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Editorial on the Special Issue

Current Challenges and Advances on Infectious Diseases in Solid Organ Transplantation

Infection remains one of the most common complications after organ transplantation. The
epidemiology of infection in solid-organ transplant (SOT) recipients is shaped by the interplay
of two key factors: the lifelong use of immunosuppressive drugs impairing cellular immunity, and the
surgical procedure itself, along with the subsequent hospital stay [1]. SOT recipients are prone to
develop a wide range of infections, caused by opportunistic pathogens like cytomegalovirus (CMV)
and molds, to more common healthcare-associated infections, which may sometimes be caused by
multidrug-resistant (MDR) organisms. Additionally, certain pathogens can be linked to oncogenic
processes triggered by a loss of immune control.

Transplant infectious diseases cover therefore a broad spectrum of research areas, including viral
immunology, infection control strategies for MDR organisms, and complications related to
immunosuppression, among others. This diversity in managing infections in SOT recipients is
highlighted in this Special Issue titled “Current Challenges and Advances in Infectious Diseases in
Solid Organ Transplantation.”

Serris et al. summarized the 2023 Transplantation and Infection group annual meeting. Topics
discussed included antibiotic and non-antibiotic approaches to manage various infections in SOT
recipients. Innovative strategies to protect the gut microbiome are still under research, including fecal
transplantation and new molecules inactivating non-absorbed antibiotics in the gastrointestinal
tract. New antibiotic and antifungal drugs and the evidence to support their use in SOT recipients
were reviewed. Gaps in knowledge regarding management of asymptomatic bacteriuria after kidney
transplantation (KT) were discussed, including recent evidence to support avoiding antibiotic
treatment in the first 2 months following transplantation. Type and duration of therapy for
pyelonephritis, as well as innovative approaches for therapy and prevention are also discussed
(Serris et al.)

Matuschik et al. reported the results of 138 ABO-incompatible KT procedures performed at
Freiburg Transplant Center from 2004 to 2020. This retrospective study compared the use of single-
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use antigen-selective ABO columns (81 patients) versus reusable
nonantigen-specific immunoglobulin adsorption columns
(57 patients) and found that use of the latter was associated
with 3-fold increased risk for severe and recurrent post-transplant
viral and bacterial infections, mainly urosepsis. Rates of allograft
rejection were significantly higher with antigen selective ABO
columns (29% vs. 14%), though graft survival was similar. Two
years mortality was significantly higher with non-antigen specific
immunoadsorption (Matuschik et al.)

Walti et al. comprehensively reviewed the latest advancements
in the management of refractory and/or resistant CMV infection
(R/R CMV) and disease. As highlighted by the authors, R/R CMV
constitutes a challenging complication associated to worse graft
and patient outcomes, which is in part explained by the common
occurrence of drug toxicities with the use of options available to
date (i.e., foscarnet or cidofovir). The results of phase 2/3 clinical
trials with maribavir and letermovir are critically discussed, as
well as controversial questions regarding the risk of emerging
resistance, the benefit expected from combination therapy or
secondary prophylaxis, or the optimal donor source for CMV-
specific T-cells for adoptive immunotherapy. Observational
studies exploring the potential role of letermovir for the
treatment of R/R CMV were also scrutinized. Finally, the
review offers a valuable summary of authors’ institutional
guidelines and their personal view on this topic (Walti et al.)

The overall clinical picture of other herpesviruses relevant to
the SOT population due to their oncogenic potential—Epstein-
Barr virus (EBV) and human herpesvirus 8 (HHV8)— was
covered by (Atamna et al.). The authors provided a thorough,
albeit concise, overview of the epidemiology, risk factors,
diagnosis, and state-of-the-art therapeutic approaches for post-
transplant HHV8 disorders (Kaposi´s sarcoma, multicentric
Castleman disease, primary effusion lymphoma and
inflammatory cytokine syndrome) and EBV-related post-
transplant lymphoproliferative disease. Unmet needs in the
management of these complications, such as the optimal
screening strategy for HHV8 and EBV DNAemia or the pre-
emptive use of antivirals or rituximab in case of persistent and/or
high-level replication, were also discussed (Atamna et al.)

Namsiripongpun et al. reported a prospective study of 81 KT
recipients in Thailand who were monitored with a non-specific
interferon (IFN)-γ ELISpot assay at transplantation and at
1 month. The main outcome of interest was CMV infection.
In multivariable models, low IFN-γ ELISpot response at 1 month
was an independent predictor of CMV infection. Of the patients
with low IFN-γ response, >60% developed CMV infection
compared to 20% among patients with higher response. This
study, together with previous published literature, supports
the concept that the risk of later CMV infection can be
predicted by also non-specific cellular immune responses
(Namsiripongpun et al.)

The review by Bestard et al. gives a comprehensive overview of
immunobiology of CMV in transplantation and reviews the
current evidence for assessing CMV-specific cell-mediated
immunity (CMV-CMI). The potential of CMV-CMI assays to
predict the risk of infection has been well described, but until
recently clinicians have lacked data and advice on how to

implement these assays to aid decision-making in clinical
practice. The review very elegantly highlights the literature on
both observational and interventional trials and gives practical
recommendations and future directions on how to optimize the
clinical use of the CMV-CMI assays (Bestard et al.)

The review by Lombardi et al. provides a complete dissection
of the antibiotics active against MDR Gram-negative bacteria
approved over the last years, specifically ceftolozane/tazobactam,
ceftazidime/avibactam, meropenem/vaborbactam, imipenem/
relebactam, cefiderocol and eravacycline. Activity spectrum,
toxicity profile, clinical use, and PK/PD properties including
therapeutic drug monitoring in the setting of liver
transplantation were reviewed for each agent. The authors
underlined the need of studies on the safety and optimal
employment of these drugs in liver transplant recipients.

SOT recipients are particularly vulnerable to MDR organisms,
which significantly contribute to morbidity and mortality. Freire
et al. addresses the gap in systematic reporting of MDR organism
prevalence, especially across high-income (HIC) and low- and
middle-income countries (LMIC), where diagnostic tools,
screening practices, and drug availability vary. The review
focuses on major MDR Gram-negative organisms like
Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter
baumannii. It highlights the need for advanced diagnostics
and access to new antibiotics to improve outcomes in SOT
recipients. Standardization in MDR organism reporting and
global epidemiological understanding remains a
critical challenge.

Grasberger et al. performed a retrospective study in Finland
aimed at assessing the total burden of infections in recipients of
simultaneous pancreas-kidney transplantation (SPK) compared
with kidney transplantation alone (KTA). The authors compared
infection-related hospitalizations and bacteremias during 1- and
5-year follow-up after transplantation, among 162 SPK and
153 type 1 diabetics KTA patients. The inclusion criteria of
donor and recipient were age <60 and BMI <30. During the
first year, SPK patients had more infection-related
hospitalizations (0.54 vs. 0.31 PPY, IRR 1.76, p < 0.001) and
bacteremias (0.11 vs. 0.01 PPY, IRR 17.12, p < 0.001) compared to
KTA patients. SPK was an independent risk factor for infection-
related hospitalization and bacteremia during the first-year post-
transplant, but not during the 5-year follow-up. Patient survival
did not differ between groups, however, KTA patients had
inferior kidney graft survival.

SOT recipients are at an elevated risk for invasive mold diseases
(IMD). Isavuconazole, a novel broad-spectrum antifungal agent, has
shown a favorable profile, with good tissue penetration, minimal
drug interactions, and fewer adverse effects compared to other azoles
like voriconazole and posaconazole. Silva et al. conducted an
extensive literature review on isavuconazole use in IMD
treatment for SOT recipients. The review included 145 SOT
patients, mostly lung and kidney transplant recipients, treated
with isavuconazole mainly for Aspergillus infections. The drug
was well-tolerated, with manageable drug-drug interactions with
immunosuppressive agents. The authors have concluded that
isavuconazole presents as a viable alternative for IMD treatment
in this population, warranting further prospective studies.
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In conclusion, this Special Issue provides a comprehensive
overview of the epidemiology, prevention, and treatment of a
wide range of transplant infectious diseases. It emphasizes the
importance of novel multidisciplinary management strategies to
enhance allograft and patient outcomes.
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INTRODUCTION

This year’s GTI (“Groupe Transplantation and Infection”) annual meeting was held in Paris, France
in February 2023. This meeting focused on new approaches to manage infectious complications in
solid organ and stem cell transplant recipients.

In this meeting report, we summarize the presentations and discussions from this annual meeting.
Covered topics included new anti-infective agents and non-antibiotic approaches to manage infections
due to multidrug-resistant Gram-negative bacteria, staphylococci, and fungal infections, as well as new
approaches to manage symptomatic urinary tract infections and asymptomatic bacteriuria in kidney
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transplant recipients. Innovative approaches are needed to manage
infectious complications in transplant recipients, who are at high
risk of difficult-to-treat infections and side effects associated with
the use of anti-infective agents.

MANAGEMENT OF POST-TRANSPLANT
BACTERIAL INFECTIONS

Multidrug Resistant Enterobacterales
Infections in Solid Organ Transplantation:
Current Situation and New Non-Antibiotic
Approaches
Solid-organ transplantation (SOT) is the treatment of choice for
patients diagnosed with end-stage organ disease, and the median
survival of both recipients and grafts has significantly increased in
the last years [1]. While the incidence of infections (including
opportunistic ones such as cytomegalovirus [CMV]) is decreasing
due to better prevention, the burden of “classical” infections linked
to multidrug-resistant (MDR) bacteria especially related to Gram-
negative bacilli (GNB) is increasing [2, 3]. Multidrug resistant
Enterobacterales are involved in one-third of bacterial infections in
SOT recipients [4]. Prior intestinal colonization with ESBL
(extended spectrum beta-lactamase)-producing Enterobacterales
is an essential prerequisite for the onset of infection among SOT
recipients [5]. Furthermore, among patients with intestinal
colonisation with MDR (multidrug resistance) Enterobacterales,
prior exposure to anti-infectives appears to be a major risk factor
for subsequent infection due to the colonizing strain [5]. This can
be explained by an increase in intestinal density of resistant Gram-
negative bacilli (commonly referred as relative fecal abundance)
during antibiotic administration [6]. Antimicrobial stewardship
(AMS) programs are designed to improve the quality of prescribing
practices in terms of choice of antibiotic, dosage, duration, route
of administration and de-escalation. Benoit Pilmis presented
innovative AMS strategies aimed at limiting antibiotic-induced
dysbiosis, decolonizing patients colonized byMDREnterobacterales,
and restoring a healthy microbiota [7]. The efficacy of oral colistin-
neomycin in preventing multidrug-resistant Enterobacterales
(MDR-E) infections in solid organ transplant (SOT) recipients
have been evaluated previously in a multicentre, randomized,
controlled, open-label, parallel-group clinical trial [8] but showed
negative results in term of efficacy and tolerance (particularly for
colistin).

Among these strategies, the exact benefits of fecal
microbiota transplantation (FMT) remain unclear [9]. A
multicenter randomized controlled trial (FeCeS study)
evaluating the efficacy of FMT in decolonizing carriers of
ESBL- or carbapenemase-producing Enterobacterales will
provide an answer (NCT05035342). This indication of FMT
in decolonizing patients has been evaluated in allo-
hematopoietic stem cell transplant (allo-HSCT) recipients a
systematic review has been recently published [10]. FMT was
performed before or after HSCT but each time on a low
number of patients. Decolonization was obtained in 40%–
60% of cases. The majority of the included studies report

FMT as a generally well tolerated procedure, with no
serious adverse events. Interestingly, in the case series of
Shouval et al. two patients developed bacteremia after the
infusion, but targeted metagenomic sequencing demonstrated
that the bacterial strains did not originate from the FMT
inoculum [11].

Altogether, FMT seems an interesting option for
decolonization, but the safety profile and efficacy of the
procedure must be determined more strongly to better assess
the role of FMT in allo-HSCT recipients.

One-promising way to protect the gut microbiota is to develop
molecules to chelate or degrade the non-absorbed part of orally
administered antibiotics and the fraction of oral and parenteral
antibiotics excreted in the bile that reach the colon, induce dysbiosis
and a decrease in richness and diversity of the microbiota.
For example, ribaxamase (an orally administered beta-lactamase
hydrolyzing β-lactams in the colon appears promising in Phase
2 studies although limited to β-lactam antibiotics) and DAV-132
which is amillimetric beads consisting of a core of a specific activated
charcoal surrounded by a polymer coating that is insoluble during
transit. The charcoal is activated in the ileum and adsorbs and
thereby inactivates antibiotics in the caecum/colon [12–16]. For
now, no investigation of this strategy exist in transplant recipients
but its evaluation and implementation are of interest in the TOS
patients, a population highly exposed to antibiotics.

Multidrug Resistant Enterobacterales
Infections in Solid Organ Transplantation:
New Antibiotics
Antibiotic-resistant Gram-negative bacterial infections are the
leading cause of death attributable to antibiotic resistance in
Europe and worldwide. This is linked to the epidemic success of
3rd generation cephalosporins (3GC)- resistant Enterobacteriaceae.
The widespread use of carbapenems to treat 3GC-resistant strains
has led to the emergence of carbapenem-resistant isolates, in
particular those secreting carbapenemases, with very limited
therapeutic options. New molecules have recently been
developed to combat carbapenem-resistant bacteria. Victoire
de Lastours summarized the updated antimicrobial
management of carbapenem-resistant bacteria related infection.

These include ceftazidime-avibactam, a combination of a 3GC
with a new betalactamase inhibitor, avibactam. This combination
is effective on strains carrying OXA 48 or KPC, but not
metallobetalactamases. This molecule was granted
authorization in Europe and the USA following 3 phase
3 trials in complicated intra-abdominal infections versus
meropenem, as well as two trials in complicated urinary tract
infections yielding non-inferiority. In a retrospective cohort study
of 210 SOT recipients with carbapenemase-producing Klebsiella
pneumoniae blood stream infections, ceftazidime-avibactam
significantly increased the probability of 14 and 30 days
clinical success, as compared to the best available therapy [17].

A second compound, meropenem-varbobactam, is also active
against class A betalactamases (KPC) and cephalosporinases, but
inactive against metallobetalactamases and oxacillinases, which
limits its interest in some European coutries such as France,
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where KPCs are rare. Non-inferiority has been demonstrated in
several trials against optimized treatment. A third molecule,
imipenem-relebactam, is also active against KPCs but not
against oxacillinases or metallobetalactamases. Imipenem-
relebactam is also effective against carbapenem-resistant strains
of Pseudomonas aeruginosa, but not against carbapenem-resistant

Acinetobacter baumanii (CRAB). The molecule has been approved
in France only as a last resort for the treatment of patients with no
other possible therapeutic alternative, and in particular if KPC-type
carbapenemase are produced.

Altogether, several choices are now available to treat KPC and
OXA-48 oxacillinases which are approved in France and Europe.

TABLE 1 | Spectrum of new antibiotics regarding the type of resistance.

Abbreviations: ABRI, Acinetobacter baumani mutli resistant; ATB, antibiotic; carba-R, carbapenem-resistant.

TABLE 2 | Spectrum of activity, tissue diffusion and drug-drug interactions (DDIs) with immunosuppressive drugs of olorofim, ibrexafungerp and rezafungin.

Molecule Spectrum of activity Diffusion DDIs with immunosuppressive drugs Potential advantages

Olorofim Aspergillus spp. Scedosporium
spp. Lomentospora prolificans Fusarium
spp. Histoplasma capsulatum
Blastomyces dermatitidis
Coccidioides spp.

• Good diffusion in kidney, liver,
and lung

• Substrate of several CYP450 enzymes:
anticipate dose reduction if given with a
strong 3A4 inhibitor (or a moderate dual
3A4+2C9 inhibitor)

Active against highly
resistant molds

• Low levels in CNS [54] • Weak inhibitor of CYP3A4: small
reductions of tacrolimus and sirolimus
might be needed (guided by standard
monitoring)

ibrexafungerp Candida spp. including echinocandin
resistant C. glabrata and C. auris
Aspergillus spp. Paecilomyces variotii
Pneumocystis jirovecii

• Good diffusion in liver, spleen,
lungs, bone marrow, kidney, skin
and uvea

• Substrate of CYP3A and P-glycoprotein:
avoid coadministration of strong CYP3A
inducers

• Active against
resistant Candida
species

• Low levels in CNS [65] • Reversible inhibitor of CYP2C8 and
CYP3A4

• First orally bioavailable
inhibitor of [1(3)- β-D-
glucan synthase]

• interaction with tacrolimus: 1.4-fold
increase in AUC; no change in tacrolimus
Cmax [66]

Rezafungin Candida spp. Aspergillus
spp. Pneumocystis jirovecii

Improved drug penetration in liver
and kidney abscesses (mouse
model of intra-abdominal
candidiasis) in comparison with
micafungin [67]

Minimal inhibition of CYP450 enzymes [68]:
Limited reduction (10%–19%) of the AUC or
Cmax of tacrolimus, ciclosporine and
mycophenolic acid (probably not clinically
meaningful) [69]

• Long half-life allows
once weekly dosing

• Less hepatotoxicity
• May prevent

Pneumocystis
pneumonia [61, 62]
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For carbapenem-resistant P. aeruginosa, ceftolozane-tazobactam
is generally effective. Tolerance is generally good (as with beta-
lactams), and these molecules are bactericidal. However, these
molecules are not effective against metallobetalactamases nor
against most CRAB, which poses major therapeutic problems.
Its use was reported in a multicenter cohort study of
69 immunocompromised patients including 47 SOT, with
multi-drug resistant P. aeruginosa infections, mostly
respiratory and wound. Clinical cure was achieved in 68% and
mortality was 19% [18].

A recently approved molecule, cefiderocol, is a siderophore
cephalosporin which uses the bacterial iron entry machinery to
achieve high concentrations inside the bacteria. It is unaffected
by betalactamases, even metallobetalactamases, and acts as a
Trojan horse. In pivotal trials, cefiderocol showed non-
inferiority to high-dose meropenem in the treatment of
gram-negative nosocomial pneumonia, except for A.
baumanii infections, a result that remains unexplained.
Cefiderocol has been marketed in Europe and the USA only
as a last resort for infections caused by multi-resistant gram-
negative bacteria, notably in cases of KPC and metallo-
betalactamases.

This molecule therefore represents an important therapeutic
hope, although it appears to have a relatively significant inoculum
effect, which needs to be better studied. Finally, some cefiderocol-
resistant strains have been described, combining several
resistance mechanisms. To date, very few data are available in
specific immunocompromised settings including solid organ
transplantation [19], hematological malignancies [20, 21].
Most Cefiderocol prescriptions have primarily targeted multi-
resistant severe P. aeruginosa infections, but its use has broadened
to other difficult-to-treat non-fermentative gram negative
bacteria, especially S. maltophilia for which its complex
virulence and resistance profile drastically limit available
antibiotics. Updated clinical and safety outcome data are
needed in highly susceptible immunocompromised settings.

Another interesting combination in this context is
ceftazidime-avibactam + aztreonam for strains carrying
metallo-betalactamases. Several studies have demonstrated the
efficacy of the avibactam + aztreonam combination, which is
currently being developed by the manufacturer. An inoculum
effect could also have an impact on the efficacy of this
combination. This combination proved effective and safe in a
serie of 4 SOT recipients with metallo-β-lactamase
carbapenemase-producing Enterobacteriaceae [22].

Lastly, plazomicin, an aminoglycoside developed for the
treatment of carbapenem-resistant Enterobacteriaceae
infections, had shown interesting results in the United States,
but was not developed in Europe due to its low commercial
potential.

Treatment recommendations for carbapenem-resistant
infections are summarized in the 2022 ESCMID guidelines
[23]. Several new molecules are under development and could
be of interest for the treatment of these infections, particularly
those due to organisms producing a metallobetalactamase, such
as cefepime-taniborbactam and meropenem-nacubactam.
Studies are currently underway.

Finally, in the face of this type of infection, optimizing the use
of available molecules is a crucial point, including rapid diagnosis
of resistance, determination of MICs (minimal inhibitory
concentration) for the different molecules and combinations
available, and optimization of dosages with the use of high
doses and prolonged infusions. Last but not least,
multidisciplinary discussions between microbiologists and
clinicians and the reduction of bacterial inoculum through
drainage are essential. A summary of antibiotics efficiency
regarding resistance mutation has been made in Table 1.

New Approaches to Manage Urinary Tract
Infections in Kidney Transplant Recipients
The management of urinary tract infections (UTIs) in kidney
transplant recipients represents a major opportunity for
antimicrobial stewardship because kidney transplantation is
the most common type of organ transplant worldwide, and
because UTI is the most common infection in this population
[3, 24]. Julien Coussement summarized the most recent evidence
about the management of post-transplant symptomatic UTI and
asymptomatic bacteriuria, and identified gaps of knowledge and
clinical scenarios that remain understudied.

Asymptomatic bacteriuria, which is generally defined as
significant bacteriuria (≥100.000 CFU/mL) without signs or
symptoms of UTI (e.g., fever, chills, kidney pain, or symptoms
of bladder inflammation), is relatively common after kidney
transplantation [24].

Recent randomized trials have shown that the historical practice
of screening for and treating asymptomatic bacteriuria is not
beneficial in stable kidney transplant recipients [25–28]. A
limited-size trial even suggested that asymptomatic bacteriuria
might be left untreated in patients who are in the first 2 months
post-transplant and have a ureteral stent [29]. Additional
opportunities probably exist to improve the care of kidney
transplant recipients with pyelonephritis. First, research is needed
to determine the benefits and harms associated with the empiric use
of very broad-spectrum antibiotics in kidney transplant recipients
admitted for presumed pyelonephritis [24]. Second, a randomized
trial is starting to determine whether 7 days of antibiotic therapy can
be sufficient to treat non-severe episodes of pyelonephritis in kidney
transplant recipients who are beyond the first month post-
transplant and do not have a urinary catheter [30–32].

Besides, innovative non-antibiotic-based approaches are
needed to better prevent symptomatic UTIs, which remain
prevalent and detrimental after kidney transplantation. Julien
Coussement discussed the potential benefits, harms and
applicability of emerging approaches, including anti-adhesion
therapies (which aim at preventing bacterial adhesion to host
tissues, and therefore decreasing the risk of UTI) [33], intravesical
instillation of a low-virulence organism (which aims at promoting
bacterial interference) [34], and FMT (which aims at
repopulating the gut with a “healthy” microbiome that could
outcompete uropathogens) [35–38]. Vaccine candidates that are
in development against extra-intestinal pathogenic Escherichia
coli are also promising [39]. Many challenges, however, exist,
including the fact that transplant recipients generally have an
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impaired immune response to vaccines, and the fact that around
half of the UTI episodes which occur after kidney transplantation
are due to microorganisms other than E. coli.

New Antibiotics to Treat Infections Due to
Gram-Positive Cocci
Aurélien Dinh reminded the drawbacks of vancomycin and
daptomycin, before presenting new antibiotics targeting gram-
positive cocci.

Vancomycin is a relatively old and difficult-to-manage
glycopeptide. Several new antibiotics with activity against
methicillin-resistant Staphylococci are now available.

Daptomycin is bactericidal and as effective as penicillin M
against methicillin-susceptible Staphylococcus aureus and
vancomycin for methicillin-resistant S. aureus, according to
a randomized controlled trial (RCT) on bloodstream
infections (BSI) [40]. Nevertheless, some treatment failures
due to inoculum effect have been observed, and bacterial
resistance is described, even among patients without
previous exposure to this drug, which could be due to in
vivo exposure to endogenous cationic peptides [41]. In liver
transplant recipients, such resistance was indeed associated
with prior daptomycin use and increased mortality [42]. In
kidney transplant recipients, combinations of daptomycin and
other antibiotics have also been suggested for resistant
enterococcal infections [43, 44].

Dalbavancin is a new long acting glycolipopeptide, with a half-
life of 14 days. MIC of dalbavancin against S. aureus and resistant
coagulase-negative staphylococci are low. One retrospective
cohort compared dalbavancin versus standard of care in
patients with S. aureus bacteremia and found no significant
difference [45]. Two RCTs are currently underway to better
determine the effectiveness of dalbavancin in patients with S.
aureus bacteremia [46, 47]. Dalbavancin is of particular interest
for patients requiring prolonged antibiotic therapy, such as those
with endocarditis or bone and joint infection (BJI) such as
prosthetic joint infections. Several cohorts and literature
reviews found dalbavancin to be safe, with nearly 80% cure
rate in these indications and high level of patient satisfaction,
mostly due to early discharge [48].

Ceftaroline and ceftobiprole are new generation
cephalosporins with excellent activity against methicillin-
resistant staphylococci according to bacterial killing curves
[49]. Clinical efficacy during BJI and endocarditis are
promising according to cohort studies [50, 51]. The
ERADICATE trial comparing ceftobiprole versus daptomycin
in S. aureus bacteremia showed non-inferiority [52].

So far, to our knowledge, no data exist regarding the use of
dalvabancin, ceftaroline and ceftobiprole in SOT recipients.

Finally, oritavancin is a recently available lipopeptide, with a
semi long-life activity (7 days) and important intra-cellular
activity, which could be of interest for device-associated
infection with biofilm [53].

These new antibiotics may allow new management and
innovative approaches to treat patients with infections due to
resistant Staphylococci.

MANAGEMENT OF FUNGAL INFECTIONS

Because of the toxicities of the available drugs and the emergence
of resistance caused by an increased use of antifungal agents in the
growing population at risk of invasive fungal diseases and in
agriculture, there is a pressing need for more antifungal drug
options. Recently, several new antifungal drugs have reached late-
stage clinical development and obtained a temporary use
authorization, as depicted by Alexandra Serris.

Olorofim is the only member of a novel class named
orotomide. It inhibits fungal growth through inhibition of the
fungal dihydroorotate dehydrogenase enzyme involved in
pyrimidine synthesis. It has a good tissue distribution, notably
in the kidney, liver, lung, and the brain (although at lower levels)
[54]. It is metabolized by several CYP450 enzymes including
CYP3A4 and is thus susceptible to strong CYP3A4 inhibitors and
inducers. Olorofim exhibits activity in vitro against azole-
resistant Aspergillus, Scedosporium, Lomentospora, Rasamsonia,
dimorphic fungi (notably Histoplasma), dermatophytes, but has
no activity against yeasts, Mucorales and Alternaria alternata
[55, 56].

Olorofim is currently evaluated in two clinical studies: one
open-label, single-arm study including patients with invasive
fungal infections due to Lomentospora prolificans,
Scedosporium spp., Aspergillus spp., and other resistant fungi
with limited treatment options (ClinicalTrials.gov identifier:
NCT03583164) and one phase III, randomized study to
evaluate the efficacy and safety of olorofim versus liposomal
amphotericin B in patients with invasive aspergillosis
(ClinicalTrials.gov Identifier: NCT05101187). Published
experience is currently limited to case reports (abstracts).

Ibrexafugerp is a first-in-class oral glucan synthase inhibitor,
whose mechanism of action is close to the one of echinocandins
(but with a different binding site). It is fungicidal against most
wild-type, echinocandin or azole-resistant Candida spp.,
including C. auris, and fungistatic against Aspergillus spp [57].
Based on animal models, ibrexafungerp shows a high tissue
penetration in the spleen, liver, lungs, kidney, vaginal tissue,
and muscles, but not in the brain [58].

An interim analysis of the phase III FURI study evaluating the
efficacy and safety of ibrexafungerp in patients with severe
mucocutaneous candidiasis, invasive candidiasis, chronic or
invasive aspergillosis reported complete or partial response in
58% of the patients [59]. Inclusion criteria were further expanded
to include histoplasmosis, coccidioidomycosis and blastomycosis.

Rezafungin is the first member of second-generation
echinocandins with enhanced pharmacokinetic/
pharmacodynamic parameters, allowing for a weekly
administration and potential less hepatic toxicity [60]. It has
potent in vitro activity against most Candida spp., including C.
auris, and common dermatophytes [58].

Moreover, rezafungin has shown promising results as
prophylactic and curative treatment of pneumocystis in vivo
by eradicating both the cyst and trophic forms of the fungus
[61, 62]. A case report of the successful eradication of a refractory
intra-abdominal candidiasis with rezafungin in a liver transplant
recipient was published in 2022 [63] and rezafungin was recently
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found non-inferior to caspofungine in a Phase 3 trial (ReSTORE)
for the treatment of candidemia/invasive candidiasis [64].

These antifungal treatments offer significant improvement in
terms of spectrum of activity, tolerability, drug interactions and/
or route of administration. Further clinical studies will be needed
to evaluate their optimal place in the therapeutic arsenal in the
solid organ transplant recipient population, taking into account
the emergence of drug-resistant fungi and the problem of drug-
drug interactions with immunosuppressants. Table 2 summarize
the Spectrum of activity, tissue diffusion and drug-drug
interactions (DDIs) with immunosuppressive drugs of
olorofim, ibrexafungerp and rezafungin.

CONCLUSION

During the well-attended “Infection and Transplantation
Group” day, the major advances in the field of new anti-
infective therapies in transplantation were presented and
discussed. New direct and indirect anti-infective approaches in
transplantation are devoted to several improvements:

- decrease antibiotics pressure in our high risk multidrug
resistant bacteria population with a better use of already
known antibiotics and new original non-antibiotic
approaches that have promising usages.

- improve efficacy of bacterial and fungal treatment with
antibiotics or antifungal therapy that have a good
inoculum effect and a good broadcast

- improve the tolerance of antimicrobial drugs in our
polymedicated population with high risk of drugs interactions.

Altogether, those new approaches are likely to feature
alternative anti-infective therapies that promise to change
patient management.
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Non-antigen-specific
Immunoadsorption Is a Risk Factor for
Severe Postoperative Infections in
ABO-Incompatible Kidney Transplant
Recipients
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ABO-incompatible (ABOi) living kidney transplantation (KTx) is an established procedure to
address the demand for kidney transplants with outcomes comparable to ABO-
compatible KTx. Desensitization involves the use of immunoadsorption (IA) to eliminate
preformed antibodies against the allograft. This monocentric retrospective study
compares single-use antigen-selective Glycosorb

®
ABO columns to reusable non-

antigen-specific Immunosorba
®

immunoglobulin adsorption columns regarding
postoperative infectious complications and outcome. It includes all 138 ABOi KTx
performed at Freiburg Transplant Center from 2004–2020. We compare 81 patients
desensitized using antigen-specific columns (sIA) to 57 patients who received IA using
non-antigen-specific columns (nsIA). We describe distribution of infections, mortality and
allograft survival in both groups and use Cox proportional hazards regression to test for the
association of IA type with severe infections. Desensitization with nsIA tripled the risk of
severe postoperative infections (adjusted HR 3.08, 95% CI: 1.3–8.1) compared to sIA.
nsIA was associated with significantly more recurring (21.4% vs. 6.2%) and severe
infections (28.6% vs. 8.6%), mostly in the form of urosepsis. A significantly higher
proportion of patients with sIA suffered from allograft rejection (29.6% vs. 14.0%).
However, allograft survival was comparable. nsIA is associated with a two-fold risk of
developing a severe postoperative infection after ABOi KTx.
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GRAPHICAL ABSTRACT

INTRODUCTION

ABO-incompatible (ABOi) kidney transplantation (KTx) has
become an established procedure to meet the demand for
kidney transplants in patients with end-stage renal disease
[1–3]. To prevent hyperacute or acute antibody-mediated
allograft rejections due to pre-existing antibodies in the
recipient, different ABOi protocols have evolved over the past
years. These protocols have led to patient and graft survival rates
comparable to conventional ABO-compatible (ABOc)
transplantations [4, 5]. In accordance with Tydén’s initial
desensitization protocol, our institution’s protocol has now
been used for nearly 20 years [6]. It entails anti-CD20
treatment with Rituximab (375 mg/m2), serial
immunoadsorption (IA) to eliminate preformed allograft
antibodies and initiation of immunosuppressive maintenance
therapy 9 days before the scheduled transplantation [1, 6].
From April 2004 until November 2011, antigen-specific
Glycosorb® ABO columns (sIA) were used to perform IA.
These single-use columns contain the specific terminal
carbohydrates of type A or B antigens as ligands linked to a
sepharose matrix to eliminate donor-specific anti-A or anti-B
IgM and IgG [7, 8]. FromDecember 2011 until now, we have used
reusable non-specific Immunosorba® immunoglobulin
adsorption columns (nsIA). They use staphylococcal antigen
A, covalently linked to a sepharose matrix as the stationary
phase of chromatography. Therefore, predominantly IgG1,
IgG2 and IgG4, but also, to a lesser extent, IgA and IgM can
be eliminated [9]. Several clinical studies found significantly

higher rates of severe infections and infection-related mortality
in ABOi transplanted patients compared to ABOc controls
[10–12]. Only a small study investigated endpoint differences
associated with IA modality in ABOi which showed no difference
in infectious complications [13].

Based on our clinical experience, we suspected an association
of nsIA with severe postoperative infectious complications.

To investigate this, we meticulously describe distribution of
clinical covariates and infectious complications during the first
postoperative year in nsIA and sIA KTx recipients. Secondly, we
test whether nsIA is an independent risk factor for postoperative
infections. Finally, we investigate whether nsIA is an independent
predictor of recipient and graft survival in ABOi KTx.

