valuable strategy for dose selection. While acute cannabis

exposure disturbs cognition, how its long-term use affects

brain function in the context of HIV-1 is yet to be elucidated

clearly (93, 94). Medicinal use of cannabis is becoming rapidly

accepted, and a state-level authorized disease management

strategy (95, 96). Healthcare providers identify the potential

benefits of cannabis by understanding the potential benefits of

symptom management. However, a few clinical studies on

patients using cannabis as therapy showed potential

dependence or possible adverse effects (93, 97). A better

understanding of the strategic use of cannabis could aid

clinicians in better treatment and therapeutic options with

their patients. Since not much research has been done to

assess the effects of cannabis in PLWH, there is a dearth of

reliable data for cannabis use recommendations in the clinical

field.

The endocannabinoid system is a complex network of

receptors and enzymes involved in synthesizing and detecting

endogenous lipid ligands (98-100). Most human tissues express

cannabinoid (type-1 and -2) receptors (98, 99). Cannabinoid

receptors type-2 are densely expressed in diverse immune cell

types, including macrophages, microglia, splenocytes,

monocytes, and T-cells resident in the thymus, spleen, and

bone marrow tonsils (98-100). Endocannabinoid system

signaling pathways are essential in HIV-1 infection for several

reasons and has been pursued as a target for future

pharmacotherapy to reduce inflammation (98-100). In HIV-1

infection, cannabis use has been shown to reduce systemic

inflammation and activate the immune system (101).

Furthermore, HIV-1 DNA is reported to decline more rapidly

in individuals taking antiretroviral therapy and using cannabis

than those not using cannabis (102). Cannabis use in PLWH

leads to aggravated dysbiosis and epithelial barrier dysfunction of

the gut, along with chronic inflammation and consequential ill

effect on overall health (79, 81, 82, 103). Chronic cannabis use is

reported to lower the abundance of Prevotella and increase the

abundance of Bacteriodes bacteria in the gut microbiome. Lower

abundance of Prevotella leads to systemic mitochondrial

dysfunction and reduction of gut SCFA production in

cannabis users which is linked to impairment in cognitive

function (104). It is also reported that administration of

cannabidiol-rich cannabis extract resulted in increased

abundance of A. muciniphila and significant decrease in

Alistipes finegoldii, Lachnoclostridium sp. YL32, and

Ruminiclostridium sp. KB18 alongwith remarkable

downregulation of mucin-2 which is associated with

maintenance of gut integrity. The study also found

upregulation of inflammatory markers IL-1β, CXCL1, and

CXCL2 which points towards the disruptive effect of long-

term cannabis use (105).

Cocaine and HIV

Cocaine is one of the most commonly abused drugs among

PLWH, and it has been suggested that it accelerates AIDS

progression. Based on the evidence that the limbic system of

the brain, comprising a set of interconnected regions regulating

pleasure and motivation, is the primary site of action for cocaine

helps explain its high potential for addiction and relapse.

Cocaine, a commonly used psychostimulant among PLWH, is

a cofactor for HIV-1 infection and progression to AIDS. Globally

almost 22.5 million people worldwide are affected by cocaine use

disorder, thus making it a significant public health crisis with a

high socioeconomic burden (106). Although cocaine is known to

have immunomodulatory functions (107-109), the underlying

mechanism(s) by which cocaine accentuates HIV-1 replication

remains unclear. There are reports that cocaine increases HIV-1

infection/replication by inhibiting HIV-1 protective chemokines

and/or upregulating the HIV-1 entry co-receptor (110, 111).

Cocaine is a potent vasoconstrictor and brain stimulant. Its abuse

leads to severe neurological (fainting attacks, hemorrhagic brain

strokes, CNS vasculitis, and encephalopathies), cardiovascular

(cardiac arrhythmia and heart attacks), and gastrointestinal

complications (112-117).

Cocaine abuse has been reported to alter the gut microbiota

composition which in turn affects the uptake and clearence of

neurotransmitters. One particular study reports higher

accumulation of norepinephrine in intestines of cocaine-

administred mice helped the resident Citrobacter rodentium to

flourish which resulted in depletion of the intestinal

neurotransmitter glycine. This also resulted in glycine
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depletion in circulation and cerebrospinal fluid of cocaine-

administered mice, which was in correlation with increased

hyperlocomotion and escalation of drug-seeking behavior

(118). The authors also reported alteration of synaptic

plasticity pathways at the transcriptome-level in the nucleus

accumbens of the cocaine-administered mice, and also that

the behavioral changes were reversed with dietary

supplementation of glycine or sarcosine (118). Another study

reports that cocaine administration in mice reduces the

abundance of Mucispirillum, Butrycicoccus, Ruminococcaceae,

Pseudoflavonifractor, and Lachnospiracea species of bacteria in

the gut microbiota which are the involved in the synthesis of

SCFAs involved in maintaining mucosal epithelium integrity.

Cocaine administration resulted in alteration of TJPs of the gut

membrane, upregulated expression of proinflammatory markers

NF-ĸB and IL-1β, and also disruption of the mucosal

permeability via MAPK/ERK1/2 signaling pathway (106).

Also, in case of mice with reduced gut-bacteria, cocaine

admistration resulted in increased sensitivity towards drug

reward as well as increased locomotor-sensitivity (119). These

studies reveal the critical role of gut microbiome in the behavioral

effects of cocaine addiction. The research on the gut microbiome

and its relationship with drug abuse is currently in its infancy

with a bright future, and still a long way to go.

Methamphetamine and HIV

Similar to other drugs of abuse, several preclinical and

clinical studies have demonstrated that Meth induces

alterations in the gut microbiome (49,120-123). However,

there is a lack of evidence directly linking the gut microbiota

with Meth-induced brain dysfunction (124). Meth has been

reported to promote the release of norepinephrine and

dopamine, leading to a markedly decreased intestinal

contractility and motor capacity (125). This decrease in

intestinal muscle tone is associated with oxidative and

nitrosative stress, which, in turn, can cause neuronal injury

and death in the intestine and disrupt intestinal barrier

functioning (126). Disruption of the intestinal mucosal barrier

increases the permeability of the gut epithelium and plays an

essential role in contributing to anxiogenic behavior (127), stress

(128), depression (129), cognitive decline (130), and eating and

sleep disorders (131). Disruption of the intestinal barrier also

leads to the leakage of several inflammatory factors (like TNF-α,
interferon-γ, IL-6), microbes, and metabolites from the gut

epithelium to the circulatory and lymphatic systems (132). It

has been reported that Meth use can increase the permeability of

the blood-brain barrier (133), thereby facilitating the entry of

microbial communities and metabolites to enter the brain (134).