PATIENTS AND METHODS

Patients and Study Design
From 1 April 2004 until 16 June 2020 138 patients underwent
ABOi living donor KTx in our Transplant Center. Mean patient
follow-up is 7.4 years (2,703 days). This investigation is a
monocentric retrospective analysis. The protocol was approved
by our local IRB and registered in the German Clinical Trials
Register (protocol number 296/20; registration number:
DRKS00022385). All patients of the Freiburg living donor
kidney program gave written informed consent for collecting
and storing data in our living donor transplant registry.

The donor was examined during a 3-day inpatient stay.
Statutory approval was given by the transplantation ethics

Transplant International | Published by Frontiers March 2024 | Volume 37 | Article 122632

Matuschik et al. nsIA Increases Infections in ABOi KTx

21



committee of the District Medical Association Südbaden. The
surgical procedure, graft preparation and recipient follow-up
were performed as described before [14]. For the whole study
period from 2004 to 2019, we used the ureteral stent OptiFlex 6 F
22 cm (OptiMed GmbH, Ettlingen, Germany). During the first
two postoperative weeks, all recipients were treated on our
transplant intermediate care ward.

Pre-transplant data were collected from the recipients’ local
nephrologists and clinical data from clinical records. Clinical data
were documented in the patients’ EMR during the whole study
period. Follow-up data were documented in the EMR as well, as
our nephrological transplant outpatient clinic uses the same
hospital-wide electronic system. Delayed graft function was
defined as the need of ≥1 dialysis treatments during the first
7 postoperative days. Graft loss was defined as the need to resume
dialysis permanently caused by irreversible graft failure. Acute
reversible graft failure was not included in statistics. The data of
one patient, who died several hours after the transplantation due
to myocardial infarction, are included in survival analysis, but not
in the analysis of infections.

Immunosuppression Regimes,
Desensitization Protocol
Single-dose Rituximab (375 mg/m2 body surface; MabThera®,
Roche Pharma AG, Grenzach-Wyhlen, Germany or Truxima®,
Millmount Healthcare Ltd., Stamullen, Ireland) was administered
approximately 30 days before the scheduled transplantation.
Triple maintenance immunosuppression therapy was started
9 days before transplantation with the calcineurin-inhibitor

tacrolimus (Prograf®, Astellas Seiyaku K.K., Tokyo, Japan;
initial target trough level 12–15 ng/mL), mycophenolic acid
(CellCept®, Roche Pharma AG, Grenzach-Wyhlen, Germany;
2,000 mg daily) and prednisone (30 mg daily). In case of
tacrolimus intolerance (3 patients), the regimen was switched
to cyclosporine (Sandimmun Optoral®, Novartis AG,
Switzerland).

Additionally, induction therapy with 20 mg Basiliximab
(Simulect®, Novartis AG, Basel, Switzerland) was administered
on the day of transplantation and on day 4 after transplantation.
In two patients, hypersensitivity against Basiliximab was detected;
these patients received thymoglobulin (Sanofi-Aventis, Paris,
France). IA was started 8 days before the scheduled
transplantation date and performed on commercially available
apheresis devices (Octo Nova™, Diamed Medizintechnik,
Cologne, Germany) with hollow-fiber plasma separators (P2™,
Fresenius Medical Care, Bad Homburg, Germany or Microplas
MPS 07™, Bellco/Medtronic, Dublin, Ireland). The study profile
is depicted in Figure 1. From April 2004 until November 2011,
sIA was performed in 81 patients using antigen-specific
Glycosorb® ABO columns (Glycorex, Lund, Sweden). These
single-use columns contain the specific terminal carbohydrates
for A or B blood group antigens as ligands linked to a sepharose
matrix to eliminate the specific anti-A or anti-B isoagglutinins.
From December 2011 until June 2020, reusable non-antigen-
specific Immunosorba® immunoglobulin adsorption columns
(Fresenius Medical Care, Bad Homburg, Germany) were used
in 57 patients. These columns use staphylococcal antigen A,
covalently linked to a sepharose matrix, as the stationary
phase of chromatography. Immunoadsorption was performed

FIGURE 1 | Study profile. 138 patients received ABO-incompatible living kidney transplantation after desensitization using different immunoadsorption columns.
ABOi, ABO-incompatible; IA, immunoadsorption; KTx, kidney transplantation.
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every other day as described before [15], until the target titers of
isoagglutinins (IgG and IgM) against donor erythrocytes were ≤1:
4 on the day of surgery. If this target titer could not be reached
until the scheduled date of KTx, IA was performed preoperatively
on the day of surgery. In this case, the first titer measured after
transplantation is used for statistics. Plasmapheresis (PPh) was
initiated when isoagglutinin target titer levels could not be
achieved by the preceding immunoadsorptions.

After transplantation, monitoring of isoagglutinin titers was
performed daily during the first 7 days and every other day until
the 14th postoperative day. If titers exceeded 1:8 IgM/IgG in the
first week and 1:16 IgM/IgG in the second week post
transplantation, immunoadsorption was scheduled on the
same day.

IgG/IgM isohaemagglutinin titers were measured by our
Medical Center’s Department of Transfusion Medicine. The
first anti-donor isohaemagglutinin titers were quantified by a
conventional tube centrifugation haemagglutination test
(described by Winters et al. [16]). However, in mid-2007,
i.e., after the first 20–30 ABOi KTx were performed in our
center, a gel centrifugation haemagglutinin test with donor
erythrocytes, able to distinguish between IgG and IgM
isohaemagglutinins, was established (using the Diamed-
Coombs-Anti-IgG® and Diamed-ID-NaCl® systems; DiaMed
Diagnostika, Germany (current names: Coombs Anti-IgG and
NaCl, BIO-RAD, Germany)). A detailed description of the
method is provided by Wilpert et al. [15]. For quality control,
the previous sample or pooled plasma of ten random donors are
tested simultaneously. Antigen density proved to be stable,
however, a direct correlation to renal tissue antigen density
cannot be drawn.

Maintenance immunosuppression was administered as
described before and not altered during the observation period
[1]. All patients received anti-infective prophylaxis comprising
valganciclovir for 100 days in CMV positive recipients and for
200 days in a high-risk constellation with a CMV seropositive
donor, but negative recipient. Trimethoprim/sulfamethoxazole
was administered for 6 months post transplantation and
fluconazole prophylaxis until postoperative day 28.

Infections
Risk of severe infectious complications during the first year after
KTx was the primary endpoint of this retrospective study. In line
with several other clinical studies [10, 12, 17], we distinguished
between non-severe and severe infections in order to enhance the
discriminatory power between uncomplicated postoperative
developments and clinically relevant adverse events. Severe
infections required the detection of pathogens in the blood
stream or the state of sepsis according to the Third
International Consensus Definitions for Sepsis and Septic
Shock [18]. Every case of severe infection was objectified by
the presence of organ dysfunction according to a SOFA
(Sequential (Sepsis-related) Organ Failure Assessment)
score ≥2 [18]. All cases of severe infections were treated
within the University Medical Center in Freiburg. For all
138 patients, in-house and outpatient microbial findings (from
the local nephrologists) were meticulously checked to determine

infection severity in a valid way. We differentiated between
bacteriuria, which included all urinary samples with detected
pathogens, and urinary tract infections (UTIs) with a pathogen
amount ≥ 105/mL urine. Urine cultures were collected solely
when an infection was suspected, i.e., when patients had
symptoms such as dysuria, a urine test strip showing
leukocyturia or nitrite-positivity, or the blood count showed
elevated inflammatory values. Antibiotic prophylaxis to
prevent UTI was not used in our center. Standard antibiotic
treatment of UTIs had to be changed in 2019 following a “Rote
Hand-Brief” of the European Medicines Agency and the German
Institute for Drugs and Medical Devices, replacing norfloxacin
with amoxicillin/clavulanic acid as standard antibiotic due to its
potentially harmful side effects, especially in combination with
corticosteroids. After obtaining the results of microbial urine
culture, the antibiotic regimen was altered according to microbial
resistance if necessary. Standard perioperative antibiotic
prophylaxis comprised cefazoline and metronidazole.
Recurring infections were defined as ≥ 2 infections (not
necessarily of the same pathogen) during the first year after
transplantation requiring therapy and/or hospitalization.
Multi-drug resistance was defined according to the
International Expert Proposal for Interim Standard Definitions
for Acquired Resistance as “acquired non-susceptibility to at least
one agent in three or more antimicrobial categories” [19].
Patients were considered CMV- or BKV-positive with virus
replications over 1,000 IU/mL (serum) respectively. BKV
nephropathy was defined as histologically proven BK virus
infection. CMV was monitored once weekly via PCR during
the initial hospitalization period after KTx. Afterwards, controls
were made after 4, 8 and 12 weeks and after 3, 6, 9 and 12 months.
From the second year after KTx, CMV was monitored based on
clinical symptoms. Treatment of CMV infection included high-
dose valganciclovir. Treatment was initiated in patients with virus
replications over 1000 IU/mL and continued until replication rate
was not detectable any more for two consecutive weeks. In cases
of valganciclovir resistance, foscavir (and recently letermovir) was
used. BKV PCR was performed after 3, 6, 9 and 12 months. When
serum virus replications exceeded 1,000 IU/mL, a biopsy to rule
out BKV nephropathy was conducted. If positive,
immunosuppression was reduced, beginning by reducing the
mycophenolate dose. Further adjustments of the
immunosuppressive therapy are made stepwise, depending on
the individual risk of rejection and BKV replication.

Statistical Analysis
Results were defined as statistically significant when p < 0.05, all
p-values being two-sided. All data were considered non-normal-
distributed.

Severe postoperative infections were determined as primary
endpoint. Categorical data are displayed as absolute and relative
frequencies; a two-tailed Fisher’s Exact test was performed for
comparison. Continuous data are expressed as median and 95%
confidence interval (CI); for analysis, Mann-Whitney-U test was
used. The cumulative incidence of postoperative infections was
assessed by a competing risk analysis using the Aalen-Johansen
estimate via the “survfit” function in R [R version 4.1.2 (2021-11-
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TABLE 1 | Baseline and extended characteristics of donors and recipient groups receiving either antigen-specific or non-antigen specific immunoadsorption before ABO-
incompatible kidney transplantation.

Antigen-specific IA (81 patients) Non-antigen specific IA (57 patients)

Recipients’ Characteristics

Female sex, recipient (n (%)) 34 (42) 24 (42.1)
Age at transplantation, recipient (years) 46 (42, 49) 51 (45, 53)
BMI, recipient (kg/m2) 24.3 (22.9, 25.5) 24.2 (23.3, 26.3)
ASA category, recipient (median (interquartile range)) 3 (2, 3) 3 (3, 3)
Dialysis before transplantation (n (%)) 67 (82.72) 41 (71.93)
- Pre-emptive transplantation (n (%)) 14 (17.28) 16 (28.07)
Duration of dialysis before transplantation (months) 25 (17, 35) 17 (12, 27)
No. of HLA mismatches A + B + DR 4 (3, 4) 4 (3, 4)
PRA level (≥5%) (n (%)) 16 (19.75) 3 (5.26)
- Maximum PRA level 96% 66%

Donors’ Characteristics

Female sex, donor (n (%)) 51 (62.96) 31 (54.39)
Age at transplantation, donor (years) 50 (48, 52) 53 (50, 55)
Genetic relationship (haploidentical parents or siblings) (n (%)) 27 (33.33) 17 (29.83)

Surgical Data

Duration of surgery (min) 168 (150, 180) 146 (127, 157)
Ischemia time, total (min) 183 (172, 190) 172 (163, 185)
- Cold ischemia time 147 (136, 158) 142 (137, 157)
- Warm ischemia time 30 (29, 33) 25 (24, 28)
Duration of hospitalization (days) 19 (18, 21) 19 (18, 23)

Immunological Data

Total no. of IA 5 (5, 6) 5 (4, 5)
- No. of preoperative IA 5 (5, 6) 4 (4, 5)
- IA on the day of surgery (n (%)) 53 (65.43) 13 (22.81)
No. of patients undergoing PPh (n (%)) 24 (29.6) 45 (78.95)
- Total no. of PPh when needed 2.5 (2, 3) 2 (2, 3)
- No. of preoperative PPh when needed 2.5 (2, 3) 2 (2, 2)
- PPh on the day of surgery (n (%)) 2 (2.47) 7 (12.28)
High IgM/IgG titer (≥1:256) before Rituximab (n (%)) 22 (27.85) 14 (24.56)
- Total no. of IA 7 (5, 9) 5 (4, 6)
- No. of patients undergoing PPh (n (%)) 10 (45.46) 14 (100)
- Total no. of PPh when needed 3 (1, 5) 2 (2, 5)
- Total no. of IA + PPh 9.5 (8, 17) 8.5 (7, 13)
Total no. of IA + PPh (all patients) 6 (5, 8) 6 (6, 7)

Infectious Complications

Any infection (n (%)) 59 (72.8) 40 (71.4)
- Days from KTx to first infection 11 (9, 20) 9 (7, 12)
Recurring infections (n (%)) 5 (6.17) 12 (21.43)
Severe infection (n (%)) 7 (8.6) 16 (28.6)
- Days from KTx to first sepsis 61 (5, 239) 56 (22, 126)
- Septic shock (n (%)) 2 (28.6) 5 (31.3)

Bacterial and Opportunistic Infections

Blood culture pathogen detection (n (%)) 7 (8.6) 16 (28.6)
Urinary tract infections (n (%)) 38 (46.9) 24 (42.9)
- Multidrug-resistant bacteria (n (%)) 8 (21.1) 8 (33.3)
- Urosepsis (n (%)) 4 (10.5) 13 (54.2)
- Duration of ureteral stenting (days) 14 (13, 14) 20 (13, 40)

Viral Infections

BKV
- BK viremia (n (%)) 10 (12.4) 16 (287)
- Highest BK virus replication no. (copies/mL) 124,340 (14,100, 1,341,500) 138,864 (30,000, 86,300)
- Days from KTx to first BKV positivity 161.5 (85, 289) 100 (63, 180)

(Continued on following page)
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01) -- “Bird Hippie”], Gray’s test was added to test for a difference
between groups over the entire follow-up period. To set the focus
on the time of onset of infections, only the first episode of a non-
severe and the first episode of a severe infection per patient were
taken into account. Multivariable Cox proportional hazards
regression analysis was performed to examine the association
of IA modality and severe postoperative infections. “Severe
infection” was modelled as a binary categorical outcome.
“Severe infections” were distinguished from “non-severe
infections” as defined above (bacteremia or SOFA score ≥2).
The proportional hazard assumption was tested by visualizing
Scaled Schoenfeld residuals vs. time (Supplementary
Figure S1).

Patient and graft survival were investigated as secondary
endpoints. To be able to include all 138 patients into this
analysis, we set the cut-off at 2 years post transplantation. Cox
proportional hazards regression analysis was performed to
identify risk factors associated with graft loss and mortality
during the first 2 years after ABOi KTx. Acute rejection
episodes were not included in the multivariable models. We

aimed at creating a regression model with adjustment for,
according to our experience, clinically relevant and biologically
plausible confounders. To validate the regression model used,
Goodness-of-fit was examined via Partial likelihood ratio test,
Wald test and Score test. Multicollinearity was evaluated using
variance inflation factors (Supplementary Table S1).

GraphPad Prism version 9.3 (GraphPad Software, San Diego,
CA, United States) and R version 4.1.2 (2021-11-01) -- “Bird
Hippie were used to perform all statistical analyses and to
visualize data.

RESULTS

Baseline and Extended Characteristics
Postoperative infectious complications occurred in 99 cases
during the first year after transplantation (72.2%). 23 patients
(16.7%) developed a severe infection. Based on clinical
experience, an increasing incidence rate of severe postoperative
infectious complications was noted over the years.

TABLE 1 | (Continued) Baseline and extended characteristics of donors and recipient groups receiving either antigen-specific or non-antigen specific immunoadsorption
before ABO-incompatible kidney transplantation.

Antigen-specific IA (81 patients) Non-antigen specific IA (57 patients)

- Duration of BK viremia (days) 163 (93, 355) 283 (216, 567)
- BK virus nephropathy (in BKV + patients) (n (%)) 4 (40) 4 (26.67)
CMV
- CMV status of donor positive (n (%)) 46 (56.8) 27 (47.4)
- CMV status of recipient negative (n (%)) 36 (44.4) 28 (49.1)
- Risk constellation (D +/R -) (n (%)) 16 (19.8) 9 (15.8)
- CMV viremia (n (%)) 4 (4.9) 4 (7.0)
- Highest CMV replication no. (copies/mL) 3,895 (3,200, 5,250) 12,000 (2,000, 732,000)
- Days from KTx to first CMV positivity 34.5 (13, 234) 179.5 (118, 570)
- Duration of CMV viremia 18 (6, 606) 60.5 (13, 572)

Median values are provided (95%CI, of median) unless indicated otherwise. American Society of Anesthesiologists (ASA) category is shown in median (interquartile range). BKV: BK, virus;
CMV: cytomegalovirus; D: donor; IA: immunoadsorption; IA: immunoadsorption; IgG: immunoglobulin G; IgM, immunoglobulin M; KTx: kidney transplantation; PPh: plasmapheresis; R:
recipient. Patients were considered CMV- or BKV-positive with virus replications over 1000 IU/mL (serum) respectively.

FIGURE 2 | Severe infectious complications during the first year after ABO-incompatible kidney transplantation. Shown are absolute numbers and percentages for
each IA group for severe infectious complications during the first year after ABOi KTx. Grey blocks indicate patients desensitized with antigen-specific IA (sIA); white
blocks represent patients receiving non-antigen-specific IA (nsIA). The incidence of severe infections was compared using a two-tailed Fisher’s exact test (sIA vs. nsIA: 7
(8.6%) vs. 16 (28.6%), p = 0.004).
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FIGURE 3 | Cumulative incidence of infectious complications after ABO-incompatible kidney transplantation. (A) Time period until the occurrence of the first
infection after transplantation according to IA modality. nsIA: non-antigen-specific immunoadsorption; sIA: antigen-specific immunoadsorption, (B) Cumulative
incidence of any infectious complication after KTx for the whole cohort. (C) Estimation of 1-year cumulative incidence of any post-transplant infection. “cuminc”:
cumulative incidence. (D) Time period until the occurrence of the first severe infection after KTx according to IA modality. nsIA: non-antigen-specific
immunoadsorption; sIA, antigen-specific immunoadsorption, (E)Cumulative incidence of severe infectious complications after KTx for the whole cohort. (F) Estimation of
1-year cumulative incidence of severe post-transplant infections. A severe infection required the detection of pathogens in the blood stream or a SOFA score ≥2. To
estimate the cumulative cause-specific infection-free survival, the Aalen-Johansen estimate was used; Gray’s test was then used to test for a difference between cause-
specific survival functions.
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Our cohort was split in two consecutive groups due to a switch
in immunoadsorption column, the early group receiving sIA and
the late group receiving nsIA (years 2004–2011 and 2011–2020).
First, we investigated potential confounding demographic and
clinical factors associated with these time windows.

Both IA groups were comparable concerning relevant donor
and recipient characteristics, except for a significantly higher ASA
category of nsIA patients (Table 1, for thorough analysis see
Supplementary Tables S3, S4). Before desensitization, both
groups had similar median isoagglutinin titers (1:16 (IgM), 1:

64 (IgG), Supplementary Table S3, Supplementary Figure S2).
In order to reach the target antibody titer of ≤1:4 before KTx,
significantly more nsIA patients had to receive preoperative PPh
(79% vs. 25%, Table 1. For a more detailed description of titer
courses and IA treatments see Supplementary Table S3 and
Supplementary Figure S2).

Infectious Complications
Postoperative infections occurred frequently in both IA groups
with a slightly higher incidence in sIA (Table 1). The crude risk

FIGURE 4 | Severe infectious complications after ABO-incompatible kidney transplantation. (A) Focus of severe infection, (B) Focus of blood culture pathogens. A
severe infection was defined as the detection of pathogens in the blood stream or a SOFA score ≥2. p-values are estimated with a two-tailed Fisher’s exact test. *Denotes
statistical significance between antigen-specific IA and non-antigen-specific IA (**p < 0.01).

FIGURE 5 | Regression coefficient plot visualizing the relative hazard of postoperative severe infections during the first year after ABO-incompatible kidney
transplantation. Provided are parameter estimates with 95% confidence limits. IA, ASA category, age >50 years and recipient sex were included as categorical variables.
ASA, American Association of Anesthesiologists; IA, immunoadsorption.
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for severe infections and septic shock was higher in nsIA (28.6%
vs. 8.6%; 21.7% vs. 12.5%, Table 1; Figure 2).

These findings are congruent with a competing risk analysis
comparing the cumulative incidence of non-severe vs. severe
infections in sIA and nsIA (Figure 3). In both groups,
esp. uncomplicated urinary tract infections (UTIs), were common
during the first 3 months after KTx, affecting over 50% of all patients
(Figure 3A). In the sIA group, 91.5% of the depicted first episode of a
postoperative non-severe infection were UTIs, with only 5 cases of
other foci (3 x pulmonary, 1 BKV nephropathy and 1 case with
unclear focus). Similarly, 90% of the first non-severe infections in the
nsIA group were UTIs, with only two further cases of pneumonia,
1 catheter sepsis and 1 BKV nephropathy.

By contrast, themedian onset of the first severe infection after KTx
was after 2–3months (Table 1;Figure 3D).Within the first year after
KTx, the incidence of severe infections was significantly higher in
nsIA compared to sIA (Figure 3F). Recurring infections were
significantly more frequent in nsIA (21.4% vs. 6.2%, Table 1).

In accordance with a higher risk of severe infections,
bacteremia was more common in nsIA (28.6% vs. 8.6%,
Table 1), the predominant focus in both groups being the
urinary tract (Figure 4, Supplementary Table S2). The time

of onset for UTIs (40 days vs. 41 days post-transplant) as well
as the proportion of patients suffering from an uncomplicated
UTI (sIA: 46.9% vs. nsIA: 42.9%) was similar between the IA
groups. Urosepticemias, however, made up to 54.2% of all
UTIs in nsIA, compared to 10.5% in sIA (Table 1). The
spectrum of detected pathogens included slightly more
multi-drug resistant bacteria in nsIA (Table 1; Figure 5;
for antibiotic susceptibility profiles of MDR pathogens see
Supplementary Table S5). Concerning severe infections, the
predominant pathogen in both groups was Escherichia coli,
with a higher percentage of Escherichia coli with extended-
spectrum beta-lactamases (ESBLs) in the sIA group (35% vs.
20%). Whereas Enterococcus faecalis was the second most
detected pathogen causing UTIs of patients receiving sIA, it
was Klebsiella species in the nsIA group (Supplementary
Figure S3).

Septic shock occurred in 2 cases, i.e., 28.6% of severe
infections, in the sIA group. One patient developed C. difficile-
associated colitis, in the second patient, the focus remained
unclear. In the nsIA group, five patients suffered from septic
shock, equivalent to 31.3% of severe infections in this group. The
underlying causes were two cases of urosepsis with multi-organ

TABLE 2 | Characteristics of patients with and without severe infectious complications during the first year after ABO-incompatible kidney transplantation.

Severe postoperative infection
(23 patients, 16.7%)

No severe postoperative infection
(114 patients, 82.6%)

Recipients’ Characteristics

Female sex, recipient (n (%)) 13 (56.5) 44 (38.6)
Age at transplantation, recipient (years) 55 (45, 59) 47 (44, 49)
BMI, recipient (kg/m2) 24.9 (20.2, 26.7) 24.3 (23.3, 25.5)
ASA category, recipient 3 (3, 3) 3 (3, 3)
Dialysis before transplantation (n (%)) 15 (65.2) 93 (81.6)
Duration of dialysis before transplantation (months) 10 (0, 27) 15.5 (10, 20)
No. of HLA mismatches A + B + DR 4 (3, 5) 4 (3, 4)
- A mismatch 1 (1, 2) 1 (1, 1)
- B mismatch 2 (1, 2) 1 (1, 2)
- DR mismatch 1 (1, 1) 1 (1, 1)
PRA level (≥5%) (n (%)) 4 (17.4) 15 (13.2)

Surgical data

Duration of surgery (min) 148 (118, 157) 158.5 (146, 172)
Ischemia time, total (min) 166 (156, 193) 177.5 (172, 187)
- Cold ischemia time 140 (135, 161) 145.5 (138, 156)
- Warm ischemia time 25 (22, 30) 39.5 (27, 31)
Duration of hospitalization (days) 23 (17, 29) 19 (18, 20)

Immunological Data

Non-antigen-specific immunoadsorption (n (%)) 16 (69.6) 40 (35.1)
Patients with high IgM/IgG titer (≥1:256) before Rituximab
(n (%))

5 (21.7) 31 (27.2)

Total no. of IA 5 (4, 6) 5 (5, 5)
No. of patients undergoing PPh (n (%)) 15 (65.2) 53 (46.5)
Total no. of IA + PPh (all patients) 6 (6, 7) 6 (5, 7)
Subgroups based on desensitization (n (%))
- Patients that only received sIA (57 of 81 pat.) 2 (3.5) 55 (96.5)
- Patients that only received nsIA (12 of 57 pat.) 3 (25) 9 (75)
- Patients with sIA + PPh (24 of 81 pat.) 2 (8.3) 22 (91.7)
- Patients with nsIA + PPh (45 of 57 pat.) 13 (28.9) 32 (71.1)

Median values are provided (95% CI, of median) unless indicated otherwise. ASA, american society of anesthesiologists; BMI, body mass index; HLA, human leukocyte antigen; IA,
immunoadsorption; IgG, immunoglobulin G; IgM, immunoglobulin M; PPh, plasmapheresis; PRA, panel-reactive antibody.
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failure (K. pneumoniae, E. coli), one abdominal sepsis due to
caecal ischemia with consecutive perforation (E. faecium VRE),
an abdominal wall phlegmon with development of an abscess
(E. coli) and a parainfluenza-2 viral pneumonia.

As themain increase of severe infections in the nsIA group was
due to urosepsis, other UTI-associated factors were analyzed:
whereas the manufacturer and product of the ureteral stents did
not change, the duration of stenting was significantly longer in the
nsIA group (20 (13, 40) days vs. 14 (13, 14) days in the sIA group,
Table 1). Additionally, when comparing only patients that
needed additional PPh to their IA treatment, we found
significantly more cases of urosepsis within the nsIA + PPh
group (11 cases) than within the sIA + PPh group (only one case).

BK viremia was detected significantly more often in nsIA
(28.6% vs. 12.4%, Table 1) and duration of viremia was
significantly longer (283 vs. 163 days, Table 1). Unadjusted
comparison of onset of BK viremia, highest BKV replication
numbers and BKV nephropathy were comparable (Table 1). No
differences regarding CMV infections were detected (Table 1).

To further investigate the suspected association of nsIA and severe
postoperative infections, firstly, we performed a more thorough
analysis of the 23 patients (16.7%) that developed a severe
infection (Table 2). In the first group, average age was higher,
length of hospitalization was longer and the proportion of female
recipients was higher. There was no difference regarding BMI, ASA
category, the number of mismatches, duration of surgery and
ischemia time. 69.6% of patients with severe infections received
nsIA. To take PPh as immunomodulating factor into account, we
performed several subgroup analyses, e.g., of patients who exclusively
received IA, but no PPh. Of 57 patients (70.4%) in the sIA group, 2
(3.5%) suffered from a severe infection. Only 12 patients (21.1%) in
the nsIA group did not require PPh. However, 3 (25%) developed a
severe infection. In this small, crude subgroup analysis, nsIA is
associated with a higher risk of severe infections (Table 2).

Secondly, we aimed to identify independent risk factors of
severe infectious complications after ABOi KTx using a
multivariable Cox regression analysis. Clinically relevant
confounders such as age, ASA category, sex and ischemia time
were included in the model. NsIA was independently associated
with a 3.08 HR with severe infections (95% CI: 1.3–8.1, Table 3;
Figure 5). Moreover, recipient age >50 years was associated with
severe infections (HR 2.53, 95% CI: 1.0–6.0, Table 3; Figure 5).

Graft Function and Patient Survival
After identifying nsIA as an independent risk of severe infections,
we aimed at analyzing its potential impact on graft function and
patient survival.

Graft function was equal in both IA groups, and delayed graft
function, creatinine levels at discharge and at last follow-up were
comparable (Supplementary Table S6). A significantly higher
number of sIA patients developed any type of graft rejection
(29.6% vs. 14.0%) requiring significantly more graft biopsies
(Supplementary Table S6; for a detailed description of
rejection episodes and their individual treatment see
Supplementary Table S7).

During a follow-up period of 2 years, five cases of graft loss
were recorded in total (Supplementary Table S6). In sIA, two
(66.7%) graft losses occurred due to chronic rejection, while
thrombosis was the cause of the third graft loss. By contrast,
both graft losses in nsIA were caused by urosepsis, in one case
accompanied by coagulopathy and hemorrhagic shock
(Supplementary Table S6; for description of individual
etiologic factors of graft failures see Supplementary Table S8).

To determine independent risk factors associated with graft
loss during the first 2 years after KTx, a Cox multivariable
regression analysis was conducted (Table 4). IA modality was
no independent risk for graft loss (Table 4); however, it was
independently associated with recipient age >50 years (HR 5.14,
95% CI: 1.2–32.6), female sex (HR 6.38, 95% CI: 1.6–38.3) and
warm ischemia time (HR 1.006 per minute, 95% CI: 1.00–1.01).

Despite a similar number of deaths during the whole follow-up
period (mean: 7.4 years) and a low overall mortality rate, a higher
number of nsIA patients died during the first 2 years (8.8% vs.
1.2%, Supplementary Table S6; log-rank p = 0.032; Figure 6). In
sIA, three patients died from sepsis-related multi-organ
failure–only one of them during the first 2 years after
KTx–one patient died due to metastatic squamous cell
carcinoma, and the cause of one death remains unknown. In
nsIA, all recorded deaths occurred during the first 2 years after
KTx: two patients died from septic multi-organ failure, two
patients due to cardiogenic shock and one patient due to
metastatic lung carcinoma (see Supplementary Table S9 for
causes of death with functioning graft).

To identify mortality-associated risk factors, a Cox
proportional hazards regression analysis was implemented.

TABLE 3 | Relative hazard of postoperative severe infections during the first year
after ABOi KTx by risk factors.

Predictor variable HR 95% CI p-value

Non-antigen-specific IA 3.083 1.3–8.1 0.015
Age (R) > 50 years 2.534 1.0–6.6 0.045
BMI 0.954 0.8–1.1 0.410
ASA category >3 0.805 0.1–3.0 0.727
Sex (male) 1.797 0.8–4.4 0.210
Age (D) > 50 years 1.386 0.6–3.7 0.215
Ischemia time graft (min) 1.000 0.99–1.0 0.931

IA, ASA, category, age >50 years and recipient sex were included as categorical
variables. Goodness-of-fit tests and VIFs, are provided as Supplementary Material
(Supplementary Table S1). ASA, american association of anesthesiologists; CI,
confidence interval; D, donor; HR, hazard ratio; IA, immunoadsorption; R, recipient.

TABLE 4 | Relative hazard of graft loss during the first 2 years after transplantation
by risk factors.

Predictor variable HR 95% CI p-value

Non-antigen-specific IA 2.790 0.75–12.41 0.137
Age (R) > 50 years 5.142 1.22–32.56 0.042
BMI 1.113 0.96–1.29 0.150
ASA category >3 0.290 0.01–3.27 0.391
Sex (female) 6.382 1.59–38.26 0.018
Age (D) > 50 years 1.292 0.30–7.64 0.746
Ischemia time graft (min) 1.006 1.00–1.01 0.007

IA, ASA, category, recipient sex and age >50 years were included as categorical
variables. ASA, american association of anesthesiologists; BMI, body mass index; CI,
confidence interval; D, donor; HR, hazard ratio; IA, immunoadsorption; R, recipient.
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Univariable analysis revealed an increased mortality risk for nsIA
patients (HR: 7.4, 95% CI: 1.2–140.9) as well as for
recipients >50 years (HR: 7.5, 95% CI: 1.2–143.8, Table 5).

After adjusting for age, BMI, ASA category, sex and
ischemia time, only recipient age >50 years was
independently associated with two-year mortality (HR: 7.95,
95% CI: 1.09–169.9, Table 5).

DISCUSSION

Based on our clinical experience, we had hypothesized nsIA to be
associated with severe postoperative infectious complications.
Indeed, in this cohort, IA modality was independently associated
with risk of severe infections and an increased two-year mortality.

ABOi KTx has become a well-established method to expand
the living donor pool with patient and graft survival similar to
ABOc KTx. However, it is associated with higher postoperative

infectious complication risk [4, 10, 11, 17, 20]. Intensified
immunosuppression protocols contribute to impaired
pathogen defense. Immunoadsorption is among the established
methods to reduce the recipient’s level of preformed anti-A/B
isoagglutinins against the allograft [21]. Existing protocols differ
regarding the selectivity of antibody removal: antigen-specific
immunoadsorption was implemented in 2003, soon to be
followed by non-antigen-specific IA protocols [6, 22].