In mouse models, Meth-exposure has been reported to increase

the abundance of pathogenic bacteria in the fecal microbiota

(120), with increased inflammation, reduced TJP expression in

the intestine, and decreased relative quantity of probiotics and

fecal metabolites. Further, Meth exposure was also shown to

enhance the intestinal autophagy-associated flora, concomitantly

leading to the induction of autophagy in the CNS (123). Intestinal

inflammatory biomarkers, including the proinflammatory

cytokines, are upregulated in Meth abusers and have been

reported to infiltrate the brain regions related to depression

(135), causing alterations in neurotransmitter metabolism,

neuroendocrine function, and neuroplasticity. A recent study

has also shown that gene sequencing of the 16S rRNA of the

rectal swab samples collected from individuals using Meth,

showed increased presence of bacterial species such as

Finegoldia, Peptoniphilus, Parvimonas, and Porphyromonas

and depletion of species like Faecalibacterium and

Butyricicoccus (122). In line with this study, other studies have

also shown that there were alterations in the composition of

microbes present in the gut of Meth users with decrease in

quantity of Bacteroidaceae and Deltaproteobacteria, and

increased abundance of Sphingomonadales, Xanthomonadales,

Romboutsia and Lachnospiraceae (49). Interestingly, these

alterations have been reported in those bacterial species which

had previously been demonstrated to be altered in individuals

with psychotic syndromes, thus pointing towards a potential link

betweenMeth abuse and psychotic disorders (49). Forouzan et al.

showed thatMeth exposure and withdrawal in rats resulted in gut

dysbiosis, which was linked to depression-like behavior as

evidenced by the forced swim test. However, the authors

reported no alterations in anxiety-like behaviors which was

assessed by either the elevated plus maze or the open field

test (136).

HIV-1 has been reported to alter the human intestinal

microbiome. An exciting study showed significant changes in

the microbiome in the context of drug abuse and sexual behavior

during HIV-1 infection. Rectal swab samples, urine drug test

results, along with responses to substance use and sex behavior

questionnaires were collected from 37 HIV-1-positive

individuals at two-time points, in a 6-month gap period, in a

group that was being evaluated for the effects of drug abuse in

men who have sex with men. The samples were subjected to 16S

ribosomal RNA gene sequencing, and the association of the data

with behavioral factors was examined using 0-inflated negative

binomial regression. Further analyses demonstrated that abuse of

Meth and marijuana exhibit unique associations. Meth use was

linked with increased Granulicatella and Porphyromonas

organisms in HIV-1 patients and a decrease in abundance of

Collinsella, Ruminococcus, and Parabacteroides organisms. In

contrast, marijuana use was associated with an increased

abundance of Clostridium cluster IV, Ruminococcus,

Fusobacterium, and Solobacterium organisms and decreased

Acidaminococcus, Dialister, Prevotella, Anaerostipes, and Dorea

organisms. From this study, it can be concluded that drug use and

sexual behavior are important factors associated with intestinal

dysbiosis during chronic HIV-1 infection among young men
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who have sex with men (137). Further, studies are warranted in

the field, specifically in association with HIV-1 infection and

drug abuse-related disorders.

Nicotine and HIV

Several reports have, on the other hand, demonstrated an

association between nicotine and microbiome dysregulation

(138-142). In one study aimed at assessing the link between

the smoking status of an individual and their intensity of

smoking with the relative abundance of gut microbial species

in 249 Bangladesh participants, it was reported that there was an

increase in the relative abundance of Erysipelotrichi and

Catenibacterium in current smokers in comparison to those

who had never smoked (139). Another interesting study

showed that long-term nicotine administration in rats resulted

in alterations of gut microbiota, which was more prominent in

rodents fed a high-fat diet than a regular chow diet, thus

indicating diet-dependent changes (142). In line with this

study, another study showed that cigarette smoke altered gut

microbiota composition, which was linked to modifications in

the distribution of primary bile acids and cholesterol homeostasis

(138). Another study also showed that oral administration of

nicotine in mice differentially reorganized the gut microbiome in

a gender-specific manner and, furthermore, modified the levels of

metabolites such as GABA and glutamate, which are involved in

gut-brain communication (142). A recent study has also

demonstrated that nicotine altered the gut microbiome and

metabolites involved in the gut-brain axis in a sex-specific

manner. This study employed high-throughput sequencing

and gas chromatography-mass spectrometry to evaluate the

effect of nicotine exposure on the gut microbiome and its

metabolism in C57BL/6J mice in a sex-dependent manner,

with special emphasis on the signaling pathways involved in

the gut-brain axis. The 16S sequencing results from this study

indicated that the composition of the gut microbiome was

differentially altered by nicotine in both females and males.

Also, the differential changes in the bacterial carbohydrate

metabolic pathways were consistent with lower body weight

gain in nicotine-administered males. Genes related to

oxidative stress response and DNA repair were also explicitly

upregulated in the gut microbiome of the nicotine-treated male

mice. Analysis of the fecal metabolome demonstrated that several

neurotransmitters, such as glutamate, GABA, and glycine, and

neuroactive metabolites-leucine and uric acid, were also

differentially altered in female versus male mice. This study

showed a sex-dependent effect of nicotine on gut microbiome

composition, functional bacterial genes, and the fecal

metabolome (141). However, studies are lacking on gut-brain

axis in the context of nicotine and HIV.

Conclusion and future perspectives

Understanding the impact of the gut microbiome on gut-

brain axis communication has been the topic of momentous

research over the past few years. There is a mounting effort to

delineate the mechanism(s) of this communication at all axis

nodes. It has been now well-established that gut microbiota is

crucial for the proper development and maintenance of brain

functions. Additionally, as discussed above, there is accumulating

evidence from preclinical and clinical studies that implicate the

role of microbial dysbiosis in various psychiatric, neurological,

and neurodegenerative diseases in the context of HIV-1 and drug

abuse. However, it is still a very nascent field of research, and

caution must be exerted in over-interpreting these studies. Many

unanswered questions remain regarding the beneficial effects of

probiotics, with extensive work required to test optimal dosing,

strain, and timing in therapeutic applications. The emphasis in

the field must shift from correlative analyses to prospective

longitudinal study design, causative and mechanistic

investigations, and larger-scale trials of potential therapeutic

approaches, especially in the case of HIV-1 and drug abuse

comorbidity. One big conundrum in microbiota-based

research is the ideal definition of healthy microbiota. Inter-

individual differences in the gut microbiota composition can

be very critical, making it challenging to apply a “one size fits all”

approach to target the microbiota. However, this also provides

future opportunities for practical personalized medicine

approaches. We have also moved from focusing on single

bacterial strains as pathogens to an emphasis on nurturing an

entire community of microbes, lest they become pathological

entities. There are many challenges to conventional wisdom at

play, with the possibility that the alterations in the gut microbiota

noted in many CNS disorders may have a causal role in

symptomatology and that many of the drugs used to treat

those disorders could be toxic to or support the diversity of

our gut microbes.
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Substance use disorder (SUD) is a prevalent disease that has caused hundreds of
thousands of deaths and affected the lives of even more. Despite its global impact,
there is still no known cure for SUD, or the psychological symptoms associated with drug
use. Many of the behavioral consequences of drug use prevent people from breaking the
cycle of addiction or cause them to relapse back into the cycle due to the physical and
psychological consequences of withdrawal. Current research is aimed at understanding
the cause of these drug related behaviors and therapeutically targeting them as a
mechanism to break the addiction cycle. Research on opioids suggests that the
changes in the microbiome during drug use modulated drug related behaviors and
preventing these microbial changes could attenuate behavioral symptoms. This review
aims to highlight the relationship between the changes in the microbiome and behavior
during opioid treatment, as well as highlight the additional research needed to understand
the mechanism in which the microbiome modulates behavior to determine the best
therapeutic course of action.

Keywords: opioid use disorder, substance use disorder, microbiome, behavior, gut-brain, withdrawal

THE MICROBIOME AND BEHAVIOR

There is a well-studied relationship between the gut microbiome and mental health disorders such as
anxiety and depression (1–3). Both anxiety and depression induce changes to the composition and
proper functioning of the gut microbiota (4–6). Stress disorders, like anxiety, cause disruptions to the
integrity of the gut barrier, which can allow translocation of gut bacterial products, commonly
referred to as “leaky gut” (7,8). This likely results in a microbiota-driven proinflammatory response.
Animal studies also show an increase of Bacteroidetes and a decrease of Firmicutes in mice expressing
depressive like behavior, indicating a state of microbial dysbiosis (9–11). Interestingly antidepressant
medications such as monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake
inhibitors (SSRIs) have antimicrobial properties, suggesting gut modulation as a potential
therapeutic target (12,13). Additionally, specific antibiotics show antidepressant properties in
both human and rodent studies (14,15).

Animal studies using germ free mice further investigate the role of the microbiome in anxiety and
depression. Numerous studies show that germ free mice display lower levels of anxiety-like behavior
across multiple models of anxiety: Elevated Plus Maze, Open Field Test, and Light Dark test (16–18).
Upon reconstitution of the microbiome in these germ-free mice, anxiety like behavior was only
normalized if the reconstitution happened in early life (16,17,19). Reconstitution during adulthood
resulted in the persistence of lower anxiety-like behavior. This indicates specific developmental
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windows in which the microbiome alters neuronal circuitry
important for anxiety-like behavior. However, alterations to a
healthy microbiome in adulthood can still show alterations to
anxiety-like behavior (20). Antibiotic depletion of the
microbiome using a broad spectrum antibiotics causes reduced
levels of anxiety-like behavior, and once antibiotic administration
ceases, the anxiety-like response normalizes as the microbiome
replenishes (20). Antibiotic treatment does not affect anxiety-like
behavior in germ-free mice, confirming behavioral changes are
due to changes in the microbiome. While eliminating harmful
bacteria with antibiotics can reduce anxiety-like behavior, it has
also been shown that supplementing the microbiome with
beneficial bacteria via probiotic treatment can also reduce
anxiety-like and depressive-like behavior. Probiotic treatment
causes a reduction of anxiety-like and depressive-like
behaviors, even in rats experiencing maternal separation
during neonatal development, an event known to increase
depressive like behavior in adulthood (21,22). The probiotic
effects are comparable to results from antidepressant
treatment. Clinically, studies show similar antidepressant
effects of probiotics with healthy participants displaying less
psychological distress when treated with probiotics, and
subjects initially scoring highest in depression, showing
significant improvement in symptoms (23). Additionally,
patients with chronic fatigue syndrome, which has a high
comorbidity with anxiety, show a disrupted microbiome
composition, and also see improvement of anxiety severity
with the treatment of probiotics (24).

Other disruptions to the gut-homeostasis, such as infection
and inflammation, are also seen to change anxiety-like behavior.
Infections with C. rodentium and C. jejuni increased anxiety-like
behaviors as early as 8 h post infection, lasting up to 2 days
(25,26). Interestingly this behavioral change is seen even without
a periphery immune response, suggesting that pathogenic
bacteria in the gut can produce behavioral changes
independently from an immune response (27). Increased
anxiety-like behavior is also seen when there is an increase in
GI inflammation. This behavioral change was reversed with
probiotic treatment.

This relationship between the microbiome and anxiety and
depression has great interest in opioid research, as anxiety and
depression both have high comorbidity with opioid use
disorder, and elevated levels of anxiety and depression are
common throughout the stages of opioid use (28). Initial drug
is often used as a form of self-medication to alleviate stress
and anxieties (29). However, these effects of opioids are short
lived, and consumption of drugs can lead to increased
depression symptoms instead (30). Once opioid
dependence is formed, the abstinence of opioids in the
body induces a withdrawal response, which can result in
elevated anxiety and depression symptoms, even after the
physical symptoms of withdrawal have passed (31–34). For
many the severity of anxiety and depression during
withdrawal drives continued drug use to alleviate the
symptoms (33). The implication of microbiome in these
behaviors are especially interesting considering the impact
that opioid use has on the gut microbiome.

MORPHINE INDUCED CHANGES TO THE
MICROBIOME

Opioid use has been shown to disrupt multiple areas of gut
homeostasis. Animal studies show that morphine treatment
results in specific changes to the relative abundance of bacteria
(35). Morphine exposure, even in the short-term, causes an
increased abundance of pathogenic bacteria (Flavobacterium,
Enterococcus, Fusobacterium, Sutterella, Clostridium,
Rikenellaceae, and Ruminococcus). Once tolerance is developed
a significant decrease in the abundance of beneficial bacteria
(Lactobacillus and Bifidobacterium) is observed as well (36). This
pattern of microbial change is an indication of microbial dysbiosis
(37,38). Additional changes in abundance of individual bacteria
are seen across morphine exposure time and doses, all indicating
the same pattern of increasing of harmful bacteria and decreasing
of beneficial bacteria (36,38–46). The functional consequences of
the dysbiosis of the microbiome include a decrease in gut motility
and an increase in gut-barrier permeability, creating a risk of
bacterial translocation and proinflammatory signaling (47).