So far, the impact of different IA protocols concerning overall
patient survival and graft function was mostly compared to ABOc
cohorts [3, 4, 10, 15]. Studies from London and Heidelberg found
a significant rise in death rates in ABOi due to infectious
complications during the early posttransplantation period [4,
17, 23]. They reported mainly opportunistic and viral
infections, indicating an increased immunosuppressive burden
in ABOi compared to ABOc KTx [17, 24]. In contrast to this, we
did not find increased infection rates in ABOi patients compared
to ABOc in our center [1].

FIGURE 6 | Patient survival during the first 2 years after ABOi kidney transplantation. Data are shown for 81 patients receiving sIA and 57 patients receiving nsIA. To
display the time period until the occurrence of patient death during the first 2 years after kidney transplantation via Kaplan-Meier graph, a log-rank test was utilized. nsIA,
non-antigen-specific immunoadsorption; sIA, antigen-specific immunoadsorption.

TABLE 5 | Relative hazard of patient death during the first 2 years after transplantation by risk factors.

Univariable Multivariable

Predictor variable HR 95% CI p-value HR 95% CI p-value

Non-antigen-specific IA 7.359 1.2–140.9 0.069 6.203 0.91–131.0 0.110
Age (R) > 50 years 7.511 1.2–143.8 0.066 7.954 1.09–169.9 0.077
BMI 1.043 0.8–1.2 0.659 1.006 0.82–1.22 0.951
ASA category >3 2.466 0.1–15.3 0.410 1.629 0.06–15.63 0.712
Sex (female) 2.973 0.6–21.4 0.208 3.645 0.67–28.53 0.152
Age (D) > 50 years 1.671 0.3–12.1 0.553 0.701 0.11–5.80 0.713
Ischemia time graft (min) 0.999 0.98–1.01 0.920 1.003 0.98–1.01 0.595

Univariable and multiple Cox proportional hazards regression. IA, ASA, category, recipient sex and age >50 years were included as categorical variables. ASA, american association of
anesthesiologists; BMI, body mass index; CI, confidence interval; D, donor; HR, hazard ratio; IA, immunoadsorption; R, recipient.
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In 2012, we transitioned from sIA (modified Swedish protocol)
[1, 15] to nsIA due to the substantial economic burden of blood
group-specific single use columns (~5 IA/patient). Morath et al.
and others had not found any differences in graft function and
patient survival using nsIA [22, 25]. Thölking et al. compared the
same IA columns as used at our Transplantation Center, namely,
the antigen-specific Glycosorb® column to the non-antigen-specific
Immunosorba® column [13]. An association of postoperative
bacterial and viral infections with IA modality was not found
[13, 22]. In our substantially bigger cohort, nsIA is independently
associated with a two-fold risk of severe postoperative
infections, mainly occurring during the first 6 months
postoperatively. This is similar to the multi-center analysis
conducted by Opelz et al., who found an increase in
infections during the first year after ABOi KTx [4]. The risk
of early postoperative infections may be associated with
Rituximab administration 30 days prior to the scheduled KTx
(Swedish protocol) [26]. Rituximab associated B-cell depletion
was found to last for almost half a year [27]. During this time, an
additional hypogammaglobulinemia was observed, hence
enhancing the risk of infections [28]. This risk predisposition
appears to be significantly increased in nsIA patients.

The main increase of severe infections in the nsIA group was
due to urosepsis. The urosepsis rate of our nsIA group, however,
is similar to published data from other centers that desensitized
their KTx recipients by non-antigen-specific immunoadsorption
[10]. Potential factors other than IA, which could be associated
with the development of postoperative urosepsis in the nsIA
group, are the longer duration of ureteral stenting and
additionally, the need for PPh on top of IA treatment.

The risk of BKV positivity was significantly higher and the
duration of BK viremia significantly longer in nsIA. Data on the
duration of BK viremia after semi-selective IA are scarce.
Significantly higher incidences of BKV nephropathy in ABOi
recipients desensitized by sIA or PPh were found in two studies
from the United Kingdom and United States in comparison to
ABOc recipients and HLA-incompatible patients, respectively
[29, 30]. Speer et al. found a higher risk of BKV positivity
specifically in “high-titer” compared to “low-titer” patients
within their ABOi cohort [10]. In line with other groups with
comparable immunosuppressive regimens and desensitization
protocols, we did not find any differences concerning CMV
positivity [10, 13, 22].

Although the overall mortality rate was low, retrospective analysis
found an increased mortality during the first 2 years after KTx in
nsIA patients. This finding has not been reported previously [13, 22].
Most recent studies compare ABOc to ABOi patients and show
conflicting results. Whereas Genberg et al. did not report any
differences in patient survival, others found a significant rise
in death rates due to infectious complications during the early
post-transplant period in ABOi patients [3, 4, 17, 23]. In line
with our retrospective analysis, univariable Cox proportional
hazard regression revealed an elevated mortality risk during the
first 2 years post-transplantation in nsIA compared to sIA.
However, after adjusting for clinical confounders, the Cox
regression model did not show an independent effect of the
IA column on mortality. Mortality was <5% during the first

2 years post transplantation in our cohort. The low number of
adverse events, as well as the large confidence interval, indicate a
lack of statistical power. Our data, combined with our clinical
experience, strongly suggest that there is a relevant difference in
risk of mortality. However, pooled analysis of larger data is
necessary to make a valid inference.

The risk of severe infections in our cohort is higher than in
other studies. This may be due to a stricter preoperative
desensitization protocol. We aimed at preoperative IgM and
IgG isoagglutinin target titers ≤1:4, whereas the Stockholm
protocol accepts ≤1:8 and other studies used ≤1:16 as cut-off
pre-transplantation. A titer of >1:16 has been associated with
an elevated risk of antibody mediated rejections [10, 13, 22, 26,
31]. Interestingly, there is increasing evidence of successful
ABOi KTx without preoperative anti-blood group antibody
removal in patients with low initial titers, even in pediatric
patients, with comparable outcomes as following ABOc KTx
[17, 32, 33].

The total number of preoperative IA and PPh treatments did not
differ between the two groups and was similar to Thölking et al. [13].
Significantly more nsIA patients had to receive preoperative PPh,
mostly due to limited adsorption of IgM isoagglutinin by IA [34].
This may augment the predisposition to postoperative infections due
to the non-selective depletion of antibodies by apheresis [35, 36].
Therefore, postoperative IA treatments were scheduled if titers
exceeded 1:8 during the first 7 days and 1:16 during the following
week. This displays a stricter strategy than performed by other groups
and resulted in lower rates of allograft rejections compared to their
cohorts [10, 22].

Although currently 80% of our ABOi patients need preoperative
PPh, we prefer non-antigen-specific IA with intercurrent PPh when
needed compared to a desensitization protocol solely based on PPh.
PPh is accompanied by an alteration of coagulation (when exchanged
with human albumin), which may lead to more frequent
postoperative bleeds. Alternatively, exchanging the patient’s
plasma volume with fresh frozen plasma (FFP), is associated with
exposure to unwanted allogenic components of FFPs as well as the
transfusion-related risk of infection [37].

Immunoadsorption, on the contrary, allows the elimination of
isoagglutinins and only slightly changes the concentration of
coagulation factors and other immunoglobulins.

Although this analysis currently represents the largest
patient collective comparing sIA to nsIA, its limitations
include the observational monocentric approach and a
cohort consisting mainly of patients of European origin.
Data were collected retrospectively over a large time frame
(16 years) and not contemporaneously, which makes biases
inherent. Due to our team’s increasing clinical experience
and protocol standardization, the group that received
nsIA comprised significantly more patients suffering from
pre-existing medical conditions (higher ASA category). This
may confound the association between IA modality and
infectious complications. In this respect, a prospective
randomized and at least one-side-blinded comparison of IA
columns should be conducted. Especially regarding survival
analysis, larger patient cohorts are needed to reduce the risk of
inconclusive results.
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This is the first study to show that nsIA in ABOi KTx is an
independent risk for severe postoperative infectious
complications. sIA correlates with increased rejection rates,
however, with a similar long-term graft survival.
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Despite advances in monitoring and treatment, cytomegalovirus (CMV) infections remain
one of the most common complications after solid organ transplantation (SOT). CMV
infection may fail to respond to standard first- and second-line antiviral therapies with or
without the presence of antiviral resistance to these therapies. This failure to respond after
14 days of appropriate treatment is referred to as “resistant/refractory CMV.” Limited data
on refractory CMV without antiviral resistance are available. Reported rates of resistant
CMV are up to 18% in SOT recipients treated for CMV. Therapeutic options for treating
these infections are limited due to the toxicity of the agent used or transplant-related
complications. This is often the challenge with conventional agents such as ganciclovir,
foscarnet and cidofovir. Recent introduction of new CMV agents including maribavir and
letermovir as well as the use of adoptive T cell therapy may improve the outcome of these
difficult-to-treat infections in SOT recipients. In this expert review, we focus on new
treatment options for resistant/refractory CMV infection and disease in SOT recipients, with
an emphasis on maribavir, letermovir, and adoptive T cell therapy.

Keywords: cytomegalovirus, antiviral resistance, antiviral therapy, letermovir, maribavir, virus-specific adoptive T
cell therapy

INTRODUCTION

Following primary infection, cytomegalovirus (CMV) establishes lifelong latency in the human body.
Seropositivity in adults ranges from 40% to 90% [1, 2]. After solid organ transplantation (SOT),
reactivation of CMV is facilitated by drug-induced immunosuppression which is required to prevent
and treat transplant rejection [1]. CMV remains one of the most common opportunistic infections in
SOT and CMV disease affects overall around 5%–15% of patients despite preventive strategies [3–7].
Up to one-third of patients experience recurrent CMV [8], termed as repeated CMV after an interval
without evidence of virus. For study purposes, “CMV infection” is defined as evidence of virus
antigens or nucleic acid in any body specimen [9]. “CMV disease” is defined as additional presence of
virus attributable signs or symptoms and includes CMV end-organ diseases and the “CMV
syndrome”; The later is defined by detection of CMV in the blood together with at least two
clinical findings including fever, malaise, leuko-, neutro- or thrombocytopenia, atypical lymphocytes
or elevated liver enzymes [9].

The first line antiviral drug for CMV prevention and treatment is intravenous ganciclovir or its
oral prodrug valganciclovir [10, 11]. This guanine analog requires phosphorylation by a viral kinase
(UL97) for activation and inhibits the viral DNA polymerase (UL54) [1]. Neutropenia is a major
toxicity occurring in 18%–47% [12]. Foscarnet and cidofovir are second-line treatments which also
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target the viral polymerase but their use is often limited by severe
toxicities including nephrotoxicity in 14%–78% [8, 13–15].
Despite these well-established anti-CMV therapies, refractory
and/or resistant (R/R) CMV provide a major challenge to
clinicians [16].

CMV infection is clinically referred to as “refractory” if the
viral load in the blood increases (>1 log10 compared to the
maximum viral load in the first week) or persists after at least
2 weeks of appropriately dosed antiviral therapy [17]. Similarly,
“refractory disease” is suspected if clinical signs or symptoms
worsen or do not improve after 2 weeks of appropriate treatment
[17]. A reduction in immunosuppression, an increase in the dose
of ganciclovir, the addition of or a switch to second-line therapy,
and resistance testing are then recommended [10, 11, 18]. In
around one-third to half of refractory CMV cases, no drug-
resistance can be detected [8, 13, 19]; suboptimal treatment
responses may result from insufficient drug levels at site of
infection.

“Resistant CMV” is defined as reduced susceptibility to one or
more anti-CMV agents caused by viral gene mutation(s) [17]. In
clinical practice, genotypic methods are used for diagnostics.
Ganciclovir-resistant CMV occurs in around 1%–3% of SOT
or 6%–18% of SOT recipients treated for CMV [4, 13, 18, 20–26],
respectively, but may be more frequent in CMV seronegative
recipients of organs from seropositive donors (D+/R− serostatus)
[21, 25] and after lung transplantation [20]. Mutations in the
UL97 gene are most frequent [1, 23]. UL54 mutations usually

emerge upon extended pre-treatment and can confer cross-
resistance with cidofovir and foscarnet [1]. Within the same
gene, mutations in different codons are associated with
varying levels of resistance [1]. Risk factors for drug-resistant
CMV include D+/R− serostatus, lung transplant, high viral-loads,
ongoing viral replication, prolonged antiviral exposure,
subtherapeutic antiviral levels [4, 13], profound
immunosuppression, and recurrent CMV infection [10, 18,
21, 23].

R/R CMV is further associated with complicated clinical
courses including drug-toxicities, longer hospitalizations, and
poor outcomes [17, 18, 27]; in a study of SOT recipients who
were treated with foscarnet for ganciclovir-resistant or
refractory CMV (n = 39; 0.66% of all SOT), 33% did not
clear virus, 21% had recurrent CMV, and >50% had
nephrotoxicities [13]. In lung and kidney transplants, R/R
CMV was associated with increased frequencies of
transplant dysfunction [18, 28]. Mortality seems also higher
in resistant compared to non-resistant CMV in SOT; in a study
that compared 39 ganciclovir-resistant cases with
109 ganciclovir-sensitive controls, mortality was 11% vs. 1%
at 3 months, and 16% vs. 6% at 1 year after CMV diagnosis
[18]. In summary, R/R CMV remains a major challenge and
new effective and safe treatment options are needed.

In this review, we summarize and discuss the latest findings on
maribavir, letermovir, and CMV-specific adoptive T cell therapies
as treatment options for R/R CMV after SOT (summary in

TABLE 1 | Advantages and limitations of new treatment options for refractory/resistant CMV in SOT.

Mode of action Advantages Limitations

Maribavir - Inhibition of viral UL97 kinase - Well tolerated - Dysgeusia in one-third of patients
- Oral formulation - No intravenous formulation
- Efficacy demonstrated in a Phase
3 randomized controlled trial

- Reduced efficacy with high viral loads and in
refractory CMV without resistance

- Regulatory approval for this
indication

- Poor penetration to CNS/retina

- Drug-drug interactions
- Recurrences after successful treatment
- Resistances

Letermovir - Inhibition of viral terminase complex - Well tolerated - No randomized controlled trials
- Oral and intravenous formulation - Approved only for prophylaxis
- Combination therapy with
ganciclovir possible

- Reduced efficacy with high viral loads

- Possible option as secondary
prophylaxis

- Relevant interaction with cyclosporine,
sirolimus, tacrolimus
- Recurrences after successful treatment
- Resistances

CMV-specific
adoptive T cell
therapy

- Autologous or allogeneic ex vivo selected (and expanded)
CMV-specific T cells to restore CMV-specific T cell
immunity

- Mechanistic approach to restore
immunity

- No randomized controlled trials

- Reported to be safe - Safety/efficacy await confirmation in Phase
3 trials

- Alternative in drug resistant CMV - Complex donor selection
- Multi-virus specific commercial
products under development

- Not widespread available

- Time/cost intensive laboratory protocols
- Expansion and function limited by
immunosuppressive drugs
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Table 1). Mode of action of established and new antivirals are
shown in Figure 1.

NEW TREATMENT OPTIONS FOR R/R CMV

Maribavir
History of the Drug Up Through the Phase 2 R/R Trial
Maribavir is an oral benzimidazole riboside antiviral which
has been in development for many years, but only recently
became available as therapy for R/R CMV. It inhibits viral
UL97 kinase and thus interferes with multiple pathways
including nuclear egress of CMV viral capsids. It has no
significant renal, hematologic, or hepatic toxicity; its most
common adverse effect is dysgeusia. Early trials for
prophylaxis in stem cell transplant [31] and liver
transplant recipients [32] failed to show efficacy, likely
because the dose selected, 100 mg twice daily, was too low
[33]. However, a case series of six patients with R/R CMV
treated with compassionate use maribavir at doses of
400–800 mg twice daily showed striking responses in
several patients [34]. This, and the toxicity of other agents
available for R/R CMV, spurred the performance of a Phase
2 trial of 3 dosing regimens for maribavir (400, 800, and
1,200 mg twice daily) among SOT and HSCT recipients [19].
This study demonstrated clearance of CMV DNAemia at
6 weeks of therapy in 70%, 63%, and 68%, respectively, in
this highly treatment-experienced population [19].

Phase 3 Trials
Subsequently, a multicenter Phase 3 trial of maribavir versus
investigator-assigned therapy (IAT) was performed involving
352 SOT and HSCT recipients in a 2:1 randomization [8]. IAT,
which could be ganciclovir, valganciclovir, foscarnet,
cidofovir, or a combination of these, was chosen as the
comparator because of patients’ varied treatment histories.
The primary endpoint, confirmed CMV-DNA clearance at the
end of week 8, was achieved by 55.7% in the maribavir arm vs.
23.9% in the IAT arm (p > 0.001). The key secondary endpoint,
a composite of CMV-DNA clearance and symptom control at
the end of week 8 maintained through week 16, was achieved
by 18.7% vs. 10.3% (p = 0.01). Dysgeusia was the most frequent
adverse effect in the maribavir group (37.2%); the maribavir
group also had significantly less neutropenia than the val/
ganciclovir group and less acute kidney injury than the
foscarnet group [8]. These results led to the approval of
maribavir by the US FDA in 2021 for treatment of post-
transplant CMV infection/disease in patients age 12 and
older, that is refractory (with or without genotypic
resistance) to treatment with ganciclovir, valganciclovir,
cidofovir or foscarnet, with a similar authorization by the
EMA in 2022. A second Phase 3 randomized double-
blinded trial (the AURORA trial, NCT02927067) compared
maribavir to valganciclovir for treatment of asymptomatic
CMV DNAemia in stem cell transplant recipients. At the
time of this writing, full results have not yet been
published, but topline results were announced by the study

FIGURE 1 | Mechanism of action of anti-CMV therapies. Ganciclovir and cidofovir are analogs of the phosphorylated nucleosides deoxyguanosine and
deoxycytidine. Valganciclovir is an oral prodrug of ganciclovir. Ganciclovir requires phosphorylation by the viral protein kinase (UL97) for activation. Both, ganciclovir and
cidofovir require phosphorylation by host cellular phosphokinases for activation. Both drugs competitively inhibit the viral DNA polymerase (UL54) at the
desoxynucleotide triphosphate binding site. In contrast, foscarnet is an analog of pyrophosphate and inhibits UL54 at the pyrophosphate binding site. Maribavir has
another target; by inhibition of the viral protein kinase (UL97), it inhibits phosphorylation of viral and host cellular proteins and consequently viral replication. Letermovir
inhibits binding of the newly produced viral DNA polymers to the viral terminase complex [29, 30]. In this way it inhibits DNA cleaving and packaging into the viral
procapsid. Mutations at the drug binding sites or in the activating viral kinases confer to resistances. CMV-specific adoptive T cells recognize CMV-infected cells via T cell
receptor. Enzymes are displayed in italics.
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sponsor (Takeda) in December 2022. At week 8, which was the
end of study treatment, 69.6% of patients treated with
maribavir achieved CMV clearance vs. 77.4% for
valganciclovir; this did not meet non-inferiority based on a
prespecified margin of 7%. At week 16, 52.7% of patients
treated with maribavir achieved maintenance of viremia
clearance and symptom control vs. 48.5% for valganciclovir.
Similar post-treatment maintenance effect was observed at
week 12 (59.3% vs. 57.3%) and week 20 (43.2% vs. 42.3%)
time points. Maribavir’s safety profile was confirmed,
particularly with regards to neutropenia (21.2% vs. 63.5%
for valganciclovir). Despite not meeting the prespecified
noninferiority margin, this study demonstrated that
maribavir has potential utility for treatment of non-
refractory CMV DNAemia, with a lower risk of hematologic
toxicity than valganciclovir.

Questions About Optimal Use
While the approval of maribavir for R/R CMV was long-awaited,
questions about optimal use remain. In the Phase 3 R/R CMV
trial, subgroup analyses showed that the proportion achieving the
primary endpoint was higher when maribavir was initiated at a
viral load of <9100 IU/mL than at higher viral loads (62.1% vs.
43.9%), and was higher with documented genotypic resistance vs.
refractory CMV without resistance (62.8% vs. 43.8%) [8]. Some
experts have proposed that R/R CMV with high viral load might
most effectively be treated with an agent such as foscarnet
initially, then switch over to maribavir at a lower viral load, to
minimize foscarnet toxicity and to maximize the efficacy of
maribavir [35]. Another issue, as with all therapies for R/R
CMV, is the risk for recurrences. While maribavir achieved
the key secondary endpoint significantly more often than IAT,
the numbers in both groups were relatively low (who maintained
CMV clearance and symptom control out to week 16 after
completion of therapy at week [8]). Of note, the Phase 3 R/R
maribavir trial [8] did not permit secondary prophylaxis after the
defined 8 weeks treatment period, whereas the Phase 2 R/R
maribavir study had allowed continuation of maribavir out to
24 weeks [19]. Whether secondary prophylaxis would be of
benefit (in terms of decreasing recurrences after CMV
DNAemia clearance), and whether that would be offset by
potential increases in maribavir resistance, has yet to be
studied, but will be important to assess. Although the evidence
supporting the use of secondary prophylaxis is mostly lacking,
many centers use secondary prophylaxis, and current guidelines
recommend considering secondary prophylaxis in high-risk
scenarios [10]. Combination therapy with maribavir is also a
promising frontier that is yet to be explored. Chou et al.
demonstrated that the maribavir/ganciclovir combination is
antagonistic, and additive for maribavir + foscarnet or
cidofovir or letermovir, but synergistic for maribavir +
rapamycin (sirolimus) [36]. The use of an mTOR inhibitor-
based immunosuppressive regimen is another strategy in
prevention or management of R/R CMV particularly in organ
transplant recipients [37]. The maribavir + mTOR inhibitor
combination deserves further study.

Resistance
Perhaps the most important questions regarding its future utility
relate to the risk for development of resistance to maribavir. An
impressive body of work by Chou has addressed this issue for nearly
20 years, now utilizing updated sequencing technology [38]. Chou
et al. analyzed resistancemutations from the Phase 2maribavir trials,
and found known UL97 maribavir resistance mutations after
46–166 days of maribavir therapy (T409M or H411Y) in 17 of
23 who had had CMV recurrences while on maribavir [39].
Moreover, they identified the mutation UL97 C480F in six
patients, which confers high-level maribavir resistance and low-
level ganciclovir resistance [39]. A recent real-world case series
described maribavir resistance in 4 of 13 patients treated for R/R
CMV (with H411Y in 2, T409M in 1, and C480F in 1) [40]. Another
report described two patients refractory to maribavir, one with
H411Y and one without knownmaribavir resistancemutations [41].

Conclusion
Maribavir has far less toxicity than other agents for R/R CMV,
and is a major advance in treatment of this entity. However, we
still have much to learn about optimizing its use and preventing
recurrences and resistance.

Letermovir
Background and Mechanism of Action
Letermovir is a 3,4-dihydroquinazoline derivative and is an
inhibitor of the viral terminase complex, mainly at the
pUL56 subunit. Terminase inhibition leads to compromised
viral replication by inhibiting the cleavage of genome particles
to units of proper length and accumulation of immature viral
DNA [29]. Based on the mechanism of action, letermovir is
selectively active only against CMV, and mechanism-derived
adverse effects are unlikely. Letermovir was approved in
2017 for prophylactic use in adult CMV-seropositive
allogeneic hematopoietic stem cell transplant (HCT) recipients,
where it has shown good efficacy in the placebo-controlled phase
III trial [42] and as of 6 June 2023, the US FDA approved
letermovir for the new indication of CMV prophylaxis in D+/
R− kidney transplant recipients, based on the results of the Phase
3 trial [43]. No statistically significant differences were seen in the
frequency or severity of any adverse events between letermovir
and placebo, although gastrointestinal adverse events (such as
nausea) were slightly more common in the letermovir group. It is
available in both peroral (PO) and intravenous (IV) formulations.
The standard dose is 480 mg daily (IV/PO) when used as
prophylaxis. However, due to interaction via the hepatic drug
transporter organic-anion-transporting polypeptide (OATP),
cyclosporine increases bioavailability of letermovir, and dose
reduction to 240 mg daily is recommended [43].

Letermovir Prophylaxis Among SOT Recipients
In the phase 3 trial, 601 CMV D+/R− adult kidney transplant
recipients were randomized to receive prophylaxis with either
valganciclovir or letermovir 480 mg once daily (240 mg if used
with cyclosporine) until week 28 after transplantation. Primary
efficacy endpoint of the study was met, as letermovir was non-
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inferior to valganciclovir in preventing CMV disease (frequency
10.4% in the letermovir vs. 11.8% in the valganciclovir group).
Importantly, letermovir resulted in lower toxicity compared to
valganciclovir, especially lower rate of leukopenia (11.3% vs. 37%)
or neutropenia (2.7% vs. 16.5%), and lower rate of drug
discontinuation due to adverse events (4.1% vs. 13.5%) [43].
The study results are very convincing for the good efficacy of
letermovir also in the SOT setting, when used as prophylaxis, and
have recently led to the expanded indication mentioned above, by
the US FDA.

Letermovir for Treatment of CMV Infections,
Background
Larger industry-driven studies have all addressed the use of
letermovir only as CMV prophylaxis, but due to lack of
suitable alternatives for treating resistant CMV infections until
recently, there has similarly been interest on using letermovir for
treatment of CMV infections. However, as the drug does not
block viral DNA synthesis, but inhibits events later in the viral
cycle, some concerns have been raised about the potential to
promote resistant viral strains, especially when used in case of
high-level viremia. Indeed, several mutations in the
pUL56 subunit of the terminase complex have been described
after exposure to letermovir, potentially causing resistance to the

antiviral action of the drug [44]. Interestingly however, in the
phase 3 kidney transplant trial, no letermovir resistance-
associated substitutions/mutations were detected in the
letermovir arm, in comparison to nine patients in the
valganciclovir arm, who developed ganciclovir resistance-
associated mutations [45].

Letermovir for Treatment of CMV Infections, Real-
World Experience
Table 2 briefly summarizes published case series of studies using
letermovir as treatment of CMV infections. Most common dose
has been 480 mg once daily PO, but also higher doses (up to
960 mg daily) have been used. In these studies, 76% of the cases
with CMV infection treated with letermovir resulted in either
viral clearance or decrease to viremia <200 IU/mL, and treatment
failure was seen in 24% of cases. Although letermovir was mainly
effective and resulted in lowering of viremia or viremia clearance,
recurrent infections were common. In the multicenter
retrospective study by [46], viral suppression was more likely
when letermovir was started at a viral load of <1000 IU/mL.
Therefore, another option worth considering would be to treat
the viral load to low levels with another agent such as foscarnet,
and then switch to letermovir to maximize the chance of
clearance and minimize foscarnet toxicity.

TABLE 2 | Studies or case series reporting the use of letermovir (LTV) for treatment of refractory/resistant CMV infection, or after failure to tolerate first-line treatment.

Author/journal/
year

Type of SOT and number of
patients

Reason for LTV treatment Dose of LTV Outcomes

Linder et al. [46] 27 SOT (13 lung, 6 kidney, 2 heart,
1 liver, 5 other)

Intolerance to other antivirals
(77%), resistance
concerns (33%)

480 mg OD: 87% Good virologic outcomes if viral
load <1,000 IU/mL at starting LTV; if >
1,000 IU/mL at starting, only approx. 40%
reached DNAemia <1,000 IU/mL

Transplant Infect Dis
2021

In addition, 21 HCT included 720 mg OD: 13%
(titrated up to 960 mg in
two patients)
Oral: 89%
Intravenous: 11%

Veit et al. [47] 28 SOT (all lung) Refractory infection (57%),
confirmed antiviral
resistance (43%)

480 or 240 mg OD
(based on tacrolimus or
cyclosporine use)

Decrease in viral load within median 17 days
and subsequent clearance in 82%; treatment
failure in 18%

Am J Transplant
2021
Schubert et al. [48] 5 SOT (3 kidney, 2 heart) refractory infection (11%),

intolerance to other antivirals
(67%), confirmed
resistance (22%)

480 or 240 mg OD
(based on tacrolimus or
cyclosporine use)

Decrease in viral load to <200 IU/mL within
median 23 days seen in 78%Eur J Clin Microbiol

Infect Dis 2021
In addition, two HSCT and two
other immunosuppressed patients
included

Ortiz et al. [49] 4 SOT (3 SPK, 1 kidney) Intolerance to (val)ganciclovir
(50%), confirmed antiviral
resistance (50%)

480 or 240 mg OD
(based on tacrolimus or
cyclosporine use)

Viral clearance reached in 75%, and decrease
in viral load to <200 IU/mL in 25%, after
4–9 weeks of treatment

Clin Transplant 2022

Phoompoung et
al. [50]

4 SOT (lung), in addition one HSCT
included

Refractory infection (50%),
intolerance to other antivirals
(25%), confirmed antiviral
resistance (25%)

480 or 240 mg OD
(based on tacrolimus or
cyclosporine use)

Decrease in viral load to <200 IU/mL within
3–6 weeks in 75%, treatment failure in 25%

Transplantation 2020

Turner et al. [51] 4 SOT (2 lung, 2 heart) confirmed antiviral resistance 720 mgOD, dose titrated
up to 960 mg in one
patient

All showed clinical improvement, virological
treatment failure in 75%Antimicrob Agents

Chemother 2019
CMV retinitis in all

Aryal et al. [52] 2 SOT (lung, heart) confirmed antiviral resistance 480 or 240 mg OD
(based on tacrolimus or
cyclosporine use)

viremia clearance in 50%, treatment failure
in 50%Transplant Infect Dis

2019
In addition, 7 patient included with
LTV prophylaxis

Boignard et al. [53] 2 SOT (heart) intolerance to other antiviral
(50%), confirmed resistance
(50%)

480 mg OD Viremia clearance in 50%, treatment failure
in 50%Antiviral Ther 2022
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Significant interaction with tacrolimus was noted, and
tacrolimus dose needed to be adjusted (reduced significantly)
in many cases. Letermovir is a moderate inhibitor of CYP3A in
vivo [54], and therefore leads to increase in tacrolimus and
cyclosporine (and sirolimus) concentrations. In phase
1 studies, coadminstration of letermovir with tacrolimus or
cyclosporine resulted in 2.4- and 1.7-fold increases in area
under the plasma concentration-time curves, and 1.6- and 1.1-
fold increases in maximum plasma concentrations,
respectively [55].

The use of letermovir as an antiviral agent in preemptive
therapy after solid-organ transplantation has been so far
addressed in only one early proof-of-concept phase 2a study,
in which antiviral efficacy was shown despite using much lower
doses than the current recommendation (only 80 mg/day) [56].
Some more experience of successful use of letermovir as
preemptive therapy after HSCT has been described [57].

Combination therapy with letermovir and (val)ganciclovir or
CMV IvIG has also been reported. In the largest study reporting
combination therapy so far, eight kidney or kidney-pancreas
recipients with persisting low-level viremia despite >90 days of
valganciclovir were treated with valganciclovir 900 mg twice daily
together with letermovir 480 mg once daily. In this study, the use
of adjunctive letermovir did not result in viral clearance, and
median viral load did not change during 12 weeks of follow-up.

Suggested or confirmed genotypic resistance to letermovir was
described in some of the case series, and in addition in case
reports. In total at least seven genotypically resistant cases have
been published to date after solid-organ transplantation, with
mutations seen in UL56 gene [46, 47, 51, 58]. Similarly, mutations
in UL56 have been described in patients who received letermovir
prophylaxis after HSCT [59]. However, the vast majority of CMV
infections treated with letermovir have not resulted in resistance
concerns.

Future Directions
Based on the published experience so far and our own clinical
experience, letermovir can be considered for treatment of R/R
CMV infections. Favorable results will more likely be reached if
treatment is initiated at low-level viremia, but recurrence and
development of resistance are remaining concerns. In cases of
poor tolerance to valganciclovir due to leukopenia or
neutropenia, the potential to use letermovir as secondary
prophylaxis after clearance of viremia could be further
explored. However, some concerns about breakthrough
infections and emergence of letermovir resistance have been
raised in small case series [52, 60].

CMV-Specific Adoptive T Cell Therapy
Rational for CMV-Specific Adoptive T Cell Therapy
T cell immunity is essential for CMV control [61, 62]. In SOT
recipients, T cell immunity is weakened by immunosuppressive
drugs, making direct restoration of immunity by infusion of
CMV-specific T cells (“adoptive” T cell therapy) attractive [63].

To date, most clinical data on CMV-specific T cell therapies
derive from phase 1/2 studies in allogeneic HCT recipients in
which cells were infused for CMV-prophylaxis or treatment of

R/R CMV [64]. Different protocols for T cell generation and
application including intrathecal administration [65] were
demonstrated to be safe and treatment for R/R CMV was
successful in around 70% [64, 66]. Despite these promising
data, the safety and efficacy still need to be confirmed in
phase 3 studies. Additionally, there is very little data on SOT
recipients.

T Cell Donors
Traditionally, CMV-specific T cells were harvested from the HCT
donor. This limited the treatment to HCT recipients with CMV
seropositive donors. More recently, peripheral blood cells from
only partially HLA-matched CMV seropositive third-party
donors were also successfully used [67]. This enabled therapy
also in SOT recipients. Third-party cells were either collected
prior and stored for “off-the-shelf” use [67] or collected upon
request from pre-screened individuals in donor registers [68, 69].
Despite concerns about limited proliferative capacity due to
continued immunosuppression, studies have shown successful
expansion of autologous virus-specific T cells [70–73].