The diversity of the gut microbiota is also greatly impacted by
morphine treatment. Functional and taxonomic diversity of the
microbiota are very important for maintaining gut-homeostasis,
and a non-diverse microbiota is associated with inflammatory
bowel disease and obesity (48,49). Opioid treatment causes a
decrease in the alpha diversity of the gut-microbiota, which
signifies diminished species richness and a less diverse array of
present bacteria within the microbiome (35). Additionally, the
beta diversity measuring the similarities or dissimilarities of
microbiome composition between groups shows distinct
clustering in morphine treated animals as compared to
placebo treated controls. This is additional confirmation of a
dysbiosis of the gut microbiome caused by morphine treatment.

Studies have been targeting these opioid induced changes in
the gut to understand their relevance to the behavioral
consequences of opioid use. Tolerance development is the
most well studied relationship between the morphine induced
dysbiosis and drug related behavior. Germ free mice showed an
attenuation of morphine tolerance and the reconstitution of the
microbiome via a fecal matter transplant (FMT) of a healthy
microbiome reinstated the tolerance development, indicating the
microbiome is necessary to the development of morphine
tolerance (36). Antibiotic depletion of the microbiome in
specific pathogen-free (SPF) mice also shows an attenuation of
morphine tolerance, however a FMT of a healthy microbiome
does not recover the tolerance development. Instead, the FMT of
a morphine treated microbiome is needed for the proper
development of morphine tolerance. Additionally, treatment
with a probiotic cocktail of the bacteria that showed
significantly reduced abundance during morphine exposure,
both prevents the dysbiosis effects of morphine as well as
attenuates morphine tolerance (36). This suggests the state of
the microbiome during morphine induced dysbiosis is a
requirement for tolerance development. Similar relationships
have been seen in other stages of drug use as well. Research
shows that antibiotic depletion of the microbiome causes
impaired cocaine reward processing, suggesting a need for the
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microbiome in the rewarding pathways involved in addiction,
though no studies have examined the impact of the microbiome
in any addiction paradigms for morphine specifically (44).
Studies examining addiction paradigms such as Conditioned
Place Preference (CPP) show that mice that display higher
CPP scores have a unique microbial composition compared to
mice that display lower CPP scores (50). A new area of research is
the relationship of the morphine induced gut changes on the
withdrawal response. However, the limited research shows
conflicting results on antibiotics effects on the withdrawal
severity. Withdrawal symptoms are seen to both decrease and
remain the same depending on the morphine treatment regimen
and the specifics of antibiotic treatment (46,51). Though the
withdrawal state of morphine use does still show changes to the
microbiome as well as neuronal changes that may be linked to gut
dysbiosis (52).

The well-studied relationship of the microbiome’s influence
onmorphine tolerance, as well as emerging evidence of its roles in
addition and withdrawal behavior, show that the dysbiosis of the
microbiome caused by opioids has an impact on drug related
behaviors (36,38,46,51). While researchers are still investigating
the extent to which this opioid induced dysbiosis contributes to
the severity and development of these behaviors, the importance
of this relationship between drug use, microbial changes, and
behavior is paramount. Understanding this relationship can lead
to the development of gut targeted therapeutic strategies to treat
the behavioral symptoms of drug use, an area that is lacking in
therapeutic intervention. However, additional research on the
mechanisms in which the microbiome is modulating behavior
during opioid use is needed. Potential mechanisms are
understudied in opioid research, however research with other
drugs of misuse has discovered some potential links between
microbial and behavioral changes.

POSSIBLE LINKS BETWEEN MICROBIAL
AND BEHAVIORAL CHANGES

The exact mechanism in which the microbiome influences
behavioral changes is unknown, though there are many
potential links currently being researched (53–59). One
possible connection is the inflammatory response that results
from drug induced disruption to the epithelial barrier. The
microbial changes that occur during use of opioids, and other
drugs of misuse, cause damage to the tight junction proteins
(47,60–62). This leads to a compromised integrity of the epithelial
lining, allowing for translocation of bacteria. Additionally, there is
a higher risk of the translocation of pathogenic bacteria, due to
the microbial dysbiosis caused by drug exposure. Host epithelial
cells recognize the bacteria and initiate a toll-like receptor (TLR)
modulated immune response, resulting in the release of
proinflammatory cytokines (63). Studies suggest that these
cytokines can cross the blood brain barrier and modulate
behavior to contribute to the behavioral consequences of drug
use (53,54). However, not all proinflammatory cytokines produce
the same behavioral responses. Activation of the TLR4 signaling
driven by interleukin 1 beta (IL-1b) results in an increase of CPP

and self-administration to cocaine. This indicates that
proinflammatory activation drives the addiction process, but
conflicting results are found for proinflammatory TNF-a. An
increase of TNF-a levels results in a decrease of CPP response to
morphine, as well as a decrease of behavioral drug response to
both morphine and cocaine. These inconsistent findings suggest
the role of inflammation in drug related behavior could depend
on the specific cytokine or drug being studied (64–66).

Another potential link is the vagus nerve, as it provides direct
communication between the brain and gut. Even though the
vagus nerve does not cross the gut epithelial layer and have direct
contact with the microbiome, studies have shown that the vagus
nerve may be sensitive to signals from the microbiome (55,56).
Antimicrobial treatment of the microbiome, resulting in an
increase of Lactobacilli, modified GABA expression in
numerous brain areas and decreased anxiety-like behavior.
These findings are thought to be a result of vagal signaling,
and additional studies have shown that vagal nerve integrity is
crucial to the successful attenuation of anxiety-like behavior by
probiotic treatment (21,57). There is also preliminary evidence
that shows vagal nerve stimulation facilitates the extinction of
drug seeking behavior during the withdrawal process of cocaine
treatment (67). While research shows the vagus nerve may be
important to the behavioral responses of drug use, there is limited
evidence to prove microbiome is relying on the vagus nerve to
modulate behavior, or if the microbiome alone can stimulate the
vagus nerve enough to produce behavioral changes. Others
believe the microbiome modulates behavior via hippocampal
brain-derived neurotropic factor (BDNF), independent of vagal
nerve stimulation (20). Cocaine studies show an epigenetic
regulation of BDNF levels during drug use, and BDNF has
been shown to mediate cocaine self-administration, and drug
seeking (68). Expression of BDNF also changes in response to
changes in the microbiome, and these changes are associated with
altered behavioral responses to alcohol and cocaine (69–71). A
FMT of a microbiome samples of alcohol exposed donors to
healthy recipients, resulted in a decrease of BDNF levels in the
hippocampus, as well as an increase of anxiety and depressive-like
withdrawal behaviors (70). There are many correlations of drug
exposure and microbial changes with changes in BDNF
expression levels, however causal studies to determine a
mechanism in which the microbiome is influencing the BDNF
expression have not been done (71).

There is a wealth of data implementing microglial
activation as a mechanism that drives microbiome
modulated drug related behaviors. It is well documented
that the microbiome is crucial for the proper development
of microglia (72,73). In fact, germ free mice display deformed
microglial cells as well as slight behavioral differences that
may be a result of the lack of properly matured microglia (72).
On a less severe model, microglial defects can be seen with
prolonged antibiotic treatment, and microglial function can
be restored with probiotic treatment (72). Also, microglia
become significantly more activated during drug exposure
(52,58,59,74). Elevated microglial activation occurs as a result
of chronic ethanol treatment, and microglia remain overactive
throughout long-term ethanol withdrawal (74).
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Methamphetamine treatment also results in microglia
activation, and upon inhibition of microglia cells,
locomotor sensitization to methamphetamine attenuated
(58). Additionally, high levels of microglial activation in
the nucleus accumbens are observed during cocaine
treatment (59). This change in microglia activation could
be a response to the drug presence itself or a consequence
of drug induced microbial changes. The elevation of
microglial activation is seen in many brain areas crucial to
addiction and reward pathways, and inhibition of microglia
has attenuated some behaviors related to drug use. Further
research is needed to understand the implications of the gut-
microbiome in microglial modulation of drug related
behaviors.

SUMMARY

Drug use causes dysregulation from the gut to the brain (Figure 1).
Research shows a drug induced dysbiosis of the gut microbiome,
causing the diverse microbial environment to become overpopulated
with pathogenic bacteria (35,36). The consequence of the microbial
shift leads to a compromised gut barrier, resulting in a translocation
of bacteria that trigger a proinflammatory cytokine release (47).
While the microbiome is activating an inflammatory response, it
also communicates with the vagus nerve to send signals to the brain
(55,56). Additionally, the microbiome may be responsible for the
increase in microglial activation as well as dysregulation of BDNF
signaling during drug use (52,68,74). All of these factors affected by
drug use also have behavioral implications that are relevant to
behavioral consequences of drug use. Thus, the dysregulation of
these factors during drug use may be during the behavioral
consequences of drug use.

In conclusion, there is a lot of evidence showing a relationship
between the microbiome and behavior, and the microbiome
undergoes substantial changes when exposed to opioids that
may further modulate drug related behaviors, such as reward
processing, tolerance, withdrawal, anxiety, and depression.
However, the exact mechanism between microbial changes
and behavior is still not understood, especially for opioids
specifically. The collective literature for drugs of misuse,
provide potential links between the microbiome and the brain:
inflammation, the vagus nerve, BDNF, and microglia. These are
areas that need additional research for opioids, as well as every
drug individually, to determine how the gut and brain are
communicating and regulating drug related behaviors.
Understanding this relationship could lead to potential
treatment options for the psychiatric symptoms of SUD and
provide an easier path out of the cycle of addition.
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Activity of Psychotropic Drugs. Int J Antimicrob Agents (2000) 14(3):
177–80. doi:10.1016/s0924-8579(99)00154-5

14. Ferreira Mello BS, Monte AS, McIntyre RS, Soczynska JK, Custódio CS,
Cordeiro RC, et al. Effects of Doxycycline on Depressive-like Behavior in
Mice after Lipopolysaccharide (LPS) Administration. J Psychiatr Res (2013)
47(10):1521–9. doi:10.1016/j.jpsychires.2013.06.008

15. Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, et al.
Minocycline as Adjunctive Therapy for Patients with Unipolar Psychotic
Depression: An Open-Label Study. Prog Neuro-Psychopharmacology Biol
Psychiatry (2012) 37(2):222–6. doi:10.1016/j.pnpbp.2012.02.002

16. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al.
Normal Gut Microbiota Modulates Brain Development and Behavior. Proc
Natl Acad Sci (2011) 108(7):3047–52. doi:10.1073/pnas.1010529108

17. Neufeld K-AM, Kang N, Bienenstock J, Foster JA. Effects of Intestinal
Microbiota on Anxiety-like Behavior. Communicative Integr Biol (2011)
4(4):492–4. doi:10.4161/cib.15702

18. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced Anxiety-like Behavior
and central Neurochemical Change in Germ-free Mice. Neurogastroenterol
Motil (2011) 23(3):255–e119. doi:10.1111/j.1365-2982.2010.01620.x

19. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al.
The Microbiome-Gut-Brain axis during Early Life Regulates the Hippocampal
Serotonergic System in a Sex-dependent Manner.Mol Psychiatry (2013) 18(6):
666–73. doi:10.1038/mp.2012.77

20. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The Intestinal
Microbiota Affect central Levels of Brain-Derived Neurotropic Factor and
Behavior in Mice. Gastroenterology (2011) 141(2):599–609. doi:10.1053/j.
gastro.2011.04.052

21. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al.
Ingestion of Lactobacillus Strain Regulates Emotional Behavior and central
GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc Natl Acad
Sci (2011) 108(38):16050–5. doi:10.1073/pnas.1102999108

22. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the
Probiotic Bifidobacterium Infantis in the Maternal Separation Model of
Depression. Neuroscience (2010) 170(4):1179–88. doi:10.1016/j.
neuroscience.2010.08.005

23. Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C. Beneficial
Psychological Effects of a Probiotic Formulation (Lactobacillus
helveticusR0052 andBifidobacterium longumR0175) in Healthy Human
Volunteers. Gut Microbes (2011) 2(4):256–61. doi:10.4161/gmic.2.4.16108

24. Benton D, Williams C, Brown A. Impact of Consuming a Milk Drink
Containing a Probiotic on Mood and Cognition. Eur J Clin Nutr (2007)
61(3):355–61. doi:10.1038/sj.ejcn.1602546

25. Lyte M, Varcoe JJ, Bailey MT. Anxiogenic Effect of Subclinical Bacterial
Infection in Mice in the Absence of Overt Immune Activation. Physiol
Behav (1998) 65(1):63–8. doi:10.1016/s0031-9384(98)00145-0

26. Lyte M, Li W, Opitz N, Gaykema R, Goehler L. Induction of Anxiety-like
Behavior in Mice during the Initial Stages of Infection with the Agent of
Murine Colonic Hyperplasia Citrobacter Rodentium. Physiol Behav
(2006) 89(3):350–7. doi:10.1016/j.physbeh.2006.06.019

27. Bercik P, Verdu EF, Foster JA, MacRi J, Potter M, Huang X, et al. Chronic
Gastrointestinal Inflammation Induces Anxiety-like Behavior and Alters
central Nervous System Biochemistry in Mice. Gastroenterology (2010)
139(6):2102–12. doi:10.1053/j.gastro.2010.06.063

28. Hasin DS, Stinson FS, Ogburn E, Grant BF. Prevalence, Correlates, Disability,
and Comorbidity of DSM-IV Alcohol Abuse and Dependence in the
United States. Arch Gen Psychiatry (2007) 64(7):830–42. doi:10.1001/
archpsyc.64.7.830