Preparation and Availability
Ex vivo steps are required to exclusively select CMV-specific
T cells from the original donor product [64]. Complex and time
intensive laboratory expansion protocols of minimum 10 days
but up to 30 days are used to obtain high numbers of specific
T cells [72, 74]. Alternatively, CMV-specific donor-derived white
blood cells are directly isolated ex vivo using immunomagnetic
methods (e.g., direct sorting using peptide-HLA multimers,
cytokine-capture system or based on T cell activation
molecules) [75–77].

Adoptive T cell therapies are still mainly restricted to
specialized academic centers and few commercial companies
due to the complexity of donor search and selection and the
requirement of “good manufacturing practice”-accredited
laboratories to prepare the cells in vitro. However, in recent
years, increasing number of centers were able to offer “off-the-
shelf” products to their patients as part of multicentric trials (e.g.,
NCT04390113 and [67]).

Safety
Virus-specific adoptive T cell therapies are generally reported to
be safe. For allogeneic products, graft-versus host disease is a
potential concern despite viral-specificity of most cells and was
reported in around 5%–16% [64]. Independent of cell source,
cytokine release syndrome and graft failure due to T cell mediated
inflammation may occur but have rarely been reported [73, 78].
An open issue is the co-administration of immunosuppressive
drugs, which affects the expansion and function of T cells in vivo
after infusion into the patient. The optimal timing and
composition of immunosuppression at the time of virus-
specific T cell infusion remains to be determined.

CMV-Specific Adoptive T Cell Therapy in SOT
At this time, data from 19 SOT recipients treated with CMV-
specific T cells have been reported, including one pediatric patient
of 16 years of age, 11 lung, 6 kidney, 1 heart, and 1 liver transplant
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recipient (Table 3, including one unpublished case from our
institution) [69–73, 79]. All recipients were treated for R/R
CMV infection (n = 5) or disease (present or recent, n = 14).
Anti-CMV drug resistance was reported in 12 cases. All
protocols collected T cells from peripheral blood and most
used ex vivo expanded cells. At our institution, we have
successfully used the cytokine-capture system to isolate
CMV-specific T cells.

Sixteen patients received autologous T cells and interestingly,
it was possible to harvest CMV-specific T cells from patients with
CMV D−/R− and D+/R− serostatus at time of transplantation
[72]. In one patient, the immunosuppressive treatment was
reduced specifically for cell harvesting, and the authors
recommended this measure 2–3 weeks prior to cell
collection [70].

Three patients received fully or partially HLA-matched third-
party allogeneic T cells; our patient received the cells from his
HLA-matched daughter, the pediatric patient received cells from
his mother who was not the SOT donor [79], and another patient

received cells from a third-party donor who was selected from a
donor registry [69].

One to six doses of CMV-specific T cells were infused per
patient with single doses between 0.24 × 107 and 3 × 107 cells.
After infusion, some trials observed rapid in vivo expansion of
CMV-specific T cells with simultaneous drop in viral load [73],
however, other protocols could not observe these
dynamics [70].

Infusions were generally well tolerated. Smith et al observed in
their case series only grade 1 and 2 adverse events with potential
association to the T cell infusion [72]. No graft-versus-host
disease was observed with the allogeneic products, however,
one patient had a mild fever following infusion which was
potentially associated with cytokine release [69]. Of note, in
the very first reported case, a lung transplant recipient with a
drug-resistant CMV pneumonia on mechanical ventilation
initially responded clinically and virologically after a first
infusion of autologous CMV-specific T cells, could be
discharged, and received a second infusion for prophylaxis,

TABLE 3 | Case reports and one case series reporting the use of CMV-specific adoptive T cell therapy in SOT.

Author/journal/year Type of SOT
and number of

patients

Reason for treatment with CMV-
specific T cells

T cell donor/Strategy Outcomes

Smith et al. [72] 13 SOT
(4 kidney, 8 lung,
1 heart)

Recurrent, refractory and/or resistant
CMV infection/disease or any CMV
infection/disease with drug intolerance

Autologous Objective improvement of symptoms,
including reduction/resolution of
DNAemia in 85% (11/13). Adverse
events were of grade 1 (nausea,
malaise, fatigue, altered taste
sensation) and 2 (fatigue, halitosis,
microangipathic hemolytic anemia)

Clinical Infectious Diseases 2019 Ex vivo expanded
1–6 doses; 22.2–224 ×
106 T cells/dose. 8/13 with
concomitant antiviral therapy
after infusion

Brestrich et al. [73] 1 SOT (lung) Recurrent, refractory CMV-pneumonia
on mechanical ventilation

Autologous Virologic and clinical response after 1st
dose. Recurrent pulmonary CMV
disease 6 weeks later. Died from CMV-
negative graft failure

Am J Transplant 2009 Ex vivo expanded
One dose as treatment (1 ×
107 cells/m2), 2nd dose as
secondary prophylaxis

Holmes-Liew et al. [71] 1 SOT (lung) Recurrent, resistant CMV infection after
resolved CMV disease (hepatitis,
pancytopenia)

Autologous CMV PCR undetectable at time of
infusions and for 16 months following
infusion

Clin Transl Immunology 2015 Ex vivo expanded
Four doses (3 × 107 T cells/
dose)

Pierucci et al. [70] 1 SOT (lung) Recurrent, resistant CMV infection with
intolerance to cidofovir

Autologous CMV titer reduction but no clearance.
Died from unrelated fungal infectionJ Heart Lung Transplant 2016 Ex vivo expanded

Three doses (1.9–2.2 ×
107 T cells/dose)

Macesic et al. [69] 1 SOT (kidney) Recurrent, resistant CMV disease
(glomerular thrombotic
microangiopathy)

Allogeneic (3/6 HLA matched
third-party donor from a donor
bank)

Virologic and clinical response but
remained dialysis dependent. Mild fever
following infusion

Am J Transplant 2015 Ex vivo expanded
One dose (1.6 × 107 T cells/
m2). Concomitant artesunate

Miele et al. [79] 1 SOT (liver) Recurrent, refractory CMV disease
(leukopenia, thrombocytopenia,
interstitial pneumonia)

Allogeneic (5/6 HLA matched
mother)

Virologic and clinical response
(leukopenia resolved). No CMV relapse
in the following 10 yearsMicroorganisms 2021 Ex vivo expanded

Two doses (1st dose with 1 ×
106 cells/kg)

Stuehler C., Khanna N. et al.
University Hospital of Basel,
Switzerland (unpublished data)

1 SOT (kidney) Recurrent, refractory CMV infection
after CMV disease (leukopenia,
pneumonia)

Allogeneic (6/6 HLA matched
daughter)

Clinical response (leukopenia resolved).
Partial virologic response with ongoing
low-level replication under
valganciclovir

Immune magnetic sorting using
cytokine capture assay
One dose (3.5 × 104 cells/kg)
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however, he subsequently died few weeks later from CMV-
negative graft failure and it was not possible to fully exclude
an association with the T cell therapy [73]. No changes in graft
status were observed in the other cases.

As cases were not controlled and concomitant antiviral-drug
regimen were often present, larger and controlled studies are
necessary to estimate and prove treatment efficacy (e.g., as for BK
virus in kidney transplantation, NCT04605484).

In summary, CMV-specific adoptive T cell therapy is an
appealing option for R/R CMV in SOT. However, safety and
efficacy need to be confirmed in controlled trials. Additional data
is needed to identify the best protocols in terms of T cell
generation and optimal time point of application and the
influence of different immunosuppressive therapies on
treatment efficacy should be investigated. At this point, we
recommend that CMV-specific T cell therapies should be
preferentially offered within clinical trials in order to close the
knowledge gaps.

Other Options
Other options for treatment of R/R CMV in SOT have been
discussed in the latest guidelines [10, 11]; brincidofovir, an oral
conjugated form of cidofovir, is US FDA approved for smallpox
as bioterrorism agent but no longer available [80] after it failed as
prophylaxis for CMV in a phase 3 trial in HCT [81]. Use of
leflunomide [82] or artesunate, both with in vitro efficacy against
CMV remains anecdotal [83, 84]. And although 31% of
respondents in a recent survey among mainly European SOT
centers reported that they add CMV-specific immunoglobulins to
the antiviral therapy for ganciclovir-resistant CMV [16], this
approach is controversial. The current guidelines state that
randomized trials are needed to adequately investigate the role
of CMV-specific immunoglobulins [10, 11].

Reduction of immunosuppressive drug doses to lowest doses
compatible with graft survival remains fundamental in CMV
treatment. However, type of immunosuppression might also play
a role; data of a recent meta-analysis suggested that compared to
calcineurin inhibitors alone the addition of everolimus may be
associated with lower risk for CMV infection and similar trends
were observed with other mTOR inhibitors [37]. In contrast,
mycophenolate mofetil might increase risk for CMV disease [85]
and therefore, many clinicians hold the drug during R/R CMV
episodes.

CONCLUSION

While R/R CMV remains an important complication in SOT,
new therapeutic options became available in the recent years
(Table 1).

Best evidence on efficacy and safety is available for
maribavir and we therefore recommend maribavir as first-
line treatment for R/R CMV in SOT. However, although
maribavir was superior to standard therapies for R/R CMV,
many patients did not achieve sustained viral clearance and
symptom control. Especially patients with high initial viral
loads and patients without genotypic resistance might be at
risk for suboptimal responses, and, because of poor drug
penetration, patients with CMV encephalitis and retinitis
were completely excluded from the pivotal trial.
Additionally, maribavir resistance and drug-drug
interactions might become more relevant with broader use.
This underlines the need for alternative strategies and still
legitimates use of the conventional second-line drugs,
foscarnet and cidofovir, depending on the individual patient
situation.

TABLE 4 | Refractory/resistant CMV treatment strategies at Helsinki University Hospital, Johns Hopkins University, and University Hospital of Basel.

Helsinki University Hospital, Finland Johns Hopkins University, United States University Hospital of Basel, Switzerland

Testing Genotypic test for drug resistance only in
selected cases with risk factors and failure to
respond despite to 21 days of adequately
dosed therapy

Genotypic test for drug resistance in patients
without response despite 14 days of adequately
dosed therapy

Genotypic test for drug resistance in patients
without response despite 14 days of
adequately dosed therapy

Current strategy to
treat refractory/
resistant CMV

Letermovir has been used in selected cases
with success. Generally try to avoid foscarnet
due to nephrotoxicity. Until recently, Maribavir
has not been available

Maribavir is now considered first-line therapy for R/
R CMV infections at many centers. However, if the
starting CMV viral load is extremely high, some
clinicians may try to decrease the CMV viral load
with another agent such as foscarnet first, then
switch to maribavir after a drop in viral load and
before significant toxicity has occurred

Foscarnet. In some cases addition of CMV
specific immunoglobulins. Early discussion of
treatment with adoptive CMV-specific
adoptive T cell therapy from third party donor
(ongoing phase 1/2 study). Maribavir was not
readily available until to date

Planned adaption to
the strategy

Maribavir as first line therapy in r/r CMV infection
and disease

Maribavir as first line therapy in r/r CMV infection
and disease. In future also hope to usemaribavir for
those with CMV recurrences and prior neutropenia
during CMV treatment

Maribavir as first line therapy in r/r CMV
infection and disease

Personal view Most of the r/r CMV infections can be
successfully treated with (val)ganciclovir
together with mild reduction in
immunosuppression and long enough courses
of treatment, but leukopenia during long
treatment is a problem

Collaboration between transplant teams and
transplant infectious disease specialists essential;
reduction of immunosuppression; Ig
supplementation for hypogammaglobulinemic
patients. Need further study of benefits/risks of
secondary prophylaxis

Close management within interdisciplinary
teams including transplant care team and
infectious disease specialists recommended.
We generally omit cidofovir due to
nephrotoxicity

Transplant International | Published by Frontiers October 2023 | Volume 36 | Article 117858

Walti et al. New Treatments for R/R CMV in SOT

41



More studies are needed to define the role of letermovir in R/R
CMV; its best use may be in secondary prophylaxis. However, small
case series reported a favorable response to treatment of R/R CMV
infections.

Similarly, few data are currently available on safety and
efficacy of CMV-specific T cell therapy in SOT. Until further
data are available, we recommend treatment in clinical trials.

Authors’ institutional guidelines and personal insights are
shown in Table 4.
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Long-term risk for malignancy is higher among solid organ transplant (SOT) recipients
compared to the general population. Four non-hepatitis viruses have been recognized as
oncogenic in SOT recipients—EBV, cause of EBV-associated lymphoproliferative diseases;
human herpes virus 8 (HHV8), cause of Kaposi sarcoma, primary effusion lymphoma and
multicentric Castleman disease; human papilloma virus, cause of squamous cell skin
cancers, and Merkel cell polyomavirus, cause of Merkel cell carcinoma. Two of these
viruses (EBV and HHV8) belong to the human herpes virus family. In this review, we will
discuss key aspects regarding the clinical presentation, diagnosis, treatment, and prevention
of diseases in SOT recipients associated with the two herpesviruses.

Keywords: human herpes virus 8, Epstein-Barr virus, Kaposi sarcoma, multicentic Castleman disease, primary
effusion lymphoma, posttransplant lymphoproliferative disorders

HUMAN HERPES VIRUS 8 IN SOLID ORGAN TRANSPLANTATION

Introduction
HHV8 is a DNA virus that belongs to the gamma-herpes virus subfamily. It was first discovered in
1994 as the etiologic agent of Kaposi’s sarcoma (KS) [1]. Four types of KS are distinguished: classic-,
endemic-, immunosuppression-associated-, and AIDS-associated KS [2]. Other HHV8 associated
neoplastic disorders include primary effusion lymphoma and multicentric Castleman disease [3, 4].

In SOT recipients, KS is ~200 fold more frequent than the general population, with cumulative
incidence of ~3%–5% in endemic areas, and <1% in non-endemic areas [5, 6]. Post-transplant KS is a
consequence of reactivation of latent infection in seropositive recipients, or a primary donor derived
infection in seronegative recipients [7].

Non-neoplastic disorders associated with HHV8 are peripheral cytopenias, hemophagocytic
syndromes, acute hepatitis, and KS-associated herpesvirus inflammatory cytokine syndrome
(KICS) [8, 9].

Epidemiology
The seroprevalence of HHV8 depends on the geographic region. African countries have the
highest seroprevalence rates (>50%), whereas seroprevalence in Europe, North America, South
and East Asia is lower [10–14]. In low seroprevalence regions, men who have sex with men
(MSM) are at increased risk [15].
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Both sexual and non-sexual transmission (including blood
transfusion and organ transplantation) of HHV8 occurs. SOT
recipients may be infected either before transplantation and
reactivate the virus post-transplantation, or acquire the virus
as a donor-derived infection. Primary HHV8 infection post-
transplant increase the risk for HHV8-associated
disease [16].

Non-Malignant HHV8 Disorders
HHV8 infection in immunocompetent individuals is generally
asymptomatic, although occasionally associated with a febrile
rash in children [17]. In immunocompromised individuals,
HHV8 infection has been associated with fever, splenomegaly,
maculopapular rash, lymphadenopathy and cytopenia [18]
and rarely causes systemic disease with multi-organ failure
post-transplantation [6]. Bone marrow suppression, with or
without hemophagocytosis was linked to donor derived
HHV8 infection in the early post-transplant period [19–21],
and rare cases of sexually transmitted primary
HHV8 infections post-transplantation were associated with
hemophagocytosis [22].

Malignant HHV8 Disorders
Post-Transplant Kaposi Sarcoma (PT-KS)
PT-KS is the most commonly encountered HHV8-related
neoplastic disease [23]. PT-KS mostly develops within the
first year post-transplantation [6], and may cause skin
lesions involving the extremities, the trunk and the oral
cavity [6]. Lesions are characterized by red-blue or purple
discoloration, representing the vascular nature of the disease
[18]. Visceral involvement occurs in ~10% of PT-KS cases,
with higher rates (up to 50%) in liver transplant recipients
and associated with high a mortality [24, 25]. Disseminated
disease without skin lesions exists, and lesions may appear
at atypical localizations including the tonsils, urinary bladder
and liver [26–28]. The disease can be rapidly-progressive,
especially in donor derived cases [29]. In addition to
primary infection, risk factors for KS in SOT have been
described, with the most prominent factor being residence/
origin in endemic countries. Other risk factors include (from
higher to lower risk) older age, male gender, thoracic
transplantation, and use of cyclosporine and antilymphocyte
antibody [18, 30, 31].

Multicentric Castleman Diseases (MCD)
MCD is characterized by B-cell transformation to plasmablasts,
which subsequently infiltrate multiple lymph nodes and distort
their architecture. It typically presents with fever,
lymphadenopathy, hepatosplenomegaly, and cytopenia [6].
MCD and PT-KS may occur concomitantly in SOT patients
[32–34].

Primary Effusion Lymphoma (PEL)
PEL is a non-Hodgkin lymphoma that rarely develops after SOT
and affects serous body cavities (pleura, pericardium, and
peritoneum) [6]. The median time of presentation is 8 years
after transplant, with a wide range from 5 months to 28 years

[35]. It presents as a body cavity effusion in the absence of tumor
masses. The prognosis is dismal [35].

Kaposi Sarcoma Herpes Virus (KSHV)
Inflammatory Cytokine Syndrome (KICS)
KICS is a systemic inflammation that resembles MCD without
pathologic findings in lymph nodes. Generally, patients with
KICS also have KS and to a lesser extent may have PEL.
Patients with KICS have more severe symptoms, and an
increased risk of death [36]. Two cases of KICS have been
reported in SOT recipients (Table 1) [8, 37].

Screening and Diagnosis of HHV8 Infection
Recent American society of transplant (AST) guidelines on
HHV8 provide a weak recommendation for pre-transplant
serological screening of donors and recipients in endemic
areas in order to stratify the risk for HHV8 associated disease
[6]. In non-endemic areas it is suggested to consider screening for
at-risk donors and recipients only (i.e., MSM, people living with
HIV or who inject drugs), or for immigrants from endemic
countries [8].

The rationale behind recommending serologic screening in
endemic settings is the increased risk for KS among seropositive
kidney transplant recipients as compared to seronegative
recipients (23%–28% vs. 0.7%) [38]. In addition, donor
derived post-transplant HHV8 transmission from seropositive
donors to seronegative recipients has been described.
Nevertheless, HHV8 seropositive individuals are not excluded
from organ donation [6]. Preventive reduction of
immunosuppression has been suggested in D+R− cases [23].

Lack of standardization of serological assays, variable
sensitivity and specificity of these tests, and the absence of an
algorithm for management according to serologic findings, result
in low rates of pre-transplant screening in practice. In a survey
including 51 transplant centers, only one-third performed pre-
transplant HHV8 serology. High HHV8 seroprevalence (>6%
seropositivity), Italian centers, available protocols for post-
transplant viral load monitoring, and having had a recent case
of HHV8 disease were associated with screening.

In a study that assessed six different serologic HHV8 assays the
Biotrin–DiaSorin IFA and ABI IFA showed the highest
agreement with a reference standard of ≥2 concordant positive
assays [39].

No AST recommendations are available to direct a schedule of
blood viral DNA monitoring in D+R− or R+ SOT recipients,
beyond a general recommendation for monitoring in these
patients [6]. In a recent survey, 41% of centers reported
performing HHV8 PCR monitoring post-transplant, with
variable indications including symptomatic patients only, risk-
based approaches or universal screening [40]. In case of
detectable HHV8 DNAemia, most centers reduced the
immunosuppression or changed from calcineurin inhibitors
(CNI) to m-TOR inhibitors, with or without addition of
antivirals [40]. For viremic patients, guidelines suggest
immunosuppression reduction or change to mTOR inhibitors.
The rationale for the latter is the antiviral and antiangiogenic
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effects of sirolimus, though no clinical benefit has been
demonstrated in studies [6]. Screening for viral DNA in
bronchoalveolar fluid has been suggested for lung transplant
recipients and is now under investigation (NCT05081141).

Immune monitoring by HHV8 ELISPOT test is used by some
centers as adjunct to HHV8 PCRmonitoring in high-risk patients
[40]. Absent anti-HHV8 cytotoxic T-cell response has been
demonstrated in SOT recipients with KS. It has been
suggested that ELISPOT may assist in identifying patients at
higher risk for developing KS, and if negative, reducing the
immunosuppression may be considered [9].

Table 2 provides a proposed approach for screening or
HHV8 pre and post-transplant.

Diagnosis of HHV8 Associated Disease
The gold standard for diagnosing KS, MCD and PEL is
histopathological examination of tissue. Immunohistochemical
staining of HHV8 latency-associated nuclear antigen confirms
the diagnosis. Tissue PCR for HHV8may assist in confirming the
diagnosis. There is no established role for peripheral blood PCR
in diagnosing KS. Positive PCR supports the diagnosis of KS,
however, it may be negative in ~20% of KS cases [41]. Highest
DNAemia levels were reported in MCD, followed by PEL. Hence,
PCR may be more sensitive in these cases, and it has been
suggested that negative HHV8 PCR may be used to exclude
MCD [42]. High HHV8DNAemia (>10,000 copies/mL) supports
the diagnosis of MCD over KS [43]. In patients with PEL, high

viral loads have been demonstrated in effusion fluids [42]. Due to
limitations of serology discussed above, it is not currently
indicated for diagnosis of HHV8 associated disease [44].

Patients with KICS are almost universally DNAemic. The
diagnosis of KICS is based on high levels HHV8 DNAemia,
exclusion of other possible causes, and possibly detection of
HHV8 in involved organs (bone marrow, liver, and others) [9,
36]. A cutoff value of viral load in plasma ≥1,000 copies/mL
or ≥100 copies/106 cells in peripheral blood mononuclear cells
has been suggested for diagnosis of KICS [36].

Prevention
(Val)ganciclovir, cidofovir and foscarnet inhibit the replication of
human herpes viruses, including HHV8. Among HIV patients,
(val)ganciclovir proved to decrease the incidence of KS [45].
However, effectiveness of these drugs as pre-emptive therapy in
cases of positive HHV8 PCR has not been demonstrated.

The need for a vaccine to prevent HHV8 associated
malignancies in susceptible populations has been recently
raised by the National Cancer Institute. Since the
HHV8 genome is highly conserved, it is possible that a single
vaccine would provide protection worldwide [46].

Treatment of HHV8 Related Diseases
Treatment of HHV8 associated malignancies and non-malignant
conditions in SOT recipients should first include reduction in
immunosuppression (RIS) and/or change from CNI to mTOR

TABLE 1 | Case reports of KSHV Inflammatory Cytokine Syndrome (KICS) in solid organ transplant recipients.

Recipient Donor Organ Presentation Findings KS

38 years old female, PSC
and CKD, HHV8 IgG
Negative

42 years old, HHV8 IgG positive Liver and
Kidney

Persistent fever
12 months after
transplantation

Severe anemia and worsening of renal function,
severe splenomegaly and small-sized generalized
lymphadenopathy, HHV8 viral load
~189,000 copies/mL

No

54 years old male, TOF,
HHV8 IgG Negative

39 years old, Eastern Europe, high
risk sexual behavior, HIV negative,
positive HHV8 IgG

Heart Persistent fever
11 months after
transplantation

Pancytopenia, ↑creatinine, bilateral pleural effusion,
generalized lymphadenopathy, HHV8 viral load
~183,000 copies/mL

yes

CKD, chronic kidney disease; HHV8, human herpesvirus 8; HIV, human immunodeficiency virus; KS, Kaposi sarcoma; KSHV, Kaposi sarcoma Herpes virus; PSC, primary sclerosing
cholangitis; TOF, tetralogy of Fallot.

TABLE 2 | Proposed approach for HHV8 screening pre- and post-transplant.

Serologya PCRb ELISPOT Physical exam Management

Pre
transplant

Yes No No No No

Post
transplant

Among D+R− repeated serology
may indicate seroconversion—no
schedule suggested [40]

Among D+R−, PCR once
every 2 weeks for 3 months
followed by once monthly to
complete 2 years- Among R+,
PCR once monthly for
2 years [40]

Among D+R− or
R+ may assist as
adjunctive test
to PCR

For D+R−, skin and
mucosal surfaces
routine
examinations [6]

If PCR positive negative → reduction in
immunosuppression or change to
mTOR inhibitor [6] If ELISPOT negative
→ consider immunosuppression
reduction [9]

aIf a screening approach is not implemented, the following signs and symptoms shouldmerit an investigation for HHV8 if no other cause is found: fever, splenomegaly, maculopapular rash,
lymphadenopathy and cytopenia.
bThere is no gold standard serology assay.
cQuantitative cut-offs for PCR tests are missing; optimal testing frequency and duration of surveillance have not been determined. Whole blood may be more sensitive than plasma,
because if inclusion of the cellular component. Screening is not routinely used by the authors of this review.
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inhibitors [47, 48]. Older studies demonstrated between 70% and
100% complete response (CR) of KS following a change from
cyclosporin to sirolimus, and 20%–50% CR of KS with RIS [5,
38, 49].

In a more recent study, including 145 SOT recipients with KS,
immunosuppression reduction with/without switch to mTOR
inhibitors, resulted in a response in >80% of patients [5].

Systemic chemotherapy with an anthracycline or paclitaxel is
usually required for KS patients with visceral involvement,
extensive lymph node or mucocutaneous involvement, and for
patients not responding to reduction/change in
immunosuppression [6, 9]. Immunomodulatory therapy with
interferon-α is avoided in the SOT setting because of the risk
for rejection [50]. Specific chemotherapy regimens are routinely
used for the management of MCD and PEL, in addition to
immunosuppression reduction [9, 45].

Immunological (ELISPOT) and virological (HHV8 PCR) tests
are suggested as part of follow up in the management of KS and
other HHV8 related diseases [9].

Several antivirals have in-vitro activity against HHV8,
including ganciclovir, foscarnet, and cidofovir, while acyclovir
is not highly active [51]. Recent NIH guidelines for HIV
management do not recommend antivirals as part of KS
therapy, based on studies showing limited efficacy [45]. For
the treatment of PEL, antiviral drugs may be used as a
possible adjunctive therapy, with a CIII level of
recommendation [45]. For MCD, two retrospective studies
demonstrated remissions using ganciclovir as part of the
treatment regimen in HIV patients [45]. This is supported by
the rationale of lytic HHV8 infection being present in MCD [52].
There is limited data to support the use of anti-IL6 inhibitors for
MCD with no recommendation for general use of these drugs for
this indication [45]. Adoptive immunotherapy with cytotoxic
T-lymphocytes specific for HHV8 could have a therapeutic role,
though there is currently no commercial product available [9].

EPSTEIN-BARR VIRUS IN SOLID ORGAN
TRANSPLANTATION

Introduction
Epstein–Barr virus (EBV) is a double-stranded DNA virus of the
γ-herpesviridae subfamily [53]. The virus was discovered in
1964 from cultured lymphoblasts of Burkitt’s lymphoma
biopsies before being identified as the causative agent of
mononucleosis in 1968 [54, 55]. EBV was the first known
human oncogenic virus and it efficiently transforms human
B-lymphocytes [56–58]. Upon infection, EBV establishes life-
long latency in memory B-cells [59, 60]. The pathogenesis of
EBV-associated oncogenesis is complex and it is related to the
ability of the virus to transform and immortalize B-cells and to
impede apoptosis of infected cells [53, 61]. EBV is associated with
a large spectrum of diseases, including benign diseases (infective
mononucleosis, oral hairy leukoplakia), a number of
lymphoproliferative disorders (Burkitt’s lymphoma, some
Hodgkin lymphomas, EBV-positive diffuse large B-cell
lymphomas, natural killer/T-cell lymphoma, nasal type

angiocentric lymphomas, chronic active EBV), epithelial
cancers (nasopharyngeal carcinoma, some forms of gastric
cancer), smooth muscle cell tumors, and diseases related to
immune dysfunction (multiple sclerosis, EBV-associated
hemophagocytic lymphohistiocytosis) [61, 62].

In SOT patients, EBV is known to play a major role in the
development of EBV-positive post-transplant
lymphoproliferative disorders (PTLD), one of the most
devastating complications of organ transplantation [53, 63, 64].

Epidemiology
Seroepidemiologic surveys indicate that >90% of adults are
infected with EBV [65, 66]. In developed countries, primary
EBV infection tends to occur later nowadays as compared to
the past [67–69]. In the transplant setting, donor transmitted
EBV infection is common in EBV mismatched (donor EBV+/
recipient EBV−) patients. Children are more likely to be EBV-
negative, and may acquire the virus from the donor organ or by
natural infection, putting them at increased risk for post-
transplant primary infection.

EBV Associated Diseases in SOTRecipients
Post-Transplant Lymphoproliferative Disorders
(PTLD)
Since the first description of five lymphoma cases in kidney
transplant recipients (KTR) in 1969, PTLD has been recognized
as a serious complication of SOT [70]. PTLD encloses a
heterogeneous spectrum of conditions characterized by
lymphoproliferation after transplantation. These disorders
range from uncomplicated infectious mononucleosis-like
pathology to true malignancies [71]. PTLD is categorized
according to the World Health Organization (WHO)
2017 classification, based on its histopathological appearance
(Table 3) [77]. Additionally, PTLD is classified according to its
temporal occurrence: early-onset PTLD arises within the first
year post-transplant, whereas late-onset PTLD occurs thereafter
[78]. In contrast to late-onset PTLD, most cases of early-onset
PTLDs are associated with EBV [72, 79, 80]. While the
incidence rate for EBV-positive PTLD is highest early after
transplant, the incidence rate of EBV-negative PTLD is low
immediately after transplantation and increases after 4–5 years,
resulting in a biphasic pattern of overall PTLD occurrence
[81, 82].

A major risk factor for development of EBV-positive PTLD is
EBV-seronegativity pre-transplant (hazard rate 5–18 as
compared to EBV-seropositive individuals) [80, 83–87].
However, in liver transplant recipients the association of EBV-
seronegativity and PTLD risk is less pronounced [87]. As children
are more likely to be EBV-seronegative before transplantation,
PTLD is more common in pediatric SOT recipients. Further, the
risk is affected by the type of transplanted organ with intestinal
transplant recipients (~18%) being at highest risk for developing
PTLD [88, 89], followed by lung (3%–10%), heart (2%–8%), liver
(1%–6%), and kidneys (1%–2%) [90]. In the current era, there
was no conclusive association between the type of induction
therapy and PTLD risk [91, 92]. The contribution of each
immunosuppressive agent to PTLD development is unclear,
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since patients receive multiple agents in different doses at
different times [91]. However, concerns regarding the use of
belatacept in EBV-seronegative transplant recipient have been
raised [93]. It is for this reason that belatacept is contraindicated
in patients who are EBV-seronegative or whose EBV serostatus is
unknown prior to transplant [94].

The clinical presentation of PTLD is heterogeneous and
depends on the type (non-destructive-, polymorphic-,
monomorphic-PTLD) and the localization of disease. Non-
specific constitutional symptoms such as fever, unintended
weight loss, night-sweats, and fatigue are common.
Lymphadenopathy, tonsillar hypertrophy, dysfunction of
involved organs, or compression of surrounding structures
may occur. More than half of cases presents with extranodal
involvement [72, 83, 95]. PTLD frequently involves the
gastrointestinal tract (20%–30%), the allografts (10%–15%),
and the central nervous system (CNS, 5%–20%) [72, 83, 95].
Therefore, not only lymphadenopathy but also gastrointestinal
bleeding or ulcers, allograft dysfunction in combination with
masses, and focal neurological signs should rise suspicion
for PTLD.

EBV-Associated Smooth Muscle Cell Tumor
(EBV-SMT)
EBV-SMT is an uncommon neoplasm of immunocompromised
individuals [96]. The role of EBV in the tumorigenesis is poorly
understood. EBV-SMT is thought to be derived from
myogenous vascular smooth muscle cells [97]. The clinical
presentation of EBV-SMT is unspecific and depends on the
localization of the tumor [98]. Biopsies of smooth muscle
tumors in SOT recipients should be evaluated with EBV-
encoded small nuclear RNA (EBER) stains, to establish
the diagnosis of EBV-SMT [98] and the differential
diagnosis should include KS and mycobacterial spindle cell
pseudotumor [96].

Non-Malignant EBV-Associated Disease After SOT
The features of these EBV manifestations may include infective
mononucleosis, oral hairy leukoplakia [99], and end-organ
infections such as encephalitis/myelitis [100] or hepatitis [101].
Some of these manifestations may share clinical features of PTLD
(e.g., encephalitis vs. CNS PTLD). Therefore, careful evaluation of
these cases is warrant.

TABLE 3 | Overview of post-transplant lymphoproliferative disorders.