29. Labouvie E. Maturing Out of Substance Use: Selection and Self-Correction.
J Drug Issues (1996) 26(2):457–76. doi:10.1177/002204269602600208

30. Bleichmar H. Droga Y Depresión. Un camino a Doble Vía. Proy Hombre
(1994) 10:11–4.

31. Powell JE, Taylor D. Anger, Depression, and Anxiety Following Heroin
Withdrawal. Int J Addict (1991) 27(1):25–35. doi:10.3109/10826089109063460

32. Sullivan RM, Duchesne A, Hussain D, Waldron J, Laplante F. Effects of
Unilateral Amygdala Dopamine Depletion on Behaviour in the Elevated Plus
Maze: Role of Sex, Hemisphere and Retesting. Behav Brain Res (2009) 205(1):
115–22. doi:10.1016/j.bbr.2009.07.023

33. Tian M, Mao R-R, Wang L-P, Zhou Q-X, Cao J, Xu L. Interaction between
Behavioral Despair and Addictive Behaviors in Rats. Physiol Behav (2011)
102(1):7–12. doi:10.1016/j.physbeh.2010.10.002

34. Anraku T, Ikegaya Y, Matsuki N, Nishiyama N. Withdrawal from Chronic
Morphine Administration Causes Prolonged Enhancement of Immobility in
Rat Forced Swimming Test. Psychopharmacology (2001) 157(2):217–20.
doi:10.1007/s002130100793

35. Wang F, Meng J, Zhang L, Johnson T, Chen C, Roy S. Morphine Induces
Changes in the Gut Microbiome and Metabolome in a Morphine Dependence
Model. Sci Rep (2018) 8(1):3596–15. doi:10.1038/s41598-018-21915-8

36. Zhang L, Meng J, Ban Y, Jalodia R, Chupikova I, Fernandez I, et al. Morphine
Tolerance Is Attenuated in Germfree Mice and Reversed by Probiotics,
Implicating the Role of Gut Microbiome. Proc Natl Acad Sci USA (2019)
116(27):13523–32. doi:10.1073/pnas.1901182116

37. Sommer F, Bäckhed F. The Gut Microbiota - Masters of Host Development
and Physiology. Nat Rev Microbiol (2013) 11(4):227–38. doi:10.1038/
nrmicro2974

38. Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, et al. Opioid-
induced GutMicrobial Disruption and Bile Dysregulation Leads to Gut Barrier
Compromise and Sustained Systemic Inflammation.Mucosal Immunol (2016)
9(612):1418–28. doi:10.1038/mi.2016.9

39. Acharya C, Betrapally NS, Gillevet PM, Sterling RK, Akbarali H, White MB,
et al. Chronic Opioid Use Is Associated with Altered Gut Microbiota and
Predicts Readmissions in Patients with Cirrhosis. Aliment Pharmacol Ther
(2017) 45(2):319–31. doi:10.1111/apt.13858

40. Barengolts E, Green SJ, Eisenberg Y, Akbar A, Reddivari B, Layden BT,
et al. Gut Microbiota Varies by Opioid Use, Circulating Leptin and
Oxytocin in African American Men with Diabetes and High burden of
Chronic Disease. PLoS One (2018) 13(3):e0194171. doi:10.1371/journal.
pone.0194171

41. Xu Y, Xie Z, Wang H, Shen Z, Guo Y, Gao Y, et al. Bacterial Diversity of
Intestinal Microbiota in Patients with Substance Use Disorders Revealed by
16S rRNA Gene Deep Sequencing. Sci Rep (2017) 7(1):3628. doi:10.1038/
s41598-017-03706-9

42. Sindberg GM, Callen SE, Banerjee S, Meng J, Hale VL, Hegde R, et al.
Morphine Potentiates Dysbiotic Microbial and Metabolic Shifts in Acute
SIV Infection. J Neuroimmune Pharmacol (2019) 14(2):200–14. doi:10.
1007/s11481-018-9805-6

43. Meng J, Banerjee S, Li D, Sindberg GM, Wang F, Ma J, et al. Opioid
Exacerbation of Gram-Positive Sepsis, Induced by Gut Microbial

Advances in Drug and Alcohol Research | Published by Frontiers March 2022 | Volume 2 | Article 103115

Herlihy and Roy Microbiome Implications in Drug Behaviors

39

https://doi.org/10.1111/nmo.12153
https://doi.org/10.1111/nmo.12153
https://doi.org/10.3109/10253890903067418
https://doi.org/10.3389/fncel.2015.00392
https://doi.org/10.3389/fncel.2015.00392
https://doi.org/10.1186/s40168-017-0260-z
https://doi.org/10.1186/s40168-017-0260-z
https://doi.org/10.1016/j.jpba.2017.02.008
https://doi.org/10.1016/j.bbi.2010.10.023
https://doi.org/10.1016/j.jinf.2004.03.006
https://doi.org/10.1016/s0924-8579(99)00154-5
https://doi.org/10.1016/j.jpsychires.2013.06.008
https://doi.org/10.1016/j.pnpbp.2012.02.002
https://doi.org/10.1073/pnas.1010529108
https://doi.org/10.4161/cib.15702
https://doi.org/10.1111/j.1365-2982.2010.01620.x
https://doi.org/10.1038/mp.2012.77
https://doi.org/10.1053/j.gastro.2011.04.052
https://doi.org/10.1053/j.gastro.2011.04.052
https://doi.org/10.1073/pnas.1102999108
https://doi.org/10.1016/j.neuroscience.2010.08.005
https://doi.org/10.1016/j.neuroscience.2010.08.005
https://doi.org/10.4161/gmic.2.4.16108
https://doi.org/10.1038/sj.ejcn.1602546
https://doi.org/10.1016/s0031-9384(98)00145-0
https://doi.org/10.1016/j.physbeh.2006.06.019
https://doi.org/10.1053/j.gastro.2010.06.063
https://doi.org/10.1001/archpsyc.64.7.830
https://doi.org/10.1001/archpsyc.64.7.830
https://doi.org/10.1177/002204269602600208
https://doi.org/10.3109/10826089109063460
https://doi.org/10.1016/j.bbr.2009.07.023
https://doi.org/10.1016/j.physbeh.2010.10.002
https://doi.org/10.1007/s002130100793
https://doi.org/10.1038/s41598-018-21915-8
https://doi.org/10.1073/pnas.1901182116
https://doi.org/10.1038/nrmicro2974
https://doi.org/10.1038/nrmicro2974
https://doi.org/10.1038/mi.2016.9
https://doi.org/10.1111/apt.13858
https://doi.org/10.1371/journal.pone.0194171
https://doi.org/10.1371/journal.pone.0194171
https://doi.org/10.1038/s41598-017-03706-9
https://doi.org/10.1038/s41598-017-03706-9
https://doi.org/10.1007/s11481-018-9805-6
https://doi.org/10.1007/s11481-018-9805-6