WHO 2017 category EBV-association Clonality Frequency Clinical features

Non-destructive PTLD ~100% [72, 73] No ~5% Early-onset, Benign
- Plasmatic hyperplasia
- Infectious mononucleosis-like PTLD
- Florid follicular hyperplasia
Polymorphic PTLD ~90% [72, 73] Variable ~10% Early and late-onset
Monomorphic PTLD ~50% [72] Yes ~80% Early > late
B-cell neoplasm
- Diffuse large B-cell lymphoma
- Burkitt (like) lymphoma
- Plasmablastic lymphoma
- Plasmacytoma like lymphoma
- Others
T-cell neoplasms ~20% Yes <5% Late-onset
- Peripheral T-cell lymphoma
- Others
Hodgkin/Hodgkin-like lymphoma ~90% [74] Yes <5% Early and late-onset

Early-onset, within 1 year post-transplant. Late-onset, >1 year post-transplant. EBV, Epstein-Barr virus; PTLD, post-transplant lymphoproliferative disorder; WHO, world health
organization.

TABLE 4 | Proposed approach for EBV screening pre- and post-transplant.

Serology PCR ELISPOT Physical exam Management

Pre
transplant

Yes No No No No

Post
transplant

Among D+R− repeated serology
may indicate seroconversion—in
clinical practice, measurement of
EBV DNA in peripheral blood has
largely replaced serology for the
diagnosis of primary EBV infection

Among D+R−, PCR once
every 2–4 weeks for
12 months [75, 76]
(author’s personal opinion,
week evidence)

For research
purpose
only

Check for lymphadenopathy
during routine clinical controls
(author’s personal opinion, no
evidence)

Reduction in immunosuppression if
high EBV DNAemiaa (author’s
personal opinion, week evidence)
Actively search for PTLD if EBV
DNAemia is persistently highb

aThere is no uniformly accepted EBVDNAemia uniform cut-off for reduction in immunosuppression. This is related to the different types of samples (whole blood vs. EDTA plasma) used for
EDTA monitoring and the considerable inter-laboratory variations in EBV DNAemia measurements (even when using the WHO standard).
bThere is no established EBV DNAemia cut-off (neither DNAemia level nor duration of persistent DNAemia) for triggering radiologic examinations.
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Due to the overwhelming clinical importance of PTLD, we will
focus on aspects related to PTLD in this review.

Diagnosis of Post-Transplant
Lymphoproliferative Disorders (PTLD)
The diagnosis of PTLD is based on the histopathological
examination of appropriate tissue biopsies. Assessing the
presence of latent EBV infection of affected cells by
(preferably) RNA-in-situ-hybridization targeting EBV-encoded
small RNAs (EBER) or by immunohistochemistry targeting latent
membrane protein 1 (LMP1) is essential for the diagnosis of EBV-
associated PTLD [102]. Preceding to tissue sampling,
radiographic imaging is a crucial initial step to come to a
tentative diagnosis. The radiographic evaluation is similar to
that used in the evaluation of suspected lymphoma in the
non-transplant population [103]. A computed tomography
scan (neck to pelvis) is the first step in most centers. MRI
may be the preferred modality for suspected cerebral PTLD
[104]. Positron emission tomography-computerized
tomography has emerged as a useful imaging modality for
detecting suspicious lymph nodes and extranodal lesions and
may be helpful to identify optimal sites for biopsy [105].
Establishing a PTLD diagnosis can be difficult and
occasionally multiple attempts for getting conclusive tissue
biopsies are necessary (especially for gastrointestinal PTLD).
In SOT recipients with persistent gastrointestinal symptoms,
PTLD should be part of the differential diagnosis and
endoscopy with biopsy of ulcers/lesions should be
performed [106].

Studies evaluating the diagnostic test characteristics of EBV
DNAemia measurements for diagnosing EBV-positive PTLD are
limited. In summary, EBV DNAemia above a specific threshold
has good sensitivity (~90%) for detecting EBV-positive PTLD but
lacks specificity [107–109] and EBV PCR is not useful for
detection of EBV-negative PTLD.

Prevention of EBV Associated Disease in
SOT Recipients
Monitoring EBV DNAemia With Reduction of
Immunosuppression for Prevention of EBV-Positive
PTLD
A monitoring strategy of repeated EBV DNAemia measurement
with RIS if a certain threshold is reached or if DNAemia is
increasing, is applied by many transplant centers [110], especially
for high-risk patients (EBVD+/R−) [108, 111–115]. However, the
optimal way to apply this strategy remains unclear. This is also
related to the inter-laboratory variability of EBV DNAemia
measurements, despite previous efforts for harmonizing results
by introducing an international standard [116, 117]. In clinical
practice, EDTA plasma or whole blood is used for monitoring
EBV DNAemia (Table 4). EBV DNAemia levels are higher when
determined in whole blood as compared to EDTA plasma [118,
119]. Therefore, the sensitivity for detection of EBV DNAemia is
higher when using whole blood. However, the specificity for
detection of EBV-related disease is better when using EDTA

plasma samples [120]. The controversy with respect to the
preferred sample type for monitoring EBV DNAemia is
ongoing. In our opinion, it is more relevant to ensure that the
same type of sample is used and that DNAemia is determined in
the same laboratory when longitudinally assessing EBV
DNAemia, instead of focusing on the discussion about the
preferred sample type. Even though there is no evidence from
randomized-controlled trials supporting the usefulness of EBV
DNAemia monitoring and RIS, there is some evidence from
cohort studies supporting this approach [75, 76, 111]. However,
the results of these studies have to be interpreted with caution
because of using historic controls [75, 76] (problematic because of
decreasing PTLD incidence over time, most likely related to less
intense immunosuppression in contemporary versus historic
cohorts [72, 111, 121] and the lack of statistical power to
show differences due to the rarity of the disease [111]).
Although it seems to be appealing from a pathophysiological
point of view, there is no strong evidence supporting EBV
DNAemia monitoring with RIS for prevention of EBV-positive
PTLD. Furthermore, no specific cut-off value for EBV DNAemia
to guide preemptive therapy is available, with some studies using
any positive titer [122] while others using increasing loads (>10-
fold or >1 log10 cp/mL) [122].

Antiviral Prophylaxis for Prevention of EBV-
Positive PTLD
Several antiviral drugs such as (val)acyclovir, (val)ganciclovir,
cidofovir, foscarnet and maribavir inhibit lytic EBV replication
[123, 124]. However, these drugs have no effect on latent EBV
infection. Since primary EBV infection after transplantation is a
major PTLD risk factor, reducing donor-derived EBV
transmission may have an impact on PTLD occurrence. A
reduction of primary EBV infection was observed in a cohort
of EBV seronegative pediatric KTRs on (val)ganciclovir
prophylaxis versus no antiviral prophylaxis [125]. In another
cohort of EBV mismatched adult KTRs, antiviral prophylaxis for
3–6 months delayed the rate of EBV primary infection at 100 days
post-transplant, but the seroconversion rate 12 months post-
transplant was identical with and without prophylaxis (72% vs.
74%) [126]. Recent cohort studies did not find a protective effect
of antiviral prophylaxis on PTLD occurrence [72, 127]. These
findings are consistent with results of a systematic review
published in 2017, concluding that antiviral prophylaxis in
high-risk EBV-naive patients has no effect on the incidence of
PTLD [128].

Rituximab for Prevention of EBV-Positive
PTLD
The preemptive use of rituximab for prevention of PTLD has
become a common strategy in EBV viremic hematologic stem-cell
transplant (HSCT) [129, 130]. B-cell depletion before or directly
after HSCT, has shown to reduce EBV replication [131, 132] and
the incidence of EBV-positive PTLD [133–135] in high-risk
patients. The potential effect of rituximab on subsequent
PTLD development may be attributable to the depletion of
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CD20+ B-cells, which represent the major reservoir for latent
EBV infection. The reduced abundance of these cells at risk for
malignant transformation might be linked to a lower PTLD risk
[72]. Rituximab use is less well established for prevention of EBV-
positive PTLD in SOT recipients. A recent multi-center cohort
study reported that rituximab given as part of the induction
regimen (mostly in ABO-incompatible kidney transplantation) is
associated with a decreased risk for PTLD [72]. A single-center
cohort study reported diminished PTLD rates with rituximab use
in heart transplant recipients whose EBV DNAemia did not
respond to RIS using a historic control group [75]. Similarly,
EBV-mismatched KTRs with persistent EBV DNAemia or
symptomatic EBV infection given rituximab simultaneously
with RIS were less likely to develop PTLD compared to
contemporaneous controls [114].

Treatment and Prognosis of PTLD
The first therapeutic measure in treatment of PTLD is RIS under
close monitoring of the graft function. There are no evidence-
based guidelines on how to reduce immunosuppression, but in
clinical practice, stopping anti-proliferative agents and dose
reduction of the CNI is the common approach [90]. Significant
RIS may not be feasible in all cases and is especially difficult to
achieve in thoracic organ transplant recipients due to the risk of
life-threatening graft rejection [136]. RIS eradicates the
majority of non-destructive PTLD cases. However, for
polymorphic and monomorphic PTLD the response to RIS
alone is often insufficient [137, 138]. A radiologic
reassessment is performed two to 4 weeks after RIS, and if a
CR is achieved no further treatment is needed.

In the following section, we summarize the treatment
options for polymorphic PTLD and monomorphic diffuse
large B-cell lymphoma (DLBCL) PTLD. Treatment of non-
DLBCL monomorphic PTLD depends on the histologic
classification of the respect lymphoma and follows the same
chemotherapy regimens as for immunocompetent patients,
and will not be reviewed here. Immunochemotherapy for
treatment of DLBCL PTLD is associated with significant
toxicity and many SOT recipients are not fit for highly
intensive regimens [139]. Therefore, sequential and risk-
stratified treatments are applied for treatment of CD20+

monomorphic DLBCL PTLD. The PTLD-1 [140], the PTLD-
1 third amended [141] and PTLD-2 [142] phase 2 trials are
landmark studies that established sequential, risk-stratified
PTLD treatment modalities. The PTLD-1 study proved the
efficacy and safety of a sequential treatment of four cycles
rituximab monotherapy followed by four cycles of
cyclophosphamide, doxorubicin, vincristine, and prednisone
(CHOP) for patients who did not achieve complete remission

with RIS [140]. The most favorable outcomes were seen in
patients who achieved a response to rituximab alone prior to
chemotherapy, indicating that these patients may belong to a
“good-risk group”. In consequence, the PTLD-1 third amended
trial assessed a risk-stratified protocol: patients who achieved a
CR after four doses of rituximab, received consolidation with
rituximab alone while those who did not achieve CR were
treated with four cycles of R-CHOP [141]. This trial proved
that withholding chemotherapy and performing a rituximab
consolidation in patients with CR to rituximab alone is safe and
associated with less toxicity [141]. The PTLD-1 third amended
trial identified two subgroups with poor prognosis: thoracic
transplant recipients and patients with an International Prognostic
Index (IPI) score >2 [141]. The PTLD-2 trial, inter alia, assessed
treatment escalation (alternating R-CHOP and R-DHOAx-
rituximab, dexamethasone, cytarabine, oxaliplatin) in these
patients with poor prognosis [142]. However, the number of
patients in this subgroup was low (n = 9), the outcome was
poor and the treatment related toxicity was substantial [142].

For further information about novel, less established PTLD
treatment options such as infusion of third-party EBV-specific
cytotoxic T-lymphocytes, CAR-T cell therapy, proteasome
inhibitors, burton-tyrosine kinase inhibitors, and histone
deacetylase inhibitors in combination with antiviral nucleoside
analogues we refer to the recent review of Atallah-Yunes
et al. [143].

The introduction of rituximab, the administration of sequential
risk stratified treatment regimens, and optimized supportive care
have improved the outcome for patients with PTLD. In the PTLD-
1 trial, themedian overall survival was 6.6 years [140]. Patients with
a CR to rituximab alone have better prognosis as compared to
rituximab non-responders [141] and thoracic transplant recipients
show less favorable outcome as compared to non-thoracic
transplant recipients [141, 142].
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Utility of the Interferon-Gamma
Enzyme-Linked Immunosorbent Spot
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Cytomegalovirus Infection in Kidney
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Non-specific interferon-gamma (IFN-γ) enzyme-linked immunosorbent (ELISpot)
responses after solid organ transplant (SOT) and their relationship with
cytomegalovirus (CMV) reactivation have hardly been investigated. Adult kidney
transplant (KT) recipients underwent measurement of IFN-γ-producing T cells using the
ELISpot assay before and 1 month after transplantation. Data for CMV infection episodes
were collected. Risk factors for post-transplant CMV infection, based on IFN-γ responses,
were analyzed using a Cox proportional hazards model. A total of 93 KT recipients were
enrolled in the study and 84 evaluable participants remained at 1 month post KT. Thirty-
three (39%) recipients developed subsequent CMV infection within 6 months post-
transplant. At 1-month post-transplant, IFN-γ-producing T cells with <250 spot-
forming units (SFUs)/2.5 × 105 peripheral blood mononuclear cells (PBMCs) were
significantly associated with CMV infection (HR 3.1, 95% CI 1.4–7.1, p = 0.007). On
multivariable analysis, posttransplant IFN-γ-producing T cells with <250 SFUs/2.5 × 105

PBMCs remained independently associated with CMV infection (HR 3.1, 95% CI 1.2–7.8,
p = 0.019). Conclusions: KT recipients with low IFN-γ-producing T cells measured by the
ELISpot assay are more likely to develop CMV infection after transplantation. Therefore,
measurement of nonspecific cell-mediated immunity ELISpot responses could potentially
stratify recipients at risk of CMV infection (Thai Clinical Trials Registry,
TCTR20210216004).

Keywords: cytomegalovirus, cell-mediated immunity, immune monitoring, immunocompromised, solid organ
transplant

INTRODUCTION

Kidney transplantation (KT) has been widely performed over the past few decades and has improved
quality of life and long-term survival among end-stage kidney disease patients requiring renal
replacement therapy [1–3]. Immunosuppressants are administered to KT recipients to maintain
allograft function and avoid rejection [4]. Although immunosuppressive drugs, especially those that
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suppress cell-mediated immunity (CMI), provide the advantage
of maintaining allograft function, they also place these vulnerable
patient populations at increased risk of infection, especially
opportunistic infection, after transplantation [5, 6]. As a result,
clinicians need to balance the beneficial and deleterious effects of
immunosuppressive therapy. Therefore, therapeutic drug
monitoring is routinely performed during the course of
transplantation to indirectly quantify the net immune status
because subtherapeutic and supratherapeutic levels of
immunosuppressants are correlated with allograft rejection
and viral reactivation, respectively.

There has also been heightened interest in direct
measurements of individual immunity. Interferon-gamma
(IFN-γ) is an important cytokine with a significant role in
antimicrobial and antiviral immunity [7]. Therefore, direct
immune status evaluation through measurement of pathogen-
specific or non-pathogen-specific IFN-γ-producing T cells has
been proposed as a modality to predict specific types of infection
in immunocompromised patients. The enzyme-linked
immunosorbent spot (ELISpot) assay for IFN-γ measurement
has been used for assessment of T cell immunity in response to
stimulator cells from donors or third parties in solid organ
transplant (SOT) recipients, and has been shown to predict
poor long-term renal function in previous studies [8, 9].
However, data regarding non-specific IFN-γ ELISpot
production responses to quantify the net state of
immunosuppression from an infectious disease perspective are
scarce. In the present study, we aimed to determine the utility of

the IFN-γ ELISpot assay for measuring cellular immune
responses and its correlation with post-transplant
cytomegalovirus (CMV) infection in KT recipients.

PATIENTS AND METHODS

Population
A prospective clinical trial of adult KT recipients aged ≥18 years
was conducted at Faculty of Medicine Ramathibodi Hospital,
Mahidol University, Bangkok, Thailand, between December
2020 and December 2021. The inclusion criteria were adult
patients who underwent KT during the study period. The
exclusion criteria were surgical postponement regardless of
etiology and inadequate peripheral blood mononuclear cells
(PBMCs) from venous blood samples. Patients who provided
informed consent were monitored clinically for 6 months post-
transplant. Study-specific blood samples were collected prior to
KT surgery and receiving induction therapy then at
approximately 1 month after transplantation to assess for
prediction of subsequent CMV infection. Data on
demographic characteristics, comorbidities, transplantation
types, immunosuppressive therapies, risk factors, and clinical
outcomes were collected. Clinical outcomes of interest
included CMV DNAemia, CMV syndrome and CMV end-
organ CMV disease.

CMV-seropositive KT recipients underwent preemptive CMV
monitoring every 2–4 weeks by plasma CMV quantitative real-
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time polymerase chain reaction (qPCR) assays [CAP/CTM CMV
(Roche, Branchburg, NJ, United States) or RealTime CMV
(Abbott, Des Plaines, IL, United States)], or when clinically
indicated, during the first 3 months. CMV-seromismatched
(CMV-seronegative recipient receiving an allograft from
CMV-seropositive donor) KT recipients or those who received
anti-thymocyte globulin (ATG) for induction therapy or steroid-
refractory rejection were provided intravenous ganciclovir or oral
valganciclovir for anti-CMV prophylaxis for a period of 3–6
(CMV-seromismatched recipients) months, or were switched to
preemptive CMV monitoring for 3 months by plasma CMV
qPCR if they were unable to complete the course of therapy.
According to our institutional guideline, CMV DNAemia is
treated if CMV viral load is greater than 3,000 copies/mL.
Both CMV DNAemia and CMV disease patients are treated
with intravenous ganciclovir. Preemptive urine screening
(i.e., urinalysis and urine culture) is routinely performed on
days 3, 7, 10, and 14 after KT then twice weekly until
additional 14 days following urinary stent or catheter removal.
Trimethoprim/sulfamethoxazole (1 year or longer) for
Pneumocystis jirovecii prophylaxis, acyclovir (6 months) for
herpes simplex virus prophylaxis, and isoniazid (9 months) for
latent tuberculous infection therapy were prescribed to all
recipients.

The primary objective of the study was to determine the
clinical utility of the non-specific IFN-γ ELISpot assay to
measure cellular immune responses against
phytohemagglutinin (PHA) and its correlation with post-
transplant CMV infection in KT recipients. The secondary
objectives were to assess risk factors and incidences of CMV
infection within 6 months post-transplant.

IFN-γ ELISpot Assay
Venous blood samples were collected into two 4 mL tubes
containing heparin. Sufficient PBMCs were separated by a
Ficoll-Paque centrifugation technique and counted using an
automated hematology analyzer. The final cell suspension was
prepared at a density of 2.5×105 cells/100 µL. The IFN-γ ELISpot
assay used in the study is the positive control part of the
T-SPOT.TB assay (Oxford Immunotec, London,
United Kingdom). The ELISpot assay was initiated by adding
100 µL of suspension and 50 µL of positive control solution
containing PHA (Mabtech, Stockholm, Sweden) to
commercially available pre-coated 96-well plates (Mabtech).
The plates were incubated in a humidified incubator at 37°C
with 5% CO2 for 18 h. The distinct dark-blue spots produced as
a result of antigen stimulation were evaluated and counted by
an ImmunoSpot® Analyzer (Cellular Technology Ltd., Cleveland,
OH, United States). The completely-developed assay plates were
archived for potential re-examination in case of anomalies. The
numbers of spot-forming units (SFUs) in paired wells were
reported per 2.5×105 PBMCs.

CMV Infection
CMV Infection was diagnosed by clinical, microbiological,
radiological, or pathological evidence. The first author
determined the infection episode and a final decision was

obtained from the corresponding author. Both are infectious
disease specialists. CMV infection was defined as the detection
of CMV deoxyribonucleic acid (DNA) in plasma and further
classified into asymptomatic CMV DNAemia and CMV disease.
The latter was subclassified into CMV syndrome or CMV tissue-
invasive diseases according to AST IDCOP and the
Transplantation Society International CMV Consensus Group
[10, 11]. Data for all CMV infection that occurred within
6 months post-transplant were collected.

Statistical Analyses
The clinical characteristics were analyzed by descriptive statistics.
Categorical and continuous variables were summarized as
frequency and percentage, mean and standard deviation (SD),
or median and interquartile range (IQR) as appropriate.
Comparisons of two categorical outcomes were conducted
using the chi-square test or Fisher’s exact test. The
Mann–Whitney U test or Student’s t-test were used to analyze
the differences between continuous outcomes. Numbers of IFN-
γ-producing T cells were presented as dot plots with bars
representing the median and IQR, as generated by GraphPad
Prism 6.0 (GraphPad Software Inc., San Diego, CA,
United States). A receiver operating characteristic (ROC) curve
was plotted to determine the IFN-γ ELISpot threshold. Clinical
and immunological factors associated with CMV infection were
analyzed using the Kaplan–Meier survival estimator and Cox
proportional hazards model. Purposeful selection process
algorithm was utilized by selecting any variable having a
clinically significant univariable test at an arbitrary level of
0.1 to be a candidate for the multivariable analysis. Sensitivity
analyses were performed by raising the threshold to 2,000 and
3,000 copies/mL. These cut-off values were selected because of its
clinical significance according to our institutional guideline.
Values of p < 0.05 were considered statistically significant. All
statistical analyses were performed using SPSS® Statistics 18
(IBM, Armonk, NY, United States) and STATA 18 (StataCorp,
College Station, Texas, United States).

Participant Consent Statement
The study protocol was approved by the Human Research Ethics
Committee of Faculty of Medicine Ramathibodi Hospital,
Mahidol University, Bangkok, Thailand (approval number:
COA. MURA2020/1983). All patients signed an informed
consent form before enrollment in the study. The study was
registered in the Thai Clinical Trials Registry
(TCTR20210216004).

RESULTS

Population
A total of 93 participants were recruited for the study and
81 samples were available for evaluation at 1 month post-
transplant (Figure 1). The baseline characteristics of the 93 KT
recipients are shown in Table 1. The majority of the recipients
received an allograft from a deceased donor (73%) and underwent
induction therapy with basiliximab (71%). The maintenance
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immunosuppression rates were 93% for tacrolimus, 77% for
mycophenolate mofetil, and 100% for prednisolone. Almost all
participants (98.9%) carried CMV-seropositive status and
underwent preemptive CMV DNA load monitoring for
3 months after the transplant. There was only one CMV-
seromismatched participant who received ganciclovir
prophylaxis for 2 weeks during the hospital stay and then
switched to preemptive CMV DNA load monitoring to
complete 3 months course. Three episodes of acute rejection
occurred on days 6, 23, and 25 after KT.

CMV Infection
Among all 81 evaluable participants at 1 month post KT, 33
(41%) KT recipients developed CMV infection within 6 months
post-transplant.

Nearly all CMV infection (30, 91%) were asymptomatic CMV
DNAemia. The median (IQR) values of the first and peak CMV
DNA load were 784 (223–2,334) and 1,934 (522–7,432) IU/mL.
Three CMV diseases comprised one CMV syndrome and two
CMV gastrointestinal diseases. The only one CMV-seronegative
recipient receiving a CMV-seropositive graft developed CMV
syndrome 70 days after transplantation. The patient was admitted
and treated with intravenous ganciclovir induction for 1 month
leading to clinical resolution and negative CMV viral load before
discharge. The median (IQR) duration from transplant to CMV
infection was 62 (41–90) days.

IFN-γ-Producing T Cells and
Post-Transplant CMV Infection
The median (IQR) of absolute lymphocytes counts (ALC) before
and 1 month after transplantation were 1,104 (861–1,442) and
1,133 (717–1,730) cells/mm3, respectively (p = 0.42). The median
(IQR) numbers of IFN-γ-producing T cells before and 1 month
after transplantation were 763 (409–1,067) and 148 (54–389)
SFUs/2.5 × 105 PBMCs, respectively (p < 0.001). The IFN-γ
ELISpot of CMV-seromismatched participant were 395 SFUs/

2.5 × 105 PBMCs before KT and 4 SFUs/2.5 × 105 PBMCs
1 month after KT.

The median (IQR) numbers of IFN-γ-producing T cells at 1-
month post-transplant in the KT recipients with CMV infection
is presented in Figure 2. Recipients with CMV infection
developed significantly fewer IFN-γ-producing T cells than
those without CMV infection (115 [33–237] vs. 238 [76–492]
SFUs/2.5 × 105 PBMCs, p = 0.019).

The ROC curve analysis revealed that the IFN-γ ELISpot assay
showed satisfactory test quality to discriminate between CMV
infection and no CMV infection with an optimal cutoff value of
250 SFUs/2.5 × 105 PBMCs (AUC 0.65, sensitivity 50%, specificity
80.6%, positive predictive value 66%, negative predictive value
69%), as shown in Table 2. Baseline characteristics of KT
recipients classified by IFN-γ ELISpot at 1 month post-
transplant were shown in Table 3. Those with IFN-γ
ELISpot <250 SFUs/2.5 × 105 PBMCs tend to receive more
ATG for induction therapy (27.5%) compared to those with
IFN-γ ELISpot ≥250 SFUs/2.5 × 105 (10%).

Factors Associated With CMV Reactivation
Cox proportional hazards model analyses were conducted to
assess the clinical and immunological factors associated with
CMV infection/reactivation within 6 months post-transplant
(Table 4). IFN-γ ELISpot <250 SFUs/2.5 × 105 PBMCs was an
independent determinant of CMV infection in both univariable
and multivariable analyses.

On univariable analysis, the significant factors associated with
CMV infection at 6 months post-transplant were pre-transplant
PRA (HR 1.02, p = 0.001), ATG induction therapy (HR 3.04, 95%
CI 1.53–6.06, p = 0.002), and IFN-γ ELISpot <250 SFUs/2.5 × 105

PBMCs (HR 3.30, 95% CI 1.36–8.03, p = 0.008). On multivariable
analysis, IFN-γ ELISpot <250 SFUs/2.5 × 105 PBMCs was the
only significant factor independently associated with CMV
reactivation (HR 2.83, 95% CI 1.12–7.13, p = 0.027). Harrell’s
C value was 0.630 (95% CI 0.573–0.723) with a standard
definition of CMV infection. The values increase as we raise

FIGURE 1 | Study flow chart. Abbreviations: KT, kidney transplantation; IFN-γ ELISpot, enzyme-linked immunosorbent spot assay for interferon-gamma; SFUs,
spot-forming units; PBMCs, peripheral blood mononuclear cells.
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the thresholds to 2,000 and 3,000 copies/mL. The C values were
0.694 (95% CI 0.584–0.806) and 0.728 (95% CI 0.623–0.834),
respectively.

The time to CMV infection stratified by IFN-γ ELISpot
(<250 vs. ≥250 SFUs/2.5 × 105 PBMCs) was presented in
Figure 3 by a Kaplan-Meier curve (log-rank test < 0.05).

DISCUSSION

The present study prospectively evaluated non-specific CMI
before and after receiving immunosuppressive drugs in KT
recipients. IFN-γ-producing T cells after stimulation with
PHA were quantified by the ELISpot assay. At a month post-
transplant, a significant reduction in IFN-γ-producing T cell
responses was observed among KT recipients. Low non-
specific CMI, defined as <250 SFUs/2.5 × 105 PBMCs by

ELISpot assay, was significantly associated with CMV infection
after adjustment for a lymphocyte-depleting agent as
induction therapy.

KT recipients are at risk of infection due to the complexities
of immunosuppressive medications, instrumentation, and re-
transplantation, as represented in our cohort [12]. Among
opportunistic pathogens, herpesvirus and polyomavirus are
predominant among KT recipients due to the pathogenesis of
reactivation under an immunosuppressed state [5]. The
significant association with CMV infection could be
explained by the containment of this specific pathogen by
T cells. The high prevalence of CMV seropositivity in our
cohort allowed us to observe this relationship. This
association was supported by several previous studies
reported in the literature, in which a lack of innate or
adaptive immunity was associated with an increased risk of
CMV infection in SOT recipients [13–17].

For pathogen-specific immunity, CMV has been widely
explored in previous studies. A lack of CMV-specific humoral
immunity and CMI before and after transplantation was
associated with CMV infection in KT recipients [18, 19].
Specifically, a lack of CMV intermediate early 1–specific CMI,
defined as 40 IFN-γ spots/3 × 105 PBMCs at 2 weeks post-
transplant, was correlated with CMV infection among KT
recipients with basiliximab induction therapy. In the present
study, non-specific IFN-γ-producing cells remained
independently predictive of CMV infection in a cohort that
was mainly composed of recipients with CMV-seropositive
status. This finding may be explained by the underlying
mechanism for how IFN-γ-producing cells contribute to
protection against viral infections, especially the long-term
control of viral infections [7, 20]. Immunosuppressants
compromise this specific CMI, leading to loss of control and
virus reactivation. Although a negative CMV-specific cell-

TABLE 1 | Baseline characteristics of the 93 kidney transplant recipients.

Characteristics N (%) or mean ± SD

Female sex 38 (40.9)
Age (years) 44 ± 11
Comorbidities
Hypertension 76 (81.7)
Diabetes mellitus 11 (11.8)
Hyperparathyroidism 29 (31.2)
HBV infection 4 (4.3)
Unknown 1 (1.1)

Transplant type
DDKT 68 (73.1)
LRKT 25 (26.9)
BMI (kg/m2) 22.6 ± 3.7

CMV serostatus
D+/R+ 88 (94.6)
D−/R+ 2 (2.2)
D+/R− 1 (1)
D−/R− 0

Unknown donor CMV status/R+ 2 (2.2)
Re-transplantation 7 (7.5)
HLA mismatch
0 10 (10.8)
1–3 72 (77.4)
4–6 11 (11.8)

PRA (%)
0–10 71 (76.3)
11–50 10 (10.8)
>50 12 (12.9)

Induction therapy
Basiliximab 66 (70.9)
Anti-thymocyte globulin 22 (23.7)
None 5 (5.4)

Maintenance therapy
Tacrolimus 86 (92.5)
Cyclosporine 7 (7.5)
Mycophenolate sodium 21 (22.6)
Mycophenolate mofetil 72 (77.4)
Prednisolone 93 (100)

Abbreviations: SD, standard deviation; HBV, hepatitis B virus; DDKT, deceased-donor
kidney transplantation; LRKT, living-related kidney transplantation; BMI, body mass
index; CMV, cytomegalovirus; D, donor; R, recipient; +, seropositive; −, seronegative;
HLA, human leukocyte antigen; PRA, panel-reactive antibody.

FIGURE 2 | IFN-γ ELISpot distribution plots for kidney transplant
recipients with and without CMV infection. Abbreviations: IFN-γ, interferon-
gamma; CMV, cytomegalovirus; IFN-γ ELISpot, enzyme-linked
immunosorbent spot assay for interferon-gamma; SFUs, spot-forming
units; PBMCs, peripheral blood mononuclear cells.
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mediated immunity (CMI) measured by QuantiFERON-CMV
(QFT-CMV) assay at 1 month after immunosuppressant
administration was associated with clinically significant CMV
infection in non-transplant immunocompromised (systemic
lupus erythematosus) patients with high CMV seroprevalence
[21]. The utilization of CMV-specific CMI to predict the risk of
infection among CMV-seropositive KT recipients remains to be

elucidated and requires further exploration. At least a single time
point of the use 1 month post-transplant QFT-CMV assays did
not predict CMV DNAemia among KT recipients living in a high
seroprevalence setting [22]. Therefore, we proposed that
monitoring of overall (non-specific) CMI can better predict
KT recipients at risk of CMV infection in the setting where
CMV seropositivity is predominant [23].

TABLE 2 | ROC curve analysis of IFN-γ ELISpot for distinguishing between CMV infection and no CMV infection.

IFN-γ ELISpot cutoff value (SFUs/2.5×105

PBMCs)
Sensitivity

(%)
Specificity

(%)
Positive predictive

value (%)
Negative predictive

value (%)
Accuracy

(%)

234 50 75 59 67 65
240 50 78 62 68 66
244 50 81 66 69 68
255 48 81 65 68 67

Abbreviations: ROC, receiver operating characteristic; IFN-γ ELISpot, enzyme-linked immunosorbent spot assay for interferon-gamma; CMV, cytomegalovirus; SFUs, spot-forming units;
PBMCs, peripheral blood mononuclear cells.
Area under the ROC curve = 0.65 (95% confidence interval 0.53–0.77).

TABLE 3 | Baseline characteristics of 81 evaluable kidney transplant recipients with IFN-γ ELISpot at 1 month post-transplant <250 or ≥250 SFUs/2.5 × 105 PBMCs.