Modulation, Is Rescued by IL-17A Neutralization. Sci Rep (2015) 5:10918.
doi:10.1038/srep10918

44. Lee K, Vuong HE, Nusbaum DJ, Hsiao EY, Evans CJ, Taylor AMW. The Gut
Microbiota Mediates Reward and Sensory Responses Associated with
Regimen-Selective Morphine Dependence. Neuropsychopharmacol (2018)
43(13):2606–14. doi:10.1038/s41386-018-0211-9

45. Sharma U, Olson RK, Erhart FN, Zhang L, Meng J, Segura B, et al. Prescription
Opioids Induce Gut Dysbiosis and Exacerbate Colitis in a Murine Model of
Inflammatory Bowel Disease. J Crohn’s Colitis (2020) 14(6):801–17. doi:10.
1093/ecco-jcc/jjz188

46. Simpson S, Kimbrough A, Boomhower B, McLellan R, Hughes M, Shankar K,
et al. Depletion of the Microbiome Alters the Recruitment of Neuronal
Ensembles of Oxycodone Intoxication and Withdrawal. eNeuro (2020) 7,
ENEURO.0312-19.2020. doi:10.1523/ENEURO.0312-19.2020

47. Meng J, Yu H, Ma J, Wang J, Banerjee S, Charboneau R, et al. Morphine
Induces Bacterial Translocation in Mice by Compromising Intestinal Barrier
Function in a TLR-dependent Manner. PLoS One (2013) 8(1):e54040. doi:10.
1371/journal.pone.0054040

48. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, et al. Human Gut Microbiome Viewed across Age and
Geography. Nature (2012) 486(7402):222–7. doi:10.1038/nature11053

49. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human Gut Microbes Associated
with Obesity. Nature (2006) 444(7122):1022–3. doi:10.1038/4441022a

50. Zhang J, Yang J, Yang C, Chen T, Wang Z, Li J, et al. Sensitivity to Morphine
Reward Associates with Gut Dysbiosis in Rats with Morphine-Induced
Conditioned Place Preference. Front Psychiatry (2020) 11:631. doi:10.3389/
fpsyt.2020.00631

51. Rock EM, Ayoub SM, Limebeer CL, Gene A, Wills KL, DeVuono MV, et al.
Acute Naloxone-Precipitated Morphine Withdrawal Elicits Nausea-like
Somatic Behaviors in Rats in a Manner Suppressed by N-Oleoylglycine.
Psychopharmacology (2020) 237(2):375–84. doi:10.1007/s00213-019-05373-2

52. O’Sullivan SJ, Malahias E, Park J, Srivastava A, Reyes BAS, Gorky J, et al.
Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in
Opioid Withdrawal Suggests Inflammation with Correlated Gut Dysbiosis.
Front Neurosci (2019) 13:665–14. doi:10.3389/fnins.2019.00665

53. Pan W, P. Stone K, Hsuchou H, K. Manda V, Zhang Y, J. Kastin A. Cytokine
Signaling Modulates Blood-Brain Barrier Function. Cpd (2011) 17(33):
3729–40. doi:10.2174/138161211798220918

54. Yarlagadda A, Alfson E, Clayton AH. The Blood Brain Barrier and the Role of
Cytokines in Neuropsychiatry. Psychiatry (Edgmont) (2009) 6(11):18–22.

55. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics
and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosciences
(2016) 39(11):763–81. doi:10.1016/j.tins.2016.09.002

56. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the
Microbiota-Gut-Brain axis. Front Neurosci (2018) 12:49. doi:10.3389/fnins.
2018.00049

57. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The Anxiolytic
Effect of Bifidobacterium LongumNCC3001 Involves Vagal Pathways for Gut-
Brain Communication. Neurogastroenterol Motil (2011) 23(12):1132–9.
doi:10.1111/j.1365-2982.2011.01796.x

58. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM.
Methamphetamine Neurotoxicity in Dopamine Nerve Endings of the
Striatum Is Associated with Microglial Activation. J Pharmacol Exp Ther
(2004) 311(1):1–7. doi:10.1124/jpet.104.070961

59. Miguel-Hidalgo JJ. The Role of Glial Cells in Drug Abuse. Curr Drug Abuse Rev
(2009) 2(1):72–82. doi:10.2174/1874473710902010076

60. Rao RK, Seth A, Sheth P. Recent Advances in Alcoholic Liver Disease I. Role of
Intestinal Permeability and Endotoxemia in Alcoholic Liver Disease. Am

J Physiology-Gastrointestinal Liver Physiol (2004) 286(6):G881–G884.
doi:10.1152/ajpgi.00006.2004

61. Keshavarzian A, Farhadi A, Forsyth CB, Rangan J, Jakate S, Shaikh M, et al.
Evidence that Chronic Alcohol Exposure Promotes Intestinal Oxidative Stress,
Intestinal Hyperpermeability and Endotoxemia Prior to Development of
Alcoholic Steatohepatitis in Rats. J Hepatol (2009) 50(3):538–47. doi:10.
1016/j.jhep.2008.10.028

62. Feng P, Truant AL, Meissler JJ, Gaughan JP, Adler MW, Eisenstein TK.
Morphine Withdrawal Lowers Host Defense to Enteric Bacteria: Spontaneous
Sepsis and Increased Sensitivity to Oral Salmonella enterica Serovar
Typhimurium Infection. Infect Immun (2006) 74(9):5221–6. doi:10.1128/iai.
00208-06

63. Kelly D, Conway S, Aminov R. Commensal Gut Bacteria: Mechanisms of
Immune Modulation. Trends Immunol (2005) 26(6):326–33. doi:10.1016/j.it.
2005.04.008

64. Northcutt AL, Hutchinson MR, Wang X, Baratta MV, Hiranita T, Cochran
TA, et al. DAT Isn’t All that: Cocaine Reward and Reinforcement Require Toll-
like Receptor 4 Signaling. Mol Psychiatry (2015) 20(12):1525–37. doi:10.1038/
mp.2014.177

65. Niwa M, Nitta A, Yamada Y, Nakajima A, Saito K, Seishima M, et al. Tumor
Necrosis Factor-α and its Inducer Inhibit Morphine-Induced Rewarding
Effects and Sensitization. Biol Psychiatry (2007) 62(6):658–68. doi:10.1016/j.
biopsych.2006.10.009

66. Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen
D. Microglial TNF-α Suppresses Cocaine-Induced Plasticity and Behavioral
Sensitization. Neuron (2016) 90(3):483–91. doi:10.1016/j.neuron.2016.03.030

67. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A Neural
Circuit for Gut-Induced Reward. Cell (2018) 175(3):665–78. doi:10.1016/j.cell.
2018.08.049

68. Li X,Wolf ME. Multiple Faces of BDNF in Cocaine Addiction. Behav Brain Res
(2015) 279:240–54. doi:10.1016/j.bbr.2014.11.018

69. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, et al.
Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine.
Sci Rep (2016) 6:35455. doi:10.1038/srep35455

70. Xiaowen H-w., Ge C, Feng G-x., Li Y, Luo D, Dongli J-l., et al. Gut Microbiota
Modulates Alcohol Withdrawal-Induced Anxiety in Mice. Toxicol Lett (2018)
287:23–30. doi:10.1016/j.toxlet.2018.01.021

71. Xu Z, Wang C, Dong X, Hu T, Wang L, Zhao W, et al. Chronic Alcohol
Exposure Induced Gut Microbiota Dysbiosis and its Correlations with
Neuropsychic Behaviors and Brain BDNF/Gabra1 Changes in Mice.
BioFactors (2019) 45(2):187–99. doi:10.1002/biof.1469

72. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E,
et al. Host Microbiota Constantly Control Maturation and Function of
Microglia in the CNS. Nat Neurosci (2015) 18(7):965–77. doi:10.1038/nn.4030

73. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al.
Microbiome Influences Prenatal and Adult Microglia in a Sex-specificManner.
Cell (2018) 172(3):500–16. doi:10.1016/j.cell.2017.11.042

74. Cruz C, Meireles M, Silva SM. Chronic Ethanol Intake Induces Partial
Microglial Activation that Is Not Reversed by Long-Term Ethanol
Withdrawal in the Rat Hippocampal Formation. Neurotoxicology (2017) 60:
107–15. doi:10.1016/j.neuro.2017.04.005

Copyright © 2022 Herlihy and Roy. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Advances in Drug and Alcohol Research | Published by Frontiers March 2022 | Volume 2 | Article 103116

Herlihy and Roy Microbiome Implications in Drug Behaviors

40

https://doi.org/10.1038/srep10918
https://doi.org/10.1038/s41386-018-0211-9
https://doi.org/10.1093/ecco-jcc/jjz188
https://doi.org/10.1093/ecco-jcc/jjz188
https://doi.org/10.1523/ENEURO.0312-19.2020
https://doi.org/10.1371/journal.pone.0054040
https://doi.org/10.1371/journal.pone.0054040
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/4441022a
https://doi.org/10.3389/fpsyt.2020.00631
https://doi.org/10.3389/fpsyt.2020.00631
https://doi.org/10.1007/s00213-019-05373-2
https://doi.org/10.3389/fnins.2019.00665
https://doi.org/10.2174/138161211798220918
https://doi.org/10.1016/j.tins.2016.09.002
https://doi.org/10.3389/fnins.2018.00049
https://doi.org/10.3389/fnins.2018.00049
https://doi.org/10.1111/j.1365-2982.2011.01796.x
https://doi.org/10.1124/jpet.104.070961
https://doi.org/10.2174/1874473710902010076
https://doi.org/10.1152/ajpgi.00006.2004
https://doi.org/10.1016/j.jhep.2008.10.028
https://doi.org/10.1016/j.jhep.2008.10.028
https://doi.org/10.1128/iai.00208-06
https://doi.org/10.1128/iai.00208-06
https://doi.org/10.1016/j.it.2005.04.008
https://doi.org/10.1016/j.it.2005.04.008
https://doi.org/10.1038/mp.2014.177
https://doi.org/10.1038/mp.2014.177
https://doi.org/10.1016/j.biopsych.2006.10.009
https://doi.org/10.1016/j.biopsych.2006.10.009
https://doi.org/10.1016/j.neuron.2016.03.030
https://doi.org/10.1016/j.cell.2018.08.049
https://doi.org/10.1016/j.cell.2018.08.049
https://doi.org/10.1016/j.bbr.2014.11.018
https://doi.org/10.1038/srep35455
https://doi.org/10.1016/j.toxlet.2018.01.021
https://doi.org/10.1002/biof.1469
https://doi.org/10.1038/nn.4030
https://doi.org/10.1016/j.cell.2017.11.042
https://doi.org/10.1016/j.neuro.2017.04.005
https://creativecommons.org/licenses/by/4.0/


+41 (0) 21 510 17 40 
adar@frontierspartnerships.org

fro.ntiers.in/JPyM 
frontierspartnerships.org

Contact

ADAR is the official journal of the International 

Drug Abuse Research Society and the 

International Narcotics Research Conference.

The journal aims to bring together drug and 

alcohol abuse scientists and clinicians from across 

the globe to share and discuss the current state 

of knowledge, challenges, and the future of drug 

addiction that continues to be a global problem.

Discover more of 
our Special Issues 

Publishing Partnerships

Substance 
Abuse and the 
Microbiome

Issue Editors

Prakash 
Nagarkatti

Mitzi Nagarkatti

Shilpa Buch

See more 

https://www.frontierspartnerships.org/journals/advances-in-drug-and-alcohol-research/research-topics
https://www.frontierspartnerships.org/journals?domain=all
https://www.frontierspartnerships.org/research-topics/4/substance-abuse-and-the-microbiome#articles

	Cover
	Substance Abuse and the Microbiome
	Table of contents
	Editorial: Substance abuse and the microbiome
	Author contributions
	Funding
	Conflict of interest

	Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation
	Introduction
	Mechanisms and Nature of Immunomodulation Caused by Cannabinoids
	Gut Microbiota, eCB System, and Gut-Brain Axis
	Alteration of the Gut Microbiota by Cannabinoids
	Immunomodulatory Mechanisms of Gut Microbiota
	Conclusion
	Author Contributions
	Funding
	Conflict of Interest
	References
	Glossary

	Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome
	Introduction
	Effects on bacterial growth and metabolism
	Effects on bacterial physiology and multi-cellular behaviors
	Effects on bacterial signaling
	Engineering bacteria to modulate host lipid signaling
	Discussion
	Author contributions
	Funding
	Conflict of interest
	References

	Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation
	Introduction
	Gut microbiome and the gut-brain axis
	Drug abuse and gut microbiome
	Opioids and HIV
	Cannabis and HIV
	Cocaine and HIV
	Methamphetamine and HIV
	Nicotine and HIV
	Conclusion and future perspectives
	Author contributions
	Conflict of interest
	References

	Gut-Microbiome Implications in Opioid Use Disorder and Related Behaviors
	The Microbiome and Behavior
	Morphine Induced Changes to the Microbiome
	Possible Links Between Microbial and Behavioral Changes
	Summary
	Author Contributions
	Conflict of Interest
	References

	Back Cover