Characteristics IFN-γ ELISpot <250 SFUs/2.5 × 105

PBMCs N = 51 (%)
IFN-γ ELISpot ≥250 SFUs/2.5 × 105

PBMCs N = 30 (%)
p-value Total (N = 81)

Female sex 22 (43.1) 12 (40.0) 0.78 34 (42.0)
Age (years) 45 ± 10 41 ± 11 0.07 44 ± 10
Comorbidities
Hypertension 41 (80.4) 25 (83.3) 0.74 66 (81.5)
Diabetes mellitus 9 (17.6) 1 (3.3) 0.08 10 (12.3)
Hyperparathyroidism 17 (33.3) 8 (26.7) 0.53 27 (30.9)

Transplant type 0.66
DDKT 38 (74.5) 21 (70) 59 (72.8)
LRKT 13 (25.5) 9 (30) 22 (27.2)

BMI (kg/m2) 22.6 ± 3.6 22.1 ± 3.7 0.6 22.4 ± 3.6
CMV serostatus 0.49
D+/R+ 49 (96) 28 (93.4) 77 (95.1)
D−/R+ 1 (2) 1 (3.3) 2 (2.5)
D+/R− 1 (2) 0 (0) 1 (1.2)

Unknown donor CMV status/R+ 0 (0) 1 (3.3) 1 (1.2)
Re-transplantation 3 (5.9) 2 (6.7) 1.0 5 (6.2)
HLA mismatch 0.01
0 2 (3.9) 7 (23.3) 9 (11.1)
1–3 41 (80.4) 22 (73.4) 63 (77.8)
4–6 8 (15.7) 1 (3.3) 9 (11.1)

PRA (%) 0.43
0–10 38 (74.5) 26 (86.6) 64 (79)
11–50 6 (11.8) 2 (6.7) 8 (9.9)
>50 7 (13.7) 2 (6.7) 9 (11.1)

Induction therapy 0.12
Basiliximab 35 (68.6) 24 (80) 59 (72.8)
Anti-thymocyte globulin 14 (27.5) 3 (10) 17 (21.0)
None 2 (3.9) 3 (10) 5 (6.2)

Maintenance therapy
Tacrolimus 47 (92.2) 30 (100) 0.29 77 (95.1)
Cyclosporin 4 (7.8) 0 (0) 0.29 4 (4.9)
Mycophenolate sodium 13 (25.5) 6 (20) 0.57 19 (23.5)
Mycophenolate mofetil 38 (74.5) 24 (80) 0.57 62 (76.5)
Prednisolone 51 (100) 30 (100) NA 81 (100)

Abbreviations: IFN-γ ELISpot, enzyme-linked immunosorbent spot assay for interferon-gamma; SFUs, spot-forming units; PBMCs, peripheral bloodmononuclear cells; DDKT, deceased-
donor kidney transplantation; LRKT, living-related kidney transplantation; BMI, body mass index; CMV, cytomegalovirus; D, donor; R, recipient; +, seropositive; −, seronegative; HLA,
human leukocyte antigen; PRA, panel-reactive antibody.
Bold value Indicates the significant p-value <0.05.
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IFN-γ is an important cytokine synthesized by natural killer
cells, CD4 TH1 cells, and CD8 cytotoxic lymphocytes of the
immune system in response to mitogenic and antigenic stimuli.
IFN-γ plays a crucial role in antimicrobial and antiviral immunity
[7]. There are several tools to measure the state of immunity in
immunocompromised individuals. Virus-specific CMI can be
measured by enzyme-linked immunosorbent assay (ELISA),
ELISpot assay, or intracellular cytokine staining. Indeed, a lack
of CMV-specific IFN-γ -producing T cell responses measured by
ELISA, ELISpot, or intracellular cytokine assay was shown to be
associated with CMV infection in SOT recipients. We
demonstrated that IFN-γ ELISpot response to PHA in KT

recipients at 1-month post-transplant was an independent
biomarker predictive of CMV reactivation. The IFN-γ ELISpot
assay is the positive control part of a commercially available and
standardized TB-specific ELISpot assay, and can be routinely
performed in a clinical laboratory. IFN-γ was shown to be
predictive of acute allograft rejection in a previous study [24].
However, another study found that donor-specific IFN-γ ELISpot
was not predictive of allograft loss [25]. The ELISpot assay has an
advantage over other assays by measuring extracellular IFN-γ,
which is believed to be more functional than measurement of
intracellular components. Furthermore, a washing step that is
unique to the ELISpot assay procedure may remove pre-existing

TABLE 4 | Univariable and multivariable Cox proportional hazards model analyses of clinical and immunological factors associated with CMV reactivation after kidney
transplantation.

Factors Univariable analysis Multivariable analysis

HR (95% CI) p-value HR (95% CI) p-value

Female sex 0.87 (0.44–1.72) 0.697
Age 1.03 (1.00–1.06) 0.095 1.00 (0.97–1.04) 0.830
BMI 1.06 (0.97–1.16) 0.171
Hypertension 2.42 (0.74–7.92) 0.143
Diabetes mellitus 1.38 (0.53–3.56) 0.505
Hyperparathyroidism 1.12 (0.55–2.29) 0.753
DDKT 2.09 (0.87–5.05) 0.099 1.65 (0.64–4.25) 0.303
Re-transplantation 0.98 (0.24–4.09) 0.979
HLA mismatch 0.99 (0.76–1.28) 0.923
PRA 1.02 (1.01–1.03) 0.001 1.01 (0.99–1.02) 0.538
ATG induction therapy 3.04 (1.53–6.06) 0.002 1.65 (0.42–6.53) 0.472
ALC at 1 month post-transplant ≤500 cells/mm3 1.93 (0.84–4.43) 0.119
IFN-γ ELISpot at 1 month post-transplant <250 SFUs/2.5 × 105 PBMCs 3.30 (1.36–8.03) 0.008 2.83 (1.12–7.13) 0.027

Abbreviations: HR, hazard ratio; CI, confidence interval; BMI, body mass index; DDKT, deceased-donor kidney transplantation; HLA, human leukocyte antigen; PRA, panel-reactive
antibody; ATG, anti-thymocyte globulin; ALC, absolute lymphocyte count; IFN-γ ELISpot, enzyme-linked immunosorbent spot assay for interferon-gamma; SFUs, spot-forming units;
PBMCs, peripheral blood mononuclear cells.

FIGURE 3 | Kaplan–Meier plots for cumulative incidence of CMV infection within 6 months post-transplant in kidney transplant recipients with IFN-γ
ELISpot ≥250 or <250 SFUs/2.5 × 105 PBMCs. Abbreviations: CMV, cytomegalovirus; IFN-γ ELISpot, enzyme-linked immunosorbent spot assay for interferon-gamma;
SFUs, spot-forming units; PBMCs, peripheral blood mononuclear cells; HR, hazard ratio; CI, confidence interval.
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IFN-γ and other potential substances that could interfere with the
results. International guidelines have encouraged the use of these
tools to guide clinicians when treating and offering prevention
strategies to SOT recipients [10, 11].

Several studies have investigated the role of non-pathogen-
specific CMI in predicting the occurrence of CMV infection after
transplantation. Immuknow assay, a commercially available
assay, which provides an assessment of global cell-mediated
immune responses revealed that those with impaired
CD4 T cell responses were likely to develop significantly more
CMV disease [16]. QuantiFERON monitor assay revealed that
IFN-γ in solid organ (including kidney) transplant recipients at 1-
month post-transplant was significantly lower in those with CMV
disease [26]. Those findings were similar with our study which
utilized different global immunity monitoring technique.

On the other way, a simple and practical way to indirectly
measure non-specific CMI could be obtained from absolute
lymphocyte count (ALC). Lymphopenia with an absolute
lymphocyte count of <610 cells/mm3 was correlated with an
elevated risk of CMV reactivation in SOT recipients [27].
Severe lymphopenia (defined as ALC <500 cells/mm3) during
pretransplant [15] and early post-transplant periods [17] was an
independent risk factor for CMV disease and early CMV
infection, respectively. However, we did not observe an
increased risk of post-transplant CMV reactivation in KT
recipients with an ALC of ≤500 cells/mm3. We believe being
able to assess CMI function may possibly be a better option to
stratify CMV risk in SOT population with CMV seropositivity.

The present study has several limitations. The small sample
size and the relatively high proportion of dropouts at 1 month
post-transplant were inadvertently aggravated by the COVID-19
pandemic. Only one case of CMV-seronegative recipient
receiving a CMV-seropositive graft was recruited in our study.
Thus, the correlation between non-specific IFN-γ ELISpot and
CMV infection cannot be extrapolated to this transplant
subpopulation. The statistically significant differences may not
be translated into clinical practice because a quarter of
participants with high non-specific CMI still developed CMV
infection in our study. Furthermore, many recipients with CMV
viral load above institutional threshold were not given antiviral
therapy. Decreased immunosuppressive therapy led to resolution
of CMV DNAemia in these patients. As a result, non-specific
IFN-γ-producing cells should be further assessed in a larger
cohort with a longer follow-up duration. The test could also
have limited clinical utility because it is technically complicated
and not available in a resource-limited diagnostic laboratory.
However, we have demonstrated the potential role of overall
immune monitoring in predicting CMV infection by the ELISpot
assay in KT recipients with profound immunosuppression.

In conclusion, an intact overall net state of CMI in KT recipients
early after transplantation is a protective factor against post-transplant
CMV infection within the first few months. KT recipients with a low

IFN-γ response are more likely to develop CMV infection. Therefore,
measurement of non-specific CMI responses using the ELISpot assay
could potentially stratify KT recipients at risk of CMV reactivation.
Clinicians should be able to design prevention strategies, either by
preemptive approaches or prophylaxis, based on the actual immune
status in individual recipients.
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Utilizing assays that assess specific T-cell-mediated immunity against cytomegalovirus
(CMV) holds the potential to enhance personalized strategies aimed at preventing and
treating CMV in organ transplantation. This includes improved risk stratification during
transplantation compared to relying solely on CMV serostatus, as well as determining the
optimal duration of antiviral prophylaxis, deciding on antiviral therapy when asymptomatic
replication occurs, and estimating the risk of recurrence. In this review, we initially provide
an overlook of the current concepts into the immune control of CMV after transplantation.
We then summarize the existent literature on the clinical experience of the use of immune
monitoring in organ transplantation, with a particular interest on the outcomes of
interventional trials. Current evidence indicates that cell-mediated immune assays are
helpful in identifying patients at low risk for replication for whom preventive measures
against CMV can be safely withheld. As more data accumulates from these and other
clinical scenarios, it is foreseeable that these assays will likely become part of the routine
clinical practice in organ transplantation.

Keywords: immune monitoring, cytomegalovirus management, innate immunity, preventive strategies, antiviral
prophylaxis

INTRODUCTION

Despite the implementation of effective antiviral therapies and sensitive molecular diagnostic assays,
cytomegalovirus (CMV) infection remains as a major complication after solid organ transplantation
(SOT), threatening both graft function and survival [1].

While relevant advances have been made in the understanding of the immunobiology of CMV
infection in the context of organ transplantation, little translation to clinical practice has been done so
far. In this regard, the T-cell arm of adaptive immunity (hereafter cell-mediated immunity [CMI]),
especially CMV-specific CD4+ and CD8+ T lymphocytes, has been well-recognized as a major immune
mechanism driving antiviral control [2, 3]. Robust evidence has showed a close association between
CMV-CMI and the risk of developing CMV infection in different transplant settings [4–6]. Yet, current
immune-risk stratification of CMV infection relies on the serological mismatch between donors and
recipients, based on the premise that seronegative recipients receiving a seropositive graft (D+/R−) are
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at the highest risk of developing primary CMV infection due to
their naïve immune status, whereas seropositive patients (R+)
receiving seropositive grafts are at an intermediate risk because
of previous viral immunization which should provide sufficient
protection against viral replication [7]. While such paradigm has
helped to predict the advent of CMV infection, this approach
encompasses important limitations as a proportion of R+
individuals may unpredictably develop CMV replication and
also because of the widespread use of T-cell depleting therapies
that convert previously immunized patients into naïve individuals
against CMV [8]. Tominimize the development of CMV infection,
the use of universal antiviral prophylaxis or preemptive assessment
of viral replication are the two main preventive strategies used [7].
However, either approach is far from being accurate as they do not
personalize the type and duration of such preventive strategies,
since the dynamic immune status specific to CMV is not being
considered.

Recently, novel immune assays have been used in
transplantation showing their capacity to accurately measure
CMV-CMI [4, 7]. While interesting clinical associations have
been reported between CMV-CMI and the risk of CMV
infection after transplant, the different methodological nature of

these assays -which provide diverse biological insight on
functionality of immune responses-, the so far limited data
coming from clinical trials, as well as the distinct clinical
transplant settings evaluated, makes it difficult to establish robust
conclusions on how to implement these new technologies into
clinical practice with the aim of improving transplant outcomes.

In this review, we first summarize the main mechanisms
involved in the immunobiology of CMV in transplantation, to
then address the major advances made with the assessment of
CMV-CMI using different immune-monitoring assays as well as
the major drawbacks currently limiting the implementation of
these assays.

IMMUNOBIOLOGY OF
CYTOMEGALOVIRUS INFECTION

CMV infection in SOT recipients results from primoinfection or
reactivation. In these two situations, a complex multi layered cell
response is required to inhibit CMV dissemination [9]. Five main
cell types have been studied during CMV infection, three
belonging to adaptive immunity (in particular CD8+ and

FIGURE 1 | Immune responses to cytomegalovirus primary infection.
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CD4+ T cells, and to a lesser extent the B cells) (Figure 1).
Importantly, some patients do not develop CMV disease despite
the absence of any CMV-specific CD8+ and CD4+ T cells,
suggesting that other actors belonging to innate immunity
(such as NK and γδ cells) could also be necessary for CMV
control.

NK Cells
The monitoring of NK cells can be easily performed by flow
cytometry with the following fluorochrome-coupled specific
antibodies: CD3, CD16, CD56, NKG2C, CD57. In human, NK
cell deficiency is associated with severe herpes viral infections,
such as CMV [10]. Healthy human individuals with a history of
CMV infection have an expanded population of NK cells
expressing the activating CD94/NKG2C receptor [11]. In
kidney transplant recipients, the number of circulating NK cell
is correlated with NK cell-mediated cytotoxicity during CMV
infection [12]. CMV R+ patients had preexisting memory-like
NK cells (NKG2C+CD57+FcεRIγ−) at baseline and a subset of
pre-memory-like NK cells (NKG2C+CD57+FcεRIγlow-dim)
increases during CMV DNAemia. These cells expressed a
higher cytotoxic profile than preexisting memory-like NK cells
at the acute phase. At later phases of viremia, a subsequent
accumulation of new memory-like NK cells has been reported
[13]. NK cell clonal expansion is observed after CMV infection,
leading to the development of immunological memory, two
features belonging to an adaptive immune response. NK cell
reactivity against CMV-infected cells results from a balance
governed by the activation of receptors that sense alterations
in the expression of ligands on the surface of CMV-infected cells.
An increase in NK activating receptors could confer to the host a
better protection against CMV infection.

γδ T Cells
In humans, γδ T cells are divided into two main subsets, based on
their γ and δ T-cell receptor (TCR) chain expression: 1) the
Vγ9Vδ2 γδT cells, expressing a δ2 chain, and 2) the non-Vγ9Vδ2
γδT cells. Initially, the involvement of non-Vγ9Vδ2 γδ T cells in
the anti-CMV response was identified in the context of SOT or
stem-cell transplantation. Five major observations suggest that
non-Vγ9Vδ2 γδ T cells respond specifically to CMV:

- A longitudinal expansion of non-Vγ9Vδ2 γδ T cells is
specifically observed in the peripheral blood of SOT
recipients undergoing CMV infection [14, 15].

- CMV infection induces a restricted repertoire of non-
Vγ9Vδ2 γδ T cells, suggesting an antigen-driven clonal
selection [16].

- Non-Vγ9Vδ2 γδ T cells are poised for effector (particularly
cytotoxic). During the course of CMV infection, non-
Vγ9Vδ2 γδ T cells switch from a mainly naive
phenotype (CD27+CD45RA+) towards a terminally
differentiated effector memory (TEMRA) phenotype
(CD27−CD45RA+), with the same kinetics than CMV-
specific αβ T cells [17].

- The non-Vγ9Vδ2 T cell clones or cell lines can inhibit CMV
dissemination and kill CMV-infected cells, in vitro [18].

Moreover, non-Vγ9Vδ2 γδ T cell expansion is associated
with recovery from CMV infection without recurrence [15].

- Non-Vγ9Vδ2 T cells recognize native antigens, which are
expressed at the cell surface during stress conditions (for
instance CMV infection) such as reactive oxygen species
(ROS) production, or AMP-activated protein kinase
(AMPK)-dependent metabolic reprogramming. One
example of CMV-induced γδ TCRs ligands is Annexin
A2 [19].

Gamma-delta T cells can be easily monitored in clinical
routine thanks to flow cytometry using a commercially
available kit gathering fluorochrome coupled specific
antibodies for CD45, CD3, Vδ2 and PAN-δ.

B Cells
While the advent of long-lasting humoral immunity toward a
primary viral infection is universally accepted, the contribution of
antibodies for protection against and control of CMV replication
in transplant recipients is still a matter of debate. Data coming
from experimental models suggest a key role of B cells through
CMV-specific antibody release, particularly in restricting viral
dissemination and in limiting disease severity [20, 21]. CMV-
specific neutralizing antibodies appear during the first 4 weeks
after primary infection and are mainly directed against CMV
glycoprotein B, but also H, L, and pUL128-131, all of them
involved in cell attachment, penetration, and fusion of the
viral envelope to the cell membrane of the host [22]. The
association shown between the former use of CMV-specific
immunoglobulins as prophylaxis and better outcomes among
liver transplant recipients also suggests to some extend a
protective role of humoral immunity against viral
replication [23].

Notably, in clinical transplantation, some R+ transplant
individuals remain at high risk of CMV infection despite
detectable humoral immunity, suggesting either a low avidity
or poor neutralizing activity of the antibody response. Post-
transplant IgM and IgG antibody seroconversion has been
shown not to be a reliable predictor of CMV disease [24].
Furthermore, some of D+/R− patients (20%–30%) do not
develop CMV infection after transplantation, suggesting either
an optimal antibody seroconversion early after transplantation or
the presence of preformed CMV-specific memory B cells prior to
transplantation even though undetectable circulating CMV-
specific IgG antibodies [25].

CMV-Specific CD8+ T Cells
During primary infection, CMV-specific CD8+ T cells exhibit an
antigen-driven early-differentiating phenotype (CD27+CD28+

CD45RO+CD45RA−) armed for cytotoxicity [26, 27]. After
viral clearance in healthy CMV R+ individuals, CMV-specific
CD8+ T cells can represent up to 10% of the memory CD8+

lymphocyte pool, a process described as memory inflation [28].
There are two main subsets of CMV-specific CD8+ T cells: a) a
central memory cell population (CD27+ CD28− CD45RO+) with
low cytotoxic potential but high proliferation ability, and b) a
TEMRA cell population, representing up to 75% of CMV-specific
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CD8+ T cells (CD27− CD28− CD45RA+), with a low proliferation
ability but a major cytotoxic potential. TEMRA cells are
resupplied from central memory cells and naive precursors.

During primary infection, the CMV-specific CD8+ T cell
population is polyclonal. On the opposite, few epitope-specific
clones are predominant at the chronic phase. More than half of
individuals have CD8+ T cell recognizing CMV peptides from the
three following open reading frames (UL48, UL83, UL123).
UL123 (immediate-early [IE]-1)-specific CD8+ T cells are
associated with less CMV reactivation in SOT recipients, likely
because UL123 is the first CMV protein to be expressed in
infected cells. In vitro, CMV-specific CD8+ T cells can kill
autologous CMV-infected cells and inhibit CMV
dissemination. In mouse models, late effector CD8+ T cells
maintain long-term control of viral replication [29].

CMV-Specific CD4+ T Cells
After a primary infection in SOT recipients, CMV-specific CD4+

T cells can be detected 1 week after the occurrence of CMV
DNAemia [30], more specifically those CD4+ CD28-granzyme
B+ cells [30, 31]. At the chronic phase of infection after viral
clearance, CMV-specific CD4+ T cells represent up to 9% of the
memory T lymphocyte pool. They exhibit an effector memory
phenotype (CD27− CD28− CD45RA−). More than half of
individuals have CD4+ T cells recognizing CMV peptides
transcribed from the five following open reading frames
(UL55, UL83, UL86, UL99, UL122). CD4+ T cells play a
central role in anti-CMV immunity by clearing cells loaded
with CMV peptides, helping B cells to mount a specific
humoral response against viral antigens and CD8+ T cells to
perform their effector functions [32].

Immunosuppressive Therapy and CMV
Immune Response
CMV-CMI is abrogated for one to 3 months after anti thymocyte
globulin induction [8] and reduced in patients having received
high-dose steroids [33]. Rejection is usually treated by these two
drugs and is therefore a risk factor for CMV disease [34, 35]. In
vitro, tacrolimus is a potent inhibitor of CMV-specific cytokines
release [36], and completely inhibits activation and proliferation
of CMV-specific T cells [37]. On the opposite, belatacept
demonstrated minimal inhibitory effects on CMV-specific
T cells likely because of an absence of effect on cells lacking
CD28 [36, 37]. While the antiviral immune response against
CMV measured in vitro appears preserved under belatacept [38],
high-risk belatacept-treated recipients show defects in sustaining
CMV control [39], and exhibit high incidence of atypical life-
threatening CMV diseases [40]. Further research is needed to
elucidate this gap. Finally, a dysfunctional T-cell profile (with
high PD1, low CD85j expression) has been observed in CMV-
infected patients receiving mycophenolic acid. On the contrary,
everolimus can improve T-cell fitness and transform
dysfunctional into functional cells, along with better control of
CMV [41]. In summary, the analysis of these five cells types could
be useful for transplant physicians to understand the impact of
the immunosuppressive regimen on CMV-specific T response.

OBSERVATIONAL DATA ON THE CLINICAL
APPLICATION OF CMV
IMMUNE-MONITORING
A growing number of observational studies have assessed in
recent years the clinical usefulness of CMV-CMI monitoring
to guide patient management in different SOT populations [42].
This research mainly includes single-center studies—with some
multicenter experiences [8, 33, 43–47]— and has been performed
in a wide range of clinical risk scenarios (Table 1). The most
common methodologies used for the measurement of CMV-CMI
is the reference technique of intracellular cytokine staining (ICS)
by flow cytometry [42, 44, 45, 59, 61, 62, 67–71] and the different
platforms for interferon (IFN)-γ release assay (IGRA) [4, 43,
46–56, 60, 63, 65, 66, 72–75]. Out of these immune assays, only
three are currently commercially available: the quantiFERON®-
CMV (QTF-CMV) (Qiagen, Hilden; Germany), the
T-SPOT®.CMV (Oxford Immunotec, Abingdon,
United Kingdom) and the T-Track®CMV (Mikrogen, Neuried,
Germany). Available experience with the major
histocompatibility complex (MHC)-tetramer staining method
is more limited [64], whereas a few studies have compared the
diagnostic accuracy of different approaches [54, 57, 76]. In most
cases the primary study outcome is any CMV viremia, regardless
of the presence or absence of symptoms or the level of DNAemia,
or less often clinically significant viremia requiring antiviral
therapy [46]. Since R+ patients typically have a low incidence
of CMV disease [77, 78], the few studies that have primarily
investigated the role of CMV-CMI monitoring to predict the
occurrence of symptomatic infection (viral syndrome or end-
organ disease) are focused on the high-risk group D+/R− patients
[43, 48, 58]. Notably each platform has different readouts that are
directly related to the nature of each immune assay. In general, all
assays measure T-cell mediated effector immune responses of
IFN-Ɣ production in response to two main immunogenic CMV
antigens, phosphoprotein 65 (pp65) and IE-1 [79]. Importantly,
while ELISA-based assays do not provide the individual response
to each CMV antigen, flow-cytometry and ELISpot-based assays
do deliver such the specific immunes, thus better illustrating the
global burden of immune responses against CMV.

As shown in Table 1, the available literature is not equally
distributed across the different clinical scenarios involved. One of
the most immediate applications of CMV-CMI monitoring is the
individualization of the length of prophylaxis. Rather than the
fixed-duration regimen of 3–6 months of valganciclovir—up to
12 months for lung transplant recipients—recommended by the
current guidelines for high-risk patients [7, 80], the knowledge of
the CMV-CMI functionality would allow for prematurely
discontinuing prophylaxis in patients that have mounted a
protective response, or prolonging it beyond the standard
schedule in the presence of a negative (non-reactive) assay
result. Manuel et al. provided early data on the usefulness of
the QTF-CMV assay in a multicenter cohort of 127 D+/R−
patients. The presence of a positive (reactive) assay at the end
of valganciclovir prophylaxis was associated with a lower
12 months incidence of CMV disease as compared to negative
or indeterminate results (6.4% versus 22.2%, respectively;
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p-value < 0.001), yielding a positive predictive value (PPV) for
immune protection of 90% (95% confidence interval [95% CI]:
74–98). Interestingly, those patients with an indeterminate QTF-
CMV result—suggestive of a profoundly abrogated immunity or
absence of CMV peptide recognition—had the highest incidence
of late disease [43]. These findings have been subsequently
confirmed in different SOT populations [53, 57, 75]. On the
other hand, a recent study has suggested that the predictive
accuracy in this clinical scenario of commercially available
ELISpot assays is superior of that of the QTF-CMV assay [57].
A similar conclusion may be drawn from a meta-analysis in
kidney transplant recipients [81]. The next natural step is to apply
this evidence to the clinical decision-making process. In addition
to the interventional studies reviewed in the next section, a
retrospective study in lung transplant recipients reported a
lower incidence of high-level CMV replication by using a
QTF-CMV-guided strategy of extended valganciclovir
prophylaxis (5–11 months) as compared to a fixed 5 months
regimen (43.1% versus 60.3%, respectively; p-value < 0.001)
[55]. These results were replicated using the T-SPOT®.CMV in
a distinct cohort of R+ lung transplant recipients [82].

Although the ability of the QTF-CMV assay to stratify the risk
of late CMV disease following the discontinuation of prophylaxis
has been demonstrated for the D+/R− constellation, some studies
restricted to R+ kidney transplant recipients receiving T-cell-
depleting induction therapy (ATG) [54] or R+ lung transplant
recipients [56] failed to find significant differences in the
occurrence of viral reactivation between patients with reactive
or non-reactive results. It has been proposed that the diagnostic
accuracy of the QTF-CMV assay to predict protection from low-
level infection among R+ patients might be improved by
increasing the threshold for IFN-γ production used to define a
positive result [54]. In addition, more sensitive techniques not
restricted to CD8+ T-cell responses, such as ICS by flow

cytometry and ELISpot-based assays, would perform better in
this scenario, at the expense of being more time-consuming and
costly [83].

The predominant population of R+ seropositive SOT
recipients without ATG has been traditionally considered as
an intermediate risk for CMV events, and either preemptive
therapy or antiviral prophylaxis are recommended as prevention
methods [7, 80]. A major contribution of the strategies for
measuring the CMV-CMI has been the identification of a
subgroup of R+ patients that lacks or displays very weak
effective T-cell-mediated responses against CMV at the pre-
transplant evaluation (non-reactive recipients [RNR]) despite
their positive anti-CMV IgG serological status. The proportion
of R+ patients with no detectable baseline CMV-CMI has been
estimated at about 20%–30% [44, 59, 60, 84, 85]. From a
functional perspective, these patients should be considered
closer to the seronegative recipients (R−) than to the so-called
intermediate-risk (R+) group, which would result in a higher
susceptibility to post-transplant infection if they receive an organ
from a seropositive donor [25]. In a study in kidney and lung
transplant recipients, Cantisán et al. found that D+/RNR patients
faced a markedly increased risk of CMV replication as compared
to R+ patients with a positive (reactive) pre-transplant QTF-
CMV assay (adjusted odds ratio [OR]: 10.49; 95% CI: 1.88–58.46)
[60]. Comparable results have been obtained with the ICS
technique [44, 59] or an ELISpot assay [51, 85]. An early
assessment at post-transplant day 15 provides a predictive
capacity significantly higher than at the pre-transplant
evaluation since some transplant recipients with robust
preformed CMV-CMI may significantly decrease their
functional CMV-CMI after induction immunosuppression
therapy, even in absence of ATG [44]. In this regard and
unlike the QTF-CMV assay, the knowledge of the specific
CMV-CMI against each individual CMV antigen that is

TABLE 1 | Summary of observational studies assessing the potential application of CMV-CMI monitoring in different clinical scenarios.

Clinical scenario Predicted event Supporting
studies

Monitoring method Proposed intervention

High-risk patients (D+/R−, T-cell-depleting
antibodies, lung transplantation) during antiviral
prophylaxis or at the time of discontinuation

Late-onset diseasea Yes [43, 46,
48–58]

QTF-CMV, ELISpot Prolong antiviral prophylaxis or close
monitoring for viremia if inadequate response

Pre-transplant assessment in intermediate-risk
patients (R+ with no other factors)

Post-transplant
viremia and/or
disease

Yes [4, 44, 47, 51,
59, 60]

QTF-CMV,
ELISpot, ICS

Initiate antiviral prophylaxis or close monitoring
for viremia in patients with inadequate response
(D+/RNR)

Intermediate-risk patients (R+) on preemptive
therapy with no concurrent viremia

Subsequent viremia
and/or disease

Yes [42, 44, 49,
51, 52, 61–64]

ICS, QTF-CMV,
ELISpot, MHC-tetramer
staining

Reduce the frequency and/or discontinue
monitoring of viremia if adequate response

Intermediate-risk patients (R+) on preemptive
therapy with asymptomatic viremia

Spontaneous
clearance

Yes [65, 66] QTF-CMV Withhold antiviral therapy if adequate response

Active CMV infection or disease during antiviral
treatment

Response to antiviral
treatment

No Decrease immunosuppression and/or modify
antivirals if inadequate response

Active CMV infection or disease after
discontinuation of antiviral treatment

Post-treatment
relapse

Yes [67] ICS Initiate secondary prophylaxis if inadequate
response

Acute graft rejection treated with steroid boluses
and/or T-cell-depleting antibodies

Disease following
anti-rejection therapy

No (Re)initiate prophylaxis if inadequate response

CMV, cytomegalovirus; D, donor; ELISpot, enzyme-linked immunosorbent spot assay; ICS, intracellular cytokine staining; QTF-CMV, QuantiFERON-CMV assay; MHC, major
histocompatibility complex; R, recipient.
aRefers to the occurrence of CMV, disease after discontinuing antiviral prophylaxis with ganciclovir or valganciclovir (usually administered for 100–200 days).
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provided by ELISpot-based assays, may further help to better
stratify patients according to three distinct immunological risks,
this is, at low, high, and at intermediate risk if one response
against one of the two antigen is absent or very low [33]. Some
factors have been reported to be associated with the absence of
QTF-CMV reactivity among R+ SOT candidates such as
profound lymphopenia, younger age, the type of organ to be
transplanted, presence of certain recipient HLA genotypes and of
non-HLA-A1/non-HLA-A2 alleles [84]. The latter finding is not
unexpected as the presentation to the CD8+ T-cells of the viral
epitopes contained in the “antigen tube” of the assay is restricted
through some HLA class I alleles [86, 87].

Finally, some studies have been conducted to investigate the
usefulness of post-transplant CMV-CMI monitoring among
intermediate-risk recipients preemptively managed to predict
protection against the development of CMV infection or, once
established, the capacity of spontaneous clearance of viremia
[42, 44, 49, 51, 52, 61–66]. These results pointed to the
predominance of CD8+ T-cells in the early response to
primary infection—or re-infection in the D+/R+
constellation—and CD4+ T-cells in the long-term control of
latent infection [42, 44, 61]. The assessment of CMV-CMI at the
onset of asymptomatic CMV viremia may be also useful to
discern the patients that will spontaneously clear the infection
from those who would eventually benefit from preemptive
therapy. By applying the cut-off value for QTF-CMV
positivity of ≥0.2 IU/mL of IFN-γ, Lisboa et al. reported a
sensitivity and specificity in this clinical scenario of 82.8%
and 75.0%, respectively, yielding a negative predictive value
to predict virologic and/or clinical progression of asymptomatic

viremia of 54.5% and a PPV of 90.9% to predict spontaneous
clearance [65].

Few observational studies have also explored the role innate
cells (NK and Non-Vγ9Vδ2 γδT cells) in different scenarios. For
instance, pretransplant peripheral blood NKG2C+ NKG2A- NK
cells could protect from CMV infection in kidney transplant
recipients independently of the presence of CMV-specific T cells
[88]. The NKG2C+ NK cell proportion in the bronchoalveolar
lavage could also be a relevant biomarker for assessing risk of
subsequent CMV viremia in lung transplant recipients [89].
During acute CMV infection, the NKG2C+ NK cells
proliferate, become NKG2C(hi), and finally acquire CD57, a
marker of “memory” NK cells that have been expanded in
response to infection [90]. During CMV disease, non-Vγ9Vδ2
γδT cells expansion was correlated to the resolution of CMV
infection and the emergence of CMV resistance in kidney
transplant recipients, but more importantly was able to predict
the absence of recurrence [15, 91]. A prospective clinical trial is
ongoing to confirm this last finding (SPARCKLING study:
NCT03339661).

Finally, as a complement to the assessment of the functionality
of the CMV-specific T-cell response, other immunological
biomarkers have been proposed to improve the process of risk
stratification in the SOT population. This includes the assessment
of antibodies targeting the pentameric complex (gH/gL/pUL128/
pUL130/pUL131A), post-transplant hypogammaglobulinemia,
absolute counts of total lymphocytes or peripheral blood
subpopulations, as well as genetic markers. A detailed account
of the advantage and limitations of these assays is summarized in
Table 2.

TABLE 2 | Other immunological approaches proposed within the risk assessment for post-transplant CMV infection.

Immunological biomarker Rationale Diagnostic performance, advantages and
limitations

Selected
studies

Serum immunoglobulin levels Severe IgG HGG (usually defined by the threshold
of <400–500 mg/dL) as a quantitative surrogate of the
humoral immune response

Easily available and economical (nephelometry).
Potentially reversible by IVIg/SCIg replacement
therapy. Lack of specificity for CMV infection risk

[92, 93]

Total lymphocyte count Lymphopenia (usually defined by the threshold
of <0.5–0.75 × 103 cells/μL) as a quantitative
surrogate of the T-cell-mediated immune response

Easily available and economical. Lack of specificity
for CMV infection risk

[94–97]

Peripheral blood lymphocyte subpopulations Enumeration of peripheral blood CD4+ and CD8+

T-cell counts at different post-transplant time points
by automated flow cytometry

Less time- and labor-consuming than CMV-CMI
monitoring. Lack of specificity for CMV infection
risk. Simultaneous risk assessment for other
opportunistic infections. Of particular usefulness in
patients receiving T-cell-depleting agents

[98, 99]

SNP in genes orchestrating innate and
adaptive responses (pattern recognition
receptors and interferons)

Protective effect associated to SNPs within TLR9 and
IFNL3 genes. Risk-conferring effect associated to
SNPs within TLR2, MBL2, DC-SIGN, IL10 and IFNG
genes

Attempts of polygenic risk scores (lacking external
validation). Modest risk modification effect
attributable to a given SNP. Lack of dedicated
GWAS studies

[100–104]

Intracellular ATP production in CD4+ T-cells Quantification of intracellular ATP release in CD4+

T-cells stimulated with a potent non-specific mitogen
(phytohemagglutinin A), which would provide an
overall functional evaluation of T-cell-mediated
immunity

FDA-approved commercial assay (ImmuKnow
®
,

Cylex). Lack of validated cut-off values to predict
CMV infection. Time- and labor-consuming.
Potentially affected by sample storage time

[56, 105]

ATP, adenosine triphosphate; CMV, cytomegalovirus; CMVCMI, cytomegalovirus-specific cell-mediated immunity; FDA, food and drug administration; GWAS, genomed-wide association
study; HGG, hypogammaglobulinemia; IVIg, intravenous immunoglobulin; SCIg, subcutaneous immunoglobulin; SNP, single-nucleotide polymorphism.
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INTERVENTIONAL STUDIES EVALUATING
CMV IMMUNE MONITORING STRATEGIES

The evidence generated by clinical trials on the use of CMV-CMI in
transplant recipients is more limited. Most randomized controlled
trials have focused on using the CMV-CMI assays for determining
the duration of antiviral prophylaxis in intermediate or high-risk
patients, particularly in kidney transplant recipients. In these
studies, analysis of CMV-CMI has been performed using either
the QTF-CMV or an ELISpot-CMV assay (Table 3).

In the study by [106] 118 lung transplant recipients were
randomized to receive a fixed duration of antiviral prophylaxis
(5 months), or a duration based on the results of the QTF-CMV
assay, performed at 5, 8 and 11months after transplantation.
Antiviral prophylaxis was continued in case of a negative result
of the assay in the intervention group. CMV replication measured
by PCR in the bronchoalveolar lavage was observed in 58% in the
control group as compared to 37% in the intervention group (p =
0.03), and this effect was probably due to the longer duration of
prophylaxis in patients in the intervention group. A significant
number of patients (39%), mostly D+/R−, remained with
undetectable CMV-CMI at the end of prophylaxis period.

In the TIMOVAL trial [107], R+ kidney transplant recipients
receiving induction therapy with ATG were randomized to
receive a fixed duration of 3 months of prophylaxis (control
group) or a duration based of immune-monitoring every
2–4 weeks using the QTF-CMV assay. Despite receiving ATG,
up to 45% of patients had a QTF-CMV result as soon as 30 days
after transplantation. Incidence of CMV infection (17% immune-
monitoring vs. 13% control) was similar between groups while
duration of antiviral prophylaxis was shorter in the intervention
group. Incidence of neutropenia was lower in the immune-
monitoring arm.

In the CMV-CMI study from Switzerland [108] 185 kidney or
liver transplant R+ recipients receiving ATG or D+/R− were
randomized to receive 3 or 6 months of prophylaxis (depending
on the risk group) or immune monitoring once monthly with the
T-Track-CMV®. Overall, the incidence of clinically significant
CMV infections was similar between groups (30.9% immune-
monitoring vs. 31.1% group) although non-inferiority was not
proven (p = 0.06). The duration of antiviral prophylaxis was
significantly shorter in the intervention group (−26 days, p <
0.001). The impact of the intervention was more pronounced in
R+ patients.

Kumar et al. [109] performed a single-arm interventional
study using a QTF-CMV assay at the end of antiviral therapy
for clinically significant CMV infection (both CMV disease and
asymptomatic replication). Patients with a positive QTF-CMV
result did not receive additional antiviral therapy while patients
with a negative result received valganciclovir for 8 additional
weeks. Of the 27 SOT recipients included, 14 patients had
detectable IFN-γ levels and 13 had undetectable levels. Only 1/
14 (7%) patient with a positive assay result had a relapse of CMV
replication in contrast with 9/13 (69%) in the group with a
negative assay result.

Finally, in the RESPECT trial [26], Jarque et al. used the
T-SPOT. CMV at the time of transplant to stratify patients as
being low-risk (positive assay) or at high-risk (negative assay)
based on IE-1 CMV-CMI for predicting post transplant CMV
replication. Patients were then randomized to receive antiviral
prophylaxis or a preemptive approach. Patients with a positive
CMV-CMI test had significantly lower rates of CMV replication/
disease irrespective of the preventive strategy used. However, the
best performance of the assay was when performed at 15 days
post transplant (81% of CMV infection if test negative vs. 9% if
test positive).

TABLE 3 | Summary of the intervention studies on the application of CMV-CMI assays in SOT recipients.

Study
author

Number of
patients

Type of organ
transplant

CMV
serostatus

Cell-mediated
immune assay

Intervention Main results

[106] 118 Lung R+ and D+/R− QTF-CMV Test at 5, 8 and 11 months, stop
prophylaxis if test positive

Lower CMV replication in the allograft and
longer duration of antiviral prophylaxis in
the intervention group

[107] 150 Kidney R+ on ATG QTF-CMV Test at 30, 45, 60, 90 days, stop
prophylaxis if test positive

Similar incidence of CMV replication/
disease, shorter duration of antiviral, lower
incidence of neutropenia in the
intervention group

[108] 185 Kidney (164)
and liver (21)

R+ on ATG
and D+/R−

T-Track-CMV Test at 30, 60, 90 days (R+ and D+/R−),
120, 150, 180 (D+/R−), stop prophylaxis
if test positive

Similar incidence of CMV replication/
disease, shorter duration of antiviral in the
intervention group

[109] 27 All SOT R+ and D+/R− QTF-CMV Test at the end of therapy for CMV
replication, add secondary prophylaxis in
case of negative result

Lower incidence of CMV relapse in
patients with a positive test

[110] 160 Kidney R+ T-SPOT.CMV Stratify patients at transplant in low vs.
high-risk according to test result. Then
randomize to preemptive vs. prophylaxis

Higher incidence of CMV replication in
high-risk group. Better performance of
antiviral prophylaxis strategy in both
groups

ATG, anti-thymocyte globulin; CMV, cytomegalovirus; D, donor; QTF-CMV, QuantiFERON-CMV assay; R, recipient.
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Although more interventional studies would be desirable to
better delineate the clinical scenarios for the use of CMV-CMI
monitoring in SOT recipients, a summary of the main data
available is provided below.

• ACMV-CMI assay can be used in the pre transplant period (if
no T-cell depletion will be used) to identify those patients with
a negative or low pre-transplant CMV-CMI and thus being at
higher risk of CMV infection and therefore to choose the most
appropriate preventive strategy against CMV. However, a
positive CMV-CMI test prior to transplantation may lead
to misleading predictive interpretations since a proportion of
these patients may become high risk after transplantation due
to induction immunosuppressive therapy.

• In patients receiving universal prophylaxis, the most
appropriate population for using these assays seems to be
the CMV-seropositive patients receiving ATG (as proposed in
the TIMOVAL and CMV-CMI trials). According to these
studies, as soon as 1 month post transplant, the majority of
patients (45%–62%) mount a measurable CMI response
against CMV, associated with a low risk for developing
CMV disease. A potential strategy for these patients can be
to perform a single-point assay at 4–6 weeks after transplant
and to stop antivirals if the test is positive. In case of a negative
result, an extension of prophylaxis or a preemptive approach
could be applied. Figure 2 illustrate a potential management of
R+ patients according to the use of ATG.

• In patients managed with a preemptive approach, a CMV-
CMI assay could be used in CMV-seropositive patients

without receiving ATG (based on the RESPECT trial
[110]). Here the risk of significant CMV replication is
much lower and the probability to reach a detectable
immune response much higher than in patients receiving
ATG. A potential strategy for these patients can be to
perform a single-point assay at 2 weeks after transplant
and to stop PCRmonitoring if the test is positive (Figure 2).

• There is limited data for high-risk D+/R− patients. In the
CMV CMI study [108], the impact of the use of CMI assays
was less visible in the high-risk group, mainly because the
mounting of immunity was achieved later after transplant,
and in only a minority of patients. A potential strategy in this
population would consist in assessing CMV-CMI between 4
and 6 months post transplant and stop prophylaxis in case of
a positive assay. Given the suboptimal sensitivity of CMV-
CMI assays in this population, a negative result should not
foster the extension of prophylaxis, but rather a closer follow-
up after discontinuation of antivirals.

CONCLUSION

In this review we show the advances made in the field of CMV
immune-risk stratification with the development of new sensitive
assays measuring CMV-CMI. While most of the studies strongly
suggest an added value of measuring CMV-CMI to better stratify
the risk of CMV, in particular among R+ SOT recipients, yet
some concerns arise when translating these immune tools into
clinical practice; the precise predictive values illustrating the risk

FIGURE 2 | Potential uses of CMV-CMI assays in CMV-seropositive patients according to preventive strategy and use of T-cell depleting antibodies.
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at the patient-individual level should be noted with caution to
ultimately establish safe, guided preventive strategies. Specific
cut-offs, the biological insight provided by each type of assay, and
the precise clinical settings where to be implemented need to be
further investigated through the implementation of clinical trials.

With the implementation of artificial intelligence, including
highly powerful machine-learning algorithms, the combination of
distinct clinical as well as immunological variables at distinct
biological level could further refine the individual risk of
transplant patients to develop CMV infection. Notably, this is the
ultimate goal of the large multicenter European project (HORUS1)
by developing a dynamic multidimensional biomarker algorithm to
robustly assess the risk of developing CMV infection.

Therefore, an effort should be made among the transplant
community to confirm the added value of cell-mediated immune
assays over current clinical management, as though if confirmed,
they could revolutionize the management of CMV infection by
personalizing the type and duration of preventive therapy against
CMV infection after SOT.
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Antimicrobial resistance is a growing global health problem, and it is especially relevant
among liver transplant recipients where infections, particularly when caused by
microorganisms with a difficult-to-treat profile, are a significant cause of morbidity and
mortality. We provide here a complete dissection of the antibiotics active against
multidrug-resistant Gram-negative bacteria approved over the last years, focusing on
their activity spectrum, toxicity profile and PK/PD properties, including therapeutic drug
monitoring, in the setting of liver transplantation. Specifically, the following drugs are
presented: ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam,
imipenem/relebactam, cefiderocol, and eravacycline. Overall, studies on the safety and
optimal employment of these drugs in liver transplant recipients are limited and especially
needed. Nevertheless, these pharmaceuticals have undeniably enhanced therapeutic
options for infected liver transplant recipients.

Keywords: liver transplantation, BL/BLI, multidrug-resistant microorganisms, antimicrobial stewardship,
metallo-beta lactamases

INTRODUCTION

A significant challenge facing humankind in the 21st century is antibiotic resistance, and liver
transplantation (LTx) is not immune to this threat [1]. Indeed, it is well-known how infections
frequently occur in liver transplant recipients (LTR), with about 55% of them experiencing an
infection within 12 months after transplantation [2]. This translates into relevant mortality, with
infections being the most frequent cause of death 30–180 days after LTx [3]. Unfortunately, an
increasing amount of these infections are caused by multidrug-resistant (MDR) bacteria [4]. Among
them, MDR Gram-negative bacteria (MDRGNB) are responsible for most infections [5–8].

Colonisation by MDRGNB is a common condition in LTR, which reflects the long clinical history
and exposure to antimicrobials and healthcare settings of these patients. The gastrointestinal tract
represents the reservoir of MDRGNB, where resistance mechanisms are selected, maintained, and
exchanged between species, leading to the so-called “gut resistome” [9].

Colonisation rates among LTR mirror the increasing frequencies observed worldwide in the
general population [10]. This is reflected in an increased incidence of infections due to MDRGNB,
with infection rate due to ESBL-producing Enterobacterales (ESBL-E) among colonised patients
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seven times higher than in non-colonised [11]. Similarly,
carbapenem-resistant Enterobacterales (CRE) infection rates
have been estimated at 18.2% and 2% among colonised and
non-colonised LTR, respectively [12].

Regarding outcomes, increased mortality has already been
highlighted for liver transplant candidates on the waiting list
colonised by MDRGNB compared to non-colonised (HR = 2.57,
p < 0.0001) [13]. The same relevance has also been confirmed in
the post-transplant setting, with patients developing post-
transplant CRE infection having a 50% less chance of survival
versus those uninfected (0.86, 95% CI, 0.76–0.97 vs. 0.34, 95% CI
0.08–1.0, p = 0.0204) [14] and several other studies confirming
the role of MDRGNB in hampering survival [15, 16]. The same
negative outcome has been associated with infection due to
MDRGNB not belonging to the Enterobacterales genus, with
recipients having carbapenem-resistant Acinetobacter baumannii
(CRAB) infection showing a 60-day mortality of 46.4%,
significantly higher than the one displayed by those not
infected [17].

Notably, in the recent past, when the therapeutic
armamentarium was limited to old or side-effects-prone
antibiotics, colonisation by CRE was suggested as a reason for
withdrawal from transplantation list, thus severely impacting the
life expectancy of patients needing LTx [18].

Luckily, since 2014, several new antibiotics have entered the
market: ceftolozane/tazobactam (C/T), ceftazidime/avibactam
(CZA), meropenem/vaborbactam (MVB), imipenem/cilastatin/
relebactam (I-R), cefiderocol (FDC), and eravacycline (ERV).
They are an older beta-lactam (BL) plus a new beta-lactamase
inhibitor (BLI) (CZA, MVB, I-R), a new BL plus an older BLI
(C-T), a new siderophore cephalosporin (FDC), and a new
tetracycline (ERV). Recently published guidelines from
scientific societies regulate the use of these molecules in the
general population [19–21]. We provide a complete dissection
of these new molecules, focusing on their activity spectrum,
toxicity profile and pharmacokinetic/pharmacodynamic (PK/
PD) properties, including therapeutic drug monitoring, in LTx.

Table 1 provides an overview of common MDRGNB
resistance mechanisms/profiles and the corresponding activity
of new antibiotics. Figure 1 compares the propensity of new
antibiotic use in common infectious conditions in LTR according
to the authors’ opinions (personal view).

CEFTOLOZANE/TAZOBACTAM (C/T)

Activity Spectrum
C/T is an association between a fifth-generation cephalosporin,
ceftolozane, and a well-known BLI, tazobactam [22].
Ceftolozane displays activity against Gram-negative bacilli,
including those that produce β-lactamases. However, it is
compromised by ESBLs, whose actions are overcome by
adding tazobactam. Unlike other BLI such as avibactam,
vaborbactam and relebactam, tazobactam does not inhibit
carbapenemases, so C/T should not be used to manage CRE
[23]. Instead, ceftolozane has an excellent capacity for
penetration through porin canals and evades most resistance

mechanisms displayed by P. aeruginosa, including efflux pumps,
modification of penicillin-binding proteins and Amp-C
expression. Due to these properties, C/T is primarily active
against P. aeruginosa and ESBL-E [24].

C/T has been approved for the treatment of complicated
urinary tract infections (cUTI) [25], complicated intra-
abdominal infections (cIAI) [26] and ventilator-associated
bacterial pneumonia (VABP) [27]. The licenced dose of C/T
in patients with normal renal function is 1.5 g every 8 h for
cUTI [4] and cIAI [5] and 3 g every 8 h for VABP [6]. Of note,
dosages should be reduced in patients with impaired
renal function.

Ceftolozane/Tazobactam in Clinical Trial
and its Potential Application in SOT
Recipients
Overall, C/T appears to be a novel BL/BLI combination particularly
effective against serious infections caused by MDR and XDR P.
aeruginosa, and most of the current studies address its use in this
setting with promising clinical outcomes. However, there is little data
on solid organ transplant (SOT) recipients and even less on LTR.

A good outcome for the use of C/T in P. aeruginosa infections
with limited treatment options is reported in a multicentre
retrospective study of 263 patients, achieving a composite
clinical success in 70% of patients, confirmed in the SOT
subgroup (60.8%, 4/23 patients). Only two patients were LTR
in this study, and one in two achieved clinical success [28].
Similarly, Bassetti et al. performed a multicentre nationwide
study of C/T for treating severe P. aeruginosa infections, with
83% of patients having a successful clinical outcome at the end of
treatment. There were 11 SOT recipients in the population, but
neither the transplanted organ nor the disaggregated outcome is
available [29]. The efficacy of C/T in the treatment of MDR P.
aeruginosa and MDR Enterobacterales infections is also
demonstrated by Ronda et al., who describe 30.1% treatment
failure and 30-day and 90-day all-cause mortality of 8.6% and

TABLE 1 | Activity spectrum of recently approved antibiotics against multidrug-
resistant Gram-negative bacteria.

Antibiotic (year of
approval by EMA)

ESBL KPC MBL Amp-
C

Oxa-
48

P.aer-
DTR

CRAb

Ceftolozane/
tazobactam (2015)

✓ 7 7 ✓ 7 ✓ 7

Ceftazidime/
avibactam (2016)

✓ ✓ 7 ✓ ✓ ✓/7 7

Meropenem/
vaborbactam
(2018)

✓ ✓ 7 ✓ 7 7 7

Imipenem/
relebactam (2020)

✓ ✓ 7 ✓ 7 ✓ 7

Cefiderocol (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Eravacycline (2018) ✓ ✓ ✓/7 ✓ ✓ 7 ✓/7

ESBL: extended-spectrum beta-lactamases; KPC: Klebsiella pneumoniae
carbapenemase; MBL: metallo-beta-lactamase; Amp-C: AmpC β-lactamases; OXA-48:
OXA-48, carbapenemase; P. aer-DTR: difficult-to-treat P. aeruginosa; CRAb:
carbapenem-resistant Acinetobacter baumannii.
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17.2%, respectively. Interestingly, most of the 96 episodes
analysed occurred in immunosuppressed patients (57.9%), of
whom 17 (22.4%) were SOT recipients, including one LTR [30].

Promising news for LTR treated with C/T comes from real-
world data, as reported by Escolà-Vergé et al. in their review
of cIAI caused by MDR P. aeruginosa, which presents the cases of
a 70-year-old LTR with liver abscesses and a 44-year-old LTR
with septic shock due to cholangitis, with both patients reaching
clinical cure and microbiological eradication [31].

Adverse Events and Limitations
There is limited information on using C/T with
immunosuppressive agents in SOT recipients. Ceftolozane is
not expected to have clinically significant drug-drug
interaction as it is neither a substrate nor a modulator of the
cytochrome P450 system at therapeutic concentrations. Instead,
tazobactam is a substrate of the organic anion transporters 1 and
3, and the coadministration of drugs that may inhibit these

transporters may increase its plasma concentrations. In a
study evaluating the physical compatibility of C/T with
selected intravenous drugs during simulated Y-site
administration, Thabit et al. found that C/T was incompatible
with cyclosporine due to turbidity changes [32].

C/T is generally well tolerated, with the most common adverse
events being nausea, vomiting, and diarrhoea [3]. It is almost
eliminated as an unchanged form by the renal route (92%) and is
not extensively metabolised by the liver, making it a good
candidate for use in LTR [2].

Key Messages
Despite the paucity of data on the use of C/T in LTR, the available
studies suggest that it is a valid option for MDR and XDR P.
aeruginosa infections in cUTI, cIAI and VABP, with promising
clinical success and limited treatment failure also described in
SOT recipients. Further studies are needed to assess its efficacy,
pharmacokinetics, and tolerability in this population.

FIGURE 1 |Comparison of propensity to new antibiotic use in common infectious conditions among LTR according to authors’ opinion (Personal view). Based on a
hypothetical fully susceptible microorganism toward the antimicrobial considered. (0 = totally against use, 100 = totally in favour of use) (HAP/VAP: hospital-acquired
pneumonia/ventilator-associated pneumonia, BSI: bloodstream infection; cIAI: complicated intraabdominal infection; cUTI, complicated urinary tract infection; SSI:
surgical site infection; C/T: ceftolozane/tazobactam; CZA: ceftazidime/avibactam; MVB: meropenem/vaborbactam; I-R: imipenem/relebactam; FDC: cefiderocol;
ERV: eravacycline).
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CEFTAZIDIME/AVIBACTAM (CZA)

Activity Spectrum
CZA is a combination of the third-generation anti-pseudomonal
cephalosporin ceftazidime and avibactam, a non-β-lactam BLI,
which restores in vitro activity of ceftazidime against Ambler class
A, class C and some class D (e.g., OXA-48) β-lactamases [33];
however, it remains inactive against metallo-β-lactamases
(MBLs). To treat infections caused by bacteria with this latter
resistance mechanism, CZA is used in combination with
aztreonam to take advantage of its synergistic effect [34].

CZA is currently approved for treating cIAI, UTI and
nosocomial pneumonia [35].

The licenced dose of CZA in patients with normal renal
function is 2.5 g every 8 h, with dose reduction in patients
with impaired renal function.

Ceftazidime/Avibactam in Clinical Trial and
its Potential Application in SOT Recipients
Data on using CZA in SOT recipients are limited to case reports
and case series, mainly focusing on lung and kidney transplant
recipients. Evidence in LTR is even scarcer and relies on
retrospective real-world data analysis (Table 2). A Chinese case
series of 21 LTR investigating the use of CZA in infections by KPC-
producing Enterobacterales (KPC-E) [36] showed clinical response
in adult patients at 14 days and 30 days of 70.6% (12/17) and 58.8%
(10/17), respectively, while in paediatric patients was 75% at both
time points. Three patients relapsed within 30 days. Most patients
(66%) were treated with combination therapy (carbapenems,
aztreonam, metronidazole, and polymyxin B), and no cases of
CZA resistance were identified. Of note, three patients (3/21,
14.3%) developed acute kidney injury, and no other significant
adverse event was reported. A similar study on six paediatric LTR
[37] evaluated the efficacy and safety of CZA as salvage therapy for
cIAI and bloodstream infections (BSI) caused by CRE, mostly
KPC-E, and showed clinical success in all patients, without
recurrence or development of resistance. CZA was mainly used
as monotherapy (66%), and there were no serious adverse events.

An international, retrospective cohort compared CZAwith the
best available therapy (BAT) in a cohort of 149 SOT recipients
with KPC-Kp bloodstream infection (BSI) [39]. Liver (44.3%) and
kidney (40%) were the most common SOT. Eighty-three patients
received CZA, 37 of whom were LTR. Patients treated with CZA
had a significantly higher rate of clinical success at day 14 than
those treated with BAT (80.7% vs. 60.6%), particularly in the high
mortality risk stratum according to the INCREMENT-SOT-CPE
score [40]. The same trend was observed for clinical success at day
30, with significant differences observed between patients
receiving CZA versus BAT in the treatment cohort. No
stratification by SOT type was available.

Notably, CZA therapy was also associated with increased
survival in the CAVICOR study, the most extensive series to
date evaluating the impact of CZA on mortality in CRE
infections. However, only 45/339 (13.2%) patients analysed
were SOT recipients, and no stratification by SOT type
was present [41].

In contrast, Di Pietrantonio et al. [38], analysing a cohort of
81 patients, 8 of whom were LTR, receiving CZA for infections
mainly due to KPC-E, found that a significantly higher proportion of
patients with clinical failure were LTR and that LTx emerged as an
independent predictor of treatment failure. These differences may be
due to the populations’ heterogeneity and the infection’s severity.
Furthermore, the study was not designed to focus its analysis and
results on a specific population such as LTR.

Adverse Events and Limitations
Interactions with CZA and immunosuppressants are not
expected, and no cases of induced hepatotoxicity have been
reported in the Livertox database [42].

Monitoring renal function is warranted, especially when CZA
is combined with other nephrotoxic molecules such as
polymyxins or aminoglycosides.

Key Messages
In conclusion, CZAmay be a useful therapeutic option in LTR for
treating infections caused by MDRGNB, particularly KPC-
producing strains. New studies are needed to analyse the use
of CZA in LTR, focusing on its efficacy versus BAT and
examining its safety profile in this population. Caution is
required in monitoring the emergence of CZA resistance
during treatment of KPC-3-producing K. pneumoniae, as has
already been reported [8, 9]. Finally, further evidence must be
gathered on CZA combined with aztreonam for treating
infections due to MBL-producing bacteria.

MEROPENEM/VABORBACTAM (MVB)

Activity Spectrum
MVB is a new BL/BLI active on carbapenemases with a broad
spectrum of enzyme inhibition. It combines meropenem
(MEM), a carbapenem antibiotic, with vaborbactam, a
highly specific BLI that targets KPC-β-lactamase (including
KPC-8 and KPC-3) and other class A beta-lactamases. In
addition, combination with vaborbactam has been shown to
reduce MEM minimum inhibitory concentration (MIC) in
Enterobacterales with low MEM susceptibility harbouring
ESBL or AmpC-type β-lactamases [43, 44]. In contrast,
MVB is inactive against class D or B carbapenemases [45].
The activity of MVB against other difficult-to-treat Gram-
negative and anaerobic bacteria is variable: in general, the
activity against P. aeruginosa, Acinetobacter spp.,
Stenotrophomonas maltophilia is comparable to that of
MEM alone [46, 47].

Meropenem/Vaborbactam in Clinical Trial
and its Potential Application in SOT
Recipients
Currently, two Phase 3 clinical trials have evaluated the efficacy
and safety of MVB: the TANGO I [48] and TANGO II [49]
studies. In the latter, immunocompromised patients, including
SOT recipients, were enrolled, representing 32% of the total
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cohort and 40% of those with microbiologically confirmed CRE
infection. Within the microbiologic carbapenem-resistant
Enterobacterales modified intent to treat population, the cure
rate was higher in the MVB group than in the BAT group at both
the end of treatment and test of cure (65.6% vs. 33.3% and 59.4%
vs. 32.7%, respectively). Despite not reaching statistical
significance, mortality at 28 days was numerically lower with
MVB than with BAT. The favourable outcome with MVB
treatment is also confirmed when considering different
infection categories. However, few patients in this cohort had
cIAI (4, 8.5%), which limits the transferability of the results in the
liver transplantation setting. Again, in additional subgroup
analysis in immunocompromised patients, MVB had a higher
cure rate at test of cure than BAT (63% vs. 0%). Overall, in this
study, MVB emerged as an interesting treatment for CRE
infection among LTR, although details on the type of SOT
and immunosuppression were not specified.

A few case reports have demonstrated the use of MVB in
clinical practice in LTR. One case report described MVB as
salvage therapy for CZA-resistant K. pneumoniae abdominal
abscess in an LTR [50]. The authors described an LTR with
KPC-Kp BSI in the early post-transplant period, cured
with CZA. Subsequently, the patient had a new BSI with
an onset of de novo CZA resistance requiring
discontinuation of CZA treatment, initiation of tigecycline
and polymyxin B followed by gentamicin. Blood cultures
were cleared, but CZA-resistant K. pneumoniae was
recovered from the abscess fluid. MVB was initiated with
complete recovery, allowing re-transplantation in the
following days. In this case, MVB was efficacious in
infection with a high bacterial inoculum.

Shield et al. [51], in 2019, described the use of MVB
in 20 patients 11% SOT, type not specified and reported
only in abstract presentation [52] with Enterobacterales

TABLE 2 | Overview of real-life studies describing ceftazidime/avibactam use among LTR.

Author, year Country Study design Pathogen Infection
type

Main results AE

Chen 2021 [36] China Retrospective
observational study on
21 LTR (including
4 paediatric patients)

CRE KPC IAI, BSI, PN Mortality 3 (3/21, 14.3%) acute kidney
injury, 2/21 patients received
haemodialysis after CZA
treatment

• 14 days: 28.6%

Transient increase in ALT and
AST blood levels was reported

• 30 days: 38.1%
• All-cause: 42.9%

Clinical response
• Adult patients, 14 days: 70.6%
(12/17); 30 days was 58.8%
(10/17)

• Paediatric patients, both
14 days and 30 days: 75%

Relapse in 3 patients after 30 days
CZA resistance not detected in any
case

Wang 2022 [37] China Retrospective
observational study on
6 paediatric LTR
(≤12 years)

CRE KPC IAI and BSI Clinical success was achieved in all
patients, no recurrences

Minor AE reported: vomiting (1/
6), skin rash (1/6), increased
GGT (2/6), (2/6), and alkaline
phosphatase (3/6)

Di Pietrantonio
2022 [38]

Italy Retrospective study on
81 pts receiving CZA for
Gram-negative infections
(8 LTR)

KPC IAI, BSI,
PN, VAP

Clinical failure for 7/8 (87.5%)
patients

Not reported

Significantly higher proportion of
patients with clinical failure received
LT (p = 0.003), mechanical
ventilation (p = 0.049) or had
pneumoniae (p = 0.009)
In multivariate logistic regression
analysis, only LT is an independent
predictor of treatment failure [OR
12.100 (1.369–106.971), p = 0.025]

Perez-Nadales
2023 [39]

Spain, Italy,
Brazil,
United States

Retrospective study on
149 SOT recipients with
KPC BSI (66 LTR)

KPC BSI Comparison between CZA and BAT. Not reported
Clinical success
• Day 14: CZA vs. BAT (80.7%
vs. 60.6%)

• Day 30, CZA vs. BAT (97.4%
vs. 60.6%)

All-cause mortality: CZA vs. BAT
(13.3% vs. 27.3%)

AE: adverse event; LTR: liver transplant recipient; CRE: Carbapenem-resistant Enterobacterales; IAI: intra-abdominal infection; BSI: bloodstream infection; PN: pneumonia; VAP:
ventilator-associated pneumonia, CZA: ceftazidime-avibactam; BAT: best available therapy; LT: liver transplant; ALT: alanine transaminase; AST: aspartate aminotransferase; GGT:
gamma-glutamyl transferase.
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infections, reporting KPC production in 90% of isolates.
Survival rates at 30 and 90 days were 90% and 80%,
respectively, and success rates were 63% in patients with
BSI and 67% in patients with pneumonia. Clinical success
was achieved in 65% (13/20) of patients. A significant rate of

microbiologic failure was observed (6/20; 35%) due to
recurrent CRE infection, respiratory colonisation,
breakthrough during treatment, and persistent BSI. In two
cases, microbiologic failure was associated with intra-
abdominal abscess. In 50% of cases of recurrence, MIC for

TABLE 3 | Suggested dosages and infusion modalities for maximising PK/PD target of novel antibiotics, with particular focus to the LTx setting. Adapted from [99, 100].

Antibiotic PK/PD target
adopted in
pivotal trials

Scheduled
infusion
modality

Optimised PK/PD target
(maximise efficacy,
suppress resistance

development)

Stability in
solution

Suggested dosage
for maximising PK/

PD targeta

Considerations for LTx setting

Ceftolozane/
tazobactam [103]

30% fT>MIC II over 1 h 100% fT>4 x MIC 24 h LD: 2 g/1 g • negligible hepatic metabolism, not
expected to be affected by hepatic
impairment. No dose adjustment
recommended as per SPC

MD: 2 g/1 g q8h CI

• TDM-guided approach may be useful
in ACLF and/or high MELD score

Ceftazidime/
avibactam [104]

50% fT>MIC II over 2 h 100% fT>4 x MIC 12 h LD: 2 g/0.5 g • no relevant hepatic metabolism. No
dose adjustment as per SPC (no PK
data of ceftazidime in patients with
severe hepatic impairment; no PK
data of avibactam in patients with any
degree of hepatic impairment)

MD: 2 g/0.5 g q8h CI

• TDM-guided dose should be
obtained in deep-seated infections,
ACLF and/or high MELD score

Meropenem/
vaborbactam
[105]

45% fT>MIC EI over 3 h 100% fT>4 x MIC 12 h LD: 2 g/2 g • no relevant hepatic metabolism. No
dose adjustment as per SPC (hepatic
function monitoring recommended in
patients with pre-existing liver
disorders due to the risk of hepatic
toxicity)

MD: 2 g/2 g q8h CI

• TDM-guided dose should be
obtained in ACLF and/or high MELD
score

Imipenem/
relebactam [106]

40% fT>MIC II over 0.5 h 100% fT>4 x MIC 3.5 h 500 mg/250 mg q6h
EI over 3 h

• no relevant hepatic metabolism. No
dose adjustment as per SPC (hepatic
function monitoring recommended in
patients with pre-existing liver
disorders due to the risk of hepatic
toxicity)

• TDM-guided dose should be
obtained in ACLF and/or high MELD
score

Cefiderocol [89] 75% fT>MIC EI over 3 h 100% fT>4 x MIC 6 h LD: 2 g • no relevant hepatic metabolism. No
dose adjustment as per SPCMD: 2 g q8h CI

• TDM-guided approach may be useful
in ACLF and/or high MELD score

Eravacycline [89] fAUC/MIC ratio II over 1 h N/A 12 h as per SPC • No dose adjustment as per SPC
• Exposure may be increased in

patients with Child-Pugh Class C
(twofold increase in AUC, half-life
prolonged from 16 to 21–26 h),
particularly if obese and/or also being
treated with potent CYP3A inhibitors.
In these patients, no recommendation
on posology given

• TDM-guided approach not available

LTx: liver transplant; PK/PD: pharmacokinetic/pharmacodynamic; MIC: minimum inhibitory concentration; II: intermittent infusion; EI: extended infusion; CI: continuous infusion; LD:
loading dose; MD: maintenance dose; SPC: summary of product characteristics (EMA); TDM: therapeutic drug monitoring; ACLF: acute on chronic liver failure; MELD: Model for End-
Stage Liver Disease.
aFor patients with normal renal function.
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MVB increased significantly, and KPC-3 K. pneumoniae
isolated in patients with intra-abdominal infection also
acquired resistance to MVB. This point is relevant for
LTR, where abdominal abscesses are frequent and may
create an environment favourable for selecting antibiotic-
resistant strains.

Adverse Events and Limitations
Regarding adverse events (AE), in the TANGO I trial [48],
patients in MVB discontinued treatment in 2.6% of cases
because of AE. The most common AE reported was headache
(8.8%), and liver toxicity was reported in a low percentage of cases
(1.5%). In the TANGO II trial [49], AE associated with MVB
included diarrhoea, anaemia, and hypokalaemia. Interestingly,
MVB treatment experienced a lower level of renal insufficiency
than BAT. A lower incidence of renal insufficiency was also
described when MVB was compared to CZA [53]. No other side
effects have been reported in studies of this drug. In addition,
there are no known interactions with immunosuppressive
medications, but real-life experience is needed to understand
mechanisms better.

Key Messages
MVB use in LTR is promising, especially for its anti-KPC activity,
but more real-world data are needed. Its use in infections with
high bacterial inoculum, requiring prolonged antibiotic therapies
and source control, will require further investigation. In this
setting, the toxicity of prolonged exposure and the potential
development of resistance must be evaluated. In addition,
more data are needed on interactions with
immunosuppressive drugs.

IMIPENEM/RELEBACTAM (I-R)

Activity Spectrum
-R is a new drug that is an intravenous combination of imipenem/
cilastatin and relebactam, a non-β-lactam BLI. Relebactam (REL) is
an inhibitor of class A and C β-lactamases [54]. Although REL has
no intrinsic antibacterial activity, it can protect imipenem from
degradation by Ambler class A and class C β-lactamases and
Pseudomonas-derived cephalosporinase [55]. Instead, REL is
inactive against class B MBLs or D oxacillinases [56, 57]. In
addition, some in vitro studies have shown that REL is unaffected
by efflux pumps at basal level of expression and does not suffer from
inoculum effect [58].

Imipenem/Relebactam in Clinical Trial and
its Potential Application in SOT Recipients
There is a lack of data on using I-R in LTR [59]. I-R has been
evaluated in two phase-2 clinical trials, two phase-3 clinical trials
and a small amount of real-world clinical experience, but LTR
and SOT were usually excluded.

Phase 2 clinical trials evaluated I-R in cases of cIAI [60] and
cUTI [61] and demonstrated a favourable clinical response in
both cases. However, the phase 3 studies raise interesting

questions regarding the efficacy in SOT recipients. In
RESTORE-IMI 1 [62], which compared the efficacy and safety
of I-R versus colistin (COL) plus IMP in patients with IMP-
susceptible hospital-acquired or ventilator-associated pneumonia
(HAP/VAP), cUTI or cIAI, favourable overall responses were
achieved in both arms (I-R, 71%; COL + IMP, 70%). Only
patients with HAP/VAP and cUTI, but none with cIAI,
achieved a favourable overall response. Of note, this data is
biased by the small number of patients with cIAI enrolled [4],
with one out of two patients in both arms experiencing an
unfavourable overall response due to missing/undefinable data.

In addition, the recent RESTORE-IMI 2 study [63] evaluated I-R
versus piperacillin-tazobactam (TZP) in patients with HAP/VAP.
Unfortunately, immunocompromised patients were excluded per
protocol, limiting the applicability of the study results to the LTR
population. Overall, I-R was non-inferior to TZP for the primary
(28-day all-cause mortality) and secondary endpoint (favourable
clinical response at the end of follow-up). In a subgroup of patients
with severe disease, 28-day mortality and end-of-treatment cure
were higher in patients treated with I-R. In addition, patients with P.
aeruginosa infection had a lower clinical response rate and higher 28-
day mortality rate in the I-R arm, although both treatment arms had
comparable microbiologic eradication rates at the end of treatment
(67% I-R vs. 72% TZP) [62–65].

Few studies have published real-world experience with I-R.
Konho et al. [64] described the experience with I-R in patients
with cIAI and cUTI infections and evaluated safety and efficacy.
They enrolled 83 patients (cIAI = 39, cUTI = 44). Adverse events
occurred in 74.1% of cases, the most common being diarrhoea.
Four patients discontinued treatment due to AE, but no serious
AE was considered related to the study treatment. A favourable
clinical and microbiological response was achieved in 85.7% of
patients with cIAI at the end of treatment and 82.1% at the test of
cure visit (5–9 days and 14 days after completion of treatment).
Microbiologic response was achieved in all patients with cUTI at
the end of treatment and 59% at the test of cure visit. Of 16 cUTI
patients with an unfavourable microbiological response, 13 had a
favourable clinical outcome.

The last real-world evidence study described the emergence of
resistance to I-R in patients with P. aeruginosaHAP/VAP treated
with this molecule [65]. The main observation was that 5 of
19 patients had the emergence of I-R non-susceptible P.
aeruginosa during treatment or within 30 days after treatment.
All five patients had failed prior antibiotic regimens, including
two who received I-R after treatment-emergent resistance to C/T.
At whole-genome sequencing, the P. aeruginosa isolate did not
harbour MBLs or other ß-lactamase enzymes conferring
resistance to I-R. However, in all patients, I-R non-
susceptibility coincided with the emergence of mutations in P.
aeruginosa efflux operons. In two patients, the P. aeruginosa
strains were ST235 and ST244, known to be high-risk MDR
clones [66]. All these mutations occurred during antibiotic
treatment between 8 and 23 days of therapy, resulting in a
shift of the I-R MIC to higher values. Further studies in real-
life settings with patients with multiple comorbidities and a
variety of potential drug interactions are needed to define the
role of I-R in P. aeruginosa infections occurring among LTR.
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Adverse Events and Limitations
Regarding AE, similar data were reported in the available studies. In
phase 2 [60] and phase 3 studies [62, 63], themost commonAEwere
nausea, diarrhoea, and elevated liver enzymes. Focusing on liver
toxicity, in RESTORE IMI-1, the incidence was between 2% and 3%,
while in RESTORE IMI-2, the incidence was 2.3% [62, 63]. In
general, in the RESTORE IMI-1 study, three patients (19%) in the
COL + IMP arm and none in the I-R arm discontinued treatment
due to AE, while in the RESTORE IMI-2 study, six patients (2.3%) in
the I-R arm and four (1.5%) in the TZP arm discontinued treatment
due to drug toxicities [62, 63].

Regarding renal toxicity, I-R was associated with a more
favourable renal safety profile than COL-based therapy in
RESTORE IMI-1. These data were also confirmed by a
subsequent retrospective study conducted with RESTORE IMI-
1 data using two assessment criteria for acute kidney injury,
strengthening, as expected, how I-R had a better safety profile
than IMP-COL [62].

Concerning drug interactions, it is essential to know that I-R
may interact with other antimicrobial and antiviral treatments.
The use of I-R with amikacin, azithromycin, aztreonam, COL,
gentamicin, levofloxacin, linezolid, tigecycline, tobramycin, or
vancomycin has been tested, and it is allowed. Instead, I-R should
not be used concomitantly with ganciclovir due to the increased
risk of seizures unless the potential benefit outweighs the risk
[67]. Given the many concomitant medications LTR need, more
data on this issue is needed.

Key Messages
I-R could be a promising drug in the LTx setting,mainly because of its
broad spectrum of activity, covering anaerobes, Enterococcus faecalis,
Enterobacterales and P. aeruginosa strains, even in the MDR setting.
This feature is handy in intra-abdominal infections, a frequent
complication after LTx. However, several issues remain to be
clarified—first, the efficacy and emergency of non-susceptible I-R
strains. LTR have often experienced multiple lines of antibiotic
treatment, are often colonised or infected by MDRGNB, and
sometimes experience deep infections requiring source control and
prolonged antibiotic therapy. Knowing whether exposure to
antibiotics could select for resistant strains is critical in this setting.
Second, the liver toxicity described in RESTORE-IMI 2 needs to be
investigated in-depth, and drug-drug interactions, especially with
immunosuppressive treatment, need to be evaluated, given the
higher rate of interactions with other molecules. Specifically, the
contraindication to use ganciclovir concomitantly may be a limitation
in this setting, given the frequent, ongoing treatment for CMV.

CEFIDEROCOL (FDC)

Activity Spectrum
FDC is a novel siderophore cephalosporin antibiotic that is indicated
for treating infections due to aerobic Gram-negative organisms in
adults with limited treatment options [68]. FDC bind to free iron
molecules, and it is actively transported across the outer membrane
of bacteria by their iron-transport system, thus leading to the
accumulation of the antibiotic inside the microorganism [69].

Exploiting this strategy, FDC can overcome resistance
mechanisms due to efflux pumps, particularly common in
MDRGNB such as P. aeruginosa [70]. Moreover, FDC potent
activity against MDRGNB is also related to its high stability
against various extended-spectrum-lactamases (ESBLs) and
carbapenemases [71]. Clinical data for FDC are promising, with
several studies demonstrating its efficacy in treating various
infections caused by multidrug-resistant bacteria, including cUTI,
HAP, and BSI [72–74]. Notably, FDC displayed a significant activity
in infections due to MBL-producing bacteria, a condition with
minimal therapeutic opportunities [75].

Cefiderocol in Clinical Trial and its Potential
Application in SOT Recipients
Regarding LTx, there is limited data on using FDC, with all data
coming from case reports/series.

In their case series of difficult-to-treat infections due to
MDRGNB treated with FDC, Bavaro et al. [76] included one
LTR who received a combination therapy with FDC plus COL
plus tigecycline followed by FDC plus fosfomycin for CZA-
resistant KPC-Kp strain, causing liver abscess with
bloodstream involvement. FDC was administered for 28 days,
with a successful clinical outcome.

Klein et al. [77] reported the case of an LTR who underwent
re-transplantation 10 years after receiving the first graft and who
had a complicated clinical course with carbapenem-resistant
Enterobacter cloacae BSI, initially treated with MEM and COL
and subsequently with FDC alone. Within 21 days of therapy, the
germ became resistant to FDC, and the patient died due to
uncontrolled infectious focus.

Bodro et al. [78] presented instead a case of persistent BSI
related to an infected transjugular intrahepatic portosystemic
shunt caused by an extensively drug-resistant P. aeruginosa,
resistant to ceftazidime, C/T, and MEM in a kidney transplant
recipient who subsequently underwent a combined kidney-liver
transplant. The patient received initial combination therapy with
FDC plus COL for 2 weeks, followed by FDC alone for 4 weeks,
resolving the infection.

Adverse Events and Limitations
Limited information regarding potential drug interactions
between FDC and immunosuppressive drugs commonly used
in liver transplantation is available. FDC is primarily eliminated
unchanged in the urine and is not extensively metabolised by the
liver [68]. As such, the risk of significant drug interactions with
immunosuppressive drugs primarily metabolised by the liver may
be low. In the CREDIBLE-CR study, liver-related adverse events
(specifically increased liver enzyme concentrations) were
reported more frequently in patients treated with FDC than
with the best available therapy. It should be noted how the
study included a relevant number of patients with ongoing
hepatic disease (moderate/severe liver disease 11/101, hepatitis
12/101), how the adverse events were of mild/moderate severity
and transient in duration and how no cases met the clinical and
biochemical criteria for Hy’s law or drug-induced liver injury
[74]. Instead, in the APEKS-NP study, no notable differences
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between the treatment groups (MEM vs. FDC) were identified
in the occurrence of liver-related adverse events. In contrast, in
the NCT02321800 trial (a multicenter, double-blind,
randomized clinical study to assess the efficacy and safety of
FDC in hospitalized adults with cUTI caused by Gram-
negative pathogens), liver-related adverse events were not
described [72, 73]. Of note, currently, there are no reported
cases of liver toxicity due to FDC reported in the Livertox
database [79].

FDCmay cause renal impairment, which could be exacerbated
by the concomitant use of nephrotoxic drugs commonly used in
liver transplantation, such as calcineurin inhibitors (e.g.,
tacrolimus, cyclosporine) [80]. Therefore, it may be necessary
to monitor renal function closely and adjust the dose of
immunosuppressive drugs accordingly [68].

Finally, therapeutic and supratherapeutic doses of FDC had no
apparent clinically significant effect on the QTc. Thus, no specific
monitoring with electrocardiography is required during
FDC therapy [81].

Key Messages
Overall, while there is limited data specifically on the use of FDC
in liver transplantation, the available evidence suggests that it may
be a safe and effective treatment option for multidrug-resistant
infections, especially when due to MDRGNB harbouring MBLs
and P. aeruginosa DTR. However, further studies are needed to
confirm these findings and evaluate its optimal employment in
this patient population.

ERAVACYCLINE (ERV)

Activity Spectrum
ERV is a novel, fully synthetic fluorocycline belonging to the
tetracycline class. It has a broad-spectrum activity against aerobic
and anaerobic Gram-positive and Gram-negative microorganisms
and was explicitly designed to maintain stability against efflux
pumps and ribosomal protection proteins. ERV is active against
various MDR pathogens such as methicillin-resistant Staphylococcus
aureus strains, vancomycin-resistant Enterococcus faecium,
Enterococcus faecalis, ESBL-E, and AmpC-producing
Enterobacterales [82]. On the other hand, it shows limited
activity against P. aeruginosa and Stenotrophomonas maltophilia.

ERV exerts its antimicrobial action by primarily binding to the
ribosomal 30 s subunit, interrupting the elongation phase of
protein synthesis. In vitro shows a ten-fold higher activity at a
four-fold lower drug concentration than other tetracyclines.
Similarly, data from the CANWARD surveillance study
demonstrated that ERV carries an in vitro activity equivalent
to or 2- to 4-fold greater than tigecycline against Enterobacterales
and Gram-positive bacteria [83].

Eravacycline in Clinical Trial and its
Potential Application in SOT Recipients
ERV has been approved in several countries, including the EU
and United States, for treating adult patients with cIAI. Two

randomised, double-blind, non-inferiority phase 3 trials [84, 85]
evaluated its efficacy in treating subjects with cIAI,
acknowledging this drug as non-inferior to intravenous
ertapenem or MEM, respectively, at the test-of-cure visit in
terms of clinical response rates in all prespecified populations.
Unfortunately, none of the trials included data on the efficacy of
ERV in treating CRE and/or MDR Acinetobacter spp.

ERV has also been investigated in cUTI: two trials compared it
with ertapenem and levofloxacin, respectively, reporting lower
cure rates [86, 87]. In this setting, its use is not recommended.

Regarding treating infections in the setting of LTx, there is still
no specific data on the use of ERV. A recent retrospective,
multicentre study evaluated ERV clinical use in a cohort of
66 patients with infections by MDRGNB or Gram-positive
cocci, with 7 of them being SOT recipients. Most subjects
received the drug for an off-label indication, and overall, a
good clinical response was reported (63/66 patients, 95.5%) [88].

Adverse Events and Limitations
There is limited information regarding potential drug interactions
between ERV and immunosuppressive drugs commonly used in
LTx. The absence of data is supported by the fact that clinical trials
did not include immunosuppressed subjects. ERV is metabolised by
liver cytochrome CYP3A4 and flavin-containing monooxygenase
and excreted in urine and faeces. Therefore, concomitant
administration of immunosuppressive drugs generally
metabolised by the liver should be considered and closely
monitored. Both the Food and Drug Administration and the
European Medicines Agency suggest increasing ERV dose when
co-administered with strong CYP3A4-inducers; on the other hand,
coadministration with CYP3A4-inhibitors (e.g., tacrolimus) is not
likely to cause a clinically significant increased exposure. Moreover,
in vitro, ERV has been displayed to be a substrate for the transporters
P-gp, OATP1B1 and OATP1B3. This kind of interaction cannot be
excluded in vivo, and therefore, coadministration of ERV with drugs
that inhibit these transporters (e.g., cyclosporine) could increase
ERV serum levels [89].

Regarding side effects, ERV has demonstrated an acceptable
tolerability profile, with infusion site reactions, nausea, vomiting,
and diarrhoea being the most common AE.

Regarding hepatotoxicity, data from preclinical trials report
mild to moderate aminotransferase elevations. The literature does
not report cases of drug-induced liver injury associated with
ERV use [42].

Considering the described elimination and excretion features,
ERV does not seem to cause renal impairment.

Therapeutic and supra-therapeutic doses of ERV had no
apparent clinically significant effect on electrocardiographic
traces (e.g., increase in QTc interval); thus, no specific
monitoring with electrocardiography is required during
ERV therapy [90].

Key Messages
Overall, while there is still no data on the specific use of ERV in
LTx, the available evidence in the setting of cIAI and the peculiar
drug features suggest that it may be a safe and effective treatment
option for infections caused by difficult-to-treat bacteria.
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However, studies are needed to confirm these findings and
evaluate its optimal employment in this patient population.

PK/PD of New Molecules
All the above-described antibiotics, except ERV, belong to the
beta-lactam class. They all demonstrate time-dependent killing
with the PK/PD parameter of efficacy related to the amount of
time that the unbound drug concentration remains above the
MIC of the infecting organism (fT>MIC) [91]. It is suggested that
50% fT>MIC is likely enough to obtain standard efficacy, while in
critically ill immunocompromised individuals, up to 100% fT>4 x

MIC should be ensured for optimal drug exposure and suppression
of resistance development [92–94].

LTx candidates with end-stage organ failure and SOT patients
in the early post-operative period are characterised by profound
pathophysiological alterations that resemble those of critically ill
patients. These alterations significantly impact the PK/PD of BLs
[91, 92, 94, 95]. Indeed, conditions frequently encountered in the
LTx period could either increase Vd (capillary leakage and
oedema, fluid therapy, ascites, hypoalbuminemia) or enhance
renal clearance (hyperdynamic condition of the early phase of
sepsis, use of hemodynamically active drugs), leading to the risk
of drug underdosing. On the contrary, reduced renal clearance
due to renal failure bedridden or concomitant nephrotoxic drugs
may expose them to antibiotic overdosing and toxicity [91, 92, 94,
95]. Extracorporeal support techniques such as continuous renal
replacement therapy (CRRT) also contribute to antibiotic
concentration variability [95]. In addition, critically ill patients
with decompensated cirrhosis have a unique PK variability that
can affect serum drug concentrations and compromise target
attainment. Severe acute on chronic liver failure (ACLF)
frequently presents circulatory and renal dysfunctions and low
serum protein levels, features that contribute to ascites and
frequently anasarca. This setting will likely significantly affect
both clearance and Vd of antibiotics. Population PK models have
shown that increasing MELD score values reduce MEM and
tigecycline clearance, demanding a reduction in drug doses [96,
97]. ACLF was found to increase MEM Vd by lowering peak
concentrations. Consequently, higher loading doses of MEM
have been suggested [97].

Clinicians must face these remarkable PK/PD issues when
antibiotics are administered to critically ill patients. Strategies to
overcome these issues and optimise beta-lactam efficacy include
continuous/extended infusions (C/EI) and therapeutic drug
monitoring (TDM).

The duration of BL infusion has been shown to influence their
fT >MIC [94]. Several studies and systematic reviews reported PD
benefits for target attainment of C/EI of beta-lactams, especially
in infections by MDRGNB [98–101].

Vardakas et al. [98] conducted a meta-analysis of
22 randomised controlled trials comparing C/EI versus short-
term infusion of antipseudomonal beta-lactams in sepsis,
involving 1876 patients. C/EI was associated with lower all-
cause mortality than short-term infusion (RR 0.70, 95% CI
0.56–0.87). Almost all subgroup and sensitivity analyses
showed that C/EI was associated with at least a trend towards
lower all-cause mortality than short-term infusion [98].

Bartoletti et al. [101] performed a secondary analysis of the
BICHROME study, a prospective multicentre study conducted in
19 tertiary centres across five countries designed to describe the
epidemiology of BSI in cirrhotic patients. The authors reviewed
119 patients treated with TZP or carbapenems as empirical
treatment and observed a significantly lower mortality rate in
those who received C/EI (after adjusting for severity of illness: HR
0.41, 95% CI 0.11–0.936). A significant reduction in 30-day
mortality was also found in the subgroups of patients with
sepsis (HR 0.21, 95% CI 0.06–0.74), acute-on-chronic liver
failure (HR 0.29, 95% CI 0.03–0.99), and MELD score ≥25
(HR 0.26, 95% CI 0.08–0.92) [101].

Among novel beta-lactams, EI was considered in developing
clinical trials only for MVB and FDC, which nowadays are the
only two novel beta-lactams licensed to be administered by EI
over 3 h. However, administration by intermittent infusion could
lead to failure in achieving even the most conservative PK/PD
target adopted in pivotal trials, especially in critically ill patients
or infections by MDRGNB [100]. Real-world evidence on using
novel beta-lactam antibiotics by C/EI in clinical scenarios when
achieving aggressive PK/PD targets is challenging has been
thoroughly reviewed [99, 100].

TDM had been historically instituted for aminoglycosides and
glycopeptides to reduce the rate of drug toxicity. Because of the
excellent safety profile of BLs, TDM was thought unnecessary for
these antibiotics. More recently, challenges in achieving “optimal”
drug concentrations in critically ill patients have suggested BL TDM
as a valuable strategy to optimise PK/PD exposure, especially in
infections by MDRGNB, immunocompromised patients and those
undergoing CRRT or with augmented renal clearance [92, 95].

Focusing on critically ill patients with suspected or proven
sepsis, Pai Mangalore et al. [102] conducted a systematic review
and meta-analysis on TDM-guided dosing and clinical outcomes.
TDM-group was associated with increased target attainment (RR
1.85, 95% CI 1.08–3.16) and improved clinical cure (RR 1.17, 95%
CI 1.04–1.31), microbiological cure (RR 1.14, 95% CI 1.03–1.27)
and treatment failure (RR 0.79, 95% CI 0.66–0.94) [102].

Table 3 summarises scheduled and suggested administration
modalities for maximising novel BL antibiotics’ PK/PD target,
focusing on the LTx setting.

CONCLUSION

Overall, the scientific and clinical community has warmly
received the availability of a discrete number of new molecules
active against MDRGNB, as it represents a significant
breakthrough in addressing the urgent need for effective
antibiotics in the face of rising antimicrobial resistance. This
holds particularly true within the setting of LTx, wherein the
prevalence of infections caused by MDRGNB is considerable, and
patients undergo extensive surgical procedures while
concurrently receiving immunosuppressive therapy.

Despite the high anticipation surrounding the introduction of
these medications, substantial evidence regarding their safety,
effectiveness, and optimal utilisation in LTR is limited or lacking.
Given the underrepresentation of this patient population in
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conventional registration studies, the transplantation community
must collaborate to collect the necessary data to optimise
their usage.
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GLOSSARY

ACLF acute on chronic liver failure
AE adverse events
BAT best available therapy
BL beta-lactam
BLI beta-lactamase inhibitor
BSI bloodstream infection
C/EI continuous/extended infusions
C/T ceftolozane/tazobactam
cIAI complicated intra-abdominal infections
COL colistin
CRAB carbapenem-resistant Acinetobacter baumannii
CRRT continuous renal replacement therapy
CRE carbapenem-resistant Enterobacterales
cUTI complicated urinary tract infections
CZA ceftazidime/avibactam
ESBL-E ESBL-producing Enterobacterales
ESBL extended-spectrum-β-lactamases
ERV eravacycline
FDC cefiderocol
HAP hospital-acquired pneumonia
I-R imipenem/cilastatin/relebactam
IMP imipenem
LTR liver transplant recipients
LTx liver transplantation
KPC-E KPC-producing Enterobacterales
MBL metallo-β-lactamases
MDR multidrug-resistant
MDRGNB multidrug-resistant Gram-negative bacteria
MEM meropenem
MIC minimum inhibitory concentration
MVB meropenem/vaborbactam
PK/PD pharmacokinetic/pharmacodynamic
REL relebactam
SOT solid organ transplant
TDM therapeutic drug monitoring
TZP piperacillin-tazobactam
VABP ventilator-associated bacterial pneumonia
VAP ventilator-associated pneumonia
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Solid organ transplant (SOT) recipients are particularly susceptible to infections caused by
multidrug-resistant organisms (MDRO) and are often the first to be affected by an emerging
resistant pathogen. Unfortunately, their prevalence and impact on morbidity and mortality
according to the type of graft is not systematically reported from high-as well as from low
and middle-income countries (HIC and LMIC). Thus, epidemiology on MDRO in SOT
recipients could be subjected to reporting bias. In addition, screening practices and
diagnostic resources may vary between countries, as well as the availability of new drugs.
In this review, we aimed to depict the burden of main Gram-negative MDRO in SOT
patients across HIC and LMIC and to provide an overview of current diagnostic and
therapeutic resources.

Keywords: solid organ transplant, multidrug-resistant Gram-negative bacteria, epidemiology, clinical impact,
diagnosis and treatment, new anti-infective agents

INTRODUCTION

Solid organ transplant (SOT) recipients are at high risk for acquiring colonization and/or infection
with multi-drug resistant organisms (MDRO) with associated high morbidity and mortality
rates [1–3].

In the last 10 years, Enterobacterales, P. aeruginosa, and Acinetobacter baumannii have emerged
as critical threats due to a progressive widespread pattern of resistance, impacting patient survival,
mainly among vulnerable populations [4]. The present review will focus on these pathogens.
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The objective is to provide an overview of the epidemiology of
these MDROs in SOT recipients in different regions of the world.
Diagnostic and treatment strategies will be also reviewed
considering differences in the access to new diagnostic tools
and new antibiotics across high- and low-medium-
income countries.

METHODS

We conducted a narrative review by a computer-based PubMed
search using as keywords “Solid Organ Transplantation,”
“multidrug resistance,” “extended-spectrum β-lactamase
producing” or “extended-spectrum cephalosporin resistance,”
“carbapenem resistance” or “carbapenemase-producing,”
“difficult to treat resistant P. aeruginosa,” “carbapenem-
resistant A. baumannii” to identify published all-language
literature between June 2013 and June 2023. A pre-established
chart was used to extract epidemiological data. MDRO was
defined according to Magiorakos criteria and new DTR
concept [5,6]. HIC and LMIC were defined according to world
bank classification [7]. To estimate MDRO prevalence in SOT
recipients across countries, we included studies reporting the
number of infections by each specific MDRO, as well as the
number of transplanted patients during the same period. Studies
that only reported colonization or laboratory-based descriptions
without clinical data were excluded.

RESULTS

Epidemiology ofMDRO Infections After SOT
Compared to high-income countries (HICs), data on MDRO
infections among SOT patients is relatively scarce in low and

middle-income countries (LMICs). In these regions, the number
of transplants per million people is lower when compared to
Western Europe and the US. However, in absolute terms, 39% of
all transplants are performed in these countries (see Figure 1) [8].
Significant discrepancies in donor referral and transplantation
exist between HICs and LMICs. In the latter, the proportion of
living-donor transplants is higher, especially in Asia [9].
Moreover, the rates of MDRO infections among SOT
recipients are highly influenced by the local epidemiology. For
instance, Brazil, Turkey, India, China, and Argentina are
described as countries with the highest prevalence of CRAB
infection [10] Moreover, India and China have a high
prevalence of ESCR-E and CRE, mainly NDM-producing
[10,11]. Thus, it is expected that LMIC bear a high burden of
these diseases, which are likely underreported due to deficiencies
in diagnosis, lack of microbiology laboratory infrastructure, and
limited resources to make post-transplant infection rates public.
Finally, there is a lack of representativity from countries in the
Middle East and Africa. Taking into account these considerations,
an overview of the worldwide prevalence of infection by most
common MDROs per 1,000 transplant-recipients is shown
in Figure 2.

ESBL-Producing Enterobacterales
ESBL-E infection is the most commonly reported MDR Gram-
negative infection, with a prevalence ranging from 3% to 11% and
an aggregate rate of 7% among all bacterial infections in all types
of SOT; however, in KT recipients the prevalence of ESBL-E,
mainly in urinary tract infections (UTIs) may be >30% in high
endemic centers [12–33] (Table 1). Data from the Swiss
Transplant Cohort showed that, ESBL production was
observed in 11.4% Enterobacterales isolated from 1072 SOT
recipients [70]. Enterobacterales infections occurred at a
median of 69 days after transplant, interestingly patients were

FIGURE 1 | Proportion of transplant activity in high-, lower- and upper middle-income countries.
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predominantly outpatients. Higher prevalence of ESBL-E has
been reported in studies analyzing SOT recipients with BSI
and UTI [36,37,71]. In a study assessing the epidemiology of
UTI in a cohort of 4388 SOT recipients in Spain, the prevalence of
ESBL in E. coli was 26% [38].

Two large studies have investigated molecular characteristics
of MDR-E isolated in SOT recipients, from Spain and US each. In
the Spanish study, 541 MDR-E isolates were collected. The main

microorganisms were E. coli (46.2%), K. pneumoniae (35.3%), E.
cloacae (6.5%) and C. freundii (6.3%). Overall, 78.0% of strains
harbored ESBL genes, CTX-M-group-1 being the most prevalent
(53.3%) followed by CTX-M-group-9 in 15.4%. Among ESBL-
producers, 2.1% of E. coli, 47.3% of K. pneumoniae and 11.1% of
E. cloacae harbored a carbapenemase gene. Hyperproduction of
chromosomal-AmpC was detected in E. cloacae (57.7%), C.
freundii (82.6%) and other MDR-E species (39.1%) [72]. In

FIGURE 2 | Prevalence of Multidrug resistant Gram-negative bacterial infections in SOT recipients across the world.

TABLE 1 | Prevalence of MDRO infections in SOT recipients reported in studies from low- and medium-income and high-income countries.

Low and medium-income countries High-income countriesType of
resistance All infections BSI UTIa LRTI All infections BSI UTI LRTI

ESBL 7.0%
(4.4%–11.2%)

3.4%
(0.9%–11.7%)

14.4% (5.6%–21.6%) NA 5.5%
(2.2%–13.6%)

12.8%
(7%–40%)

5%
(1%–6%)

NA

CRE 4.0%
(0.9%–15.7%)

2.0% (0.9%–7.8%) 2.8% (0.8%–7.7%) 1.3%
(1%–2.1%)

6%
(1.9%–10.3%)

8% NA NA

DTR-Pa 1.4% (0.8%–3.9%) 3.1% (1.5%–8.0%) 1.1% (0.8%–1.5%) 3.2% 7% 10% NA 9%
(3%–15%)

CR-Ab 4.1%
(0.8%–28.6%)

1.4%
(1.1%–28.6%)

NA 5.8%
(3.8%–

9.7%)

1%–6% NA NA NA

aRates of UTI, are mainly obtained from studies including kidney transplant recipients.
References: ESBL LMIC [13,16–21,34,35]; ESBL HIC [22–33,36–41]; CRE LMIC [14,16,20,42–47]; CRE HIC [39,48–53]; DTR-Pa LMsIC [14,16,46,54–58]; DTR-Pa HIC
[2,22,49,52,59–61]; CR-Ab LMIC [15,16,20,46,57,62–65]; CR-Ab HIC [22,66–69].
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the US study on 88 transplant recipients, 20% of patients were
colonized with MDR-E (ESCR-E only n = 23; CRE only n = 12;
both n = 5), 52% of ESCR-E carried blaCTX-M. Post-transplant
MDR-E infection rate was 10%, the attack rate was higher
following CRE than ESCR-E colonization (53% vs. 21%,
p = .05) [39].

Main risk factors for ESBL-E infections after SOT are reported
in Table 2 [73]. In this regard, the role of targeted perioperative
antibiotic prophylaxis (T-PAP) is still an open issue [74]. Two
studies, from France and Thailand each, showed a reduction of
ESBL-E infections in patients receiving T-PAP after OLT and KT,
respectively [13,40]. However, both of them showed several
limitations including observational design, heterogeneity in
drugs used in the OLT study, and consideration of
asymptomatic bacteriuria as an endpoint in the KT cohort.
Furthermore, it should be remarked that carbapenem exposure
is the main driver for carbapenem resistant infections.

ESBL-E infections are associated with increased length of stay,
mainly in case of initial inappropriate therapy [34,35]. In
addition, high recurrence rates have been reported ranging
from 25% for BSI to 79% for UTI, mainly in KT recipients
[34,90]. Factors associated with relapse were inappropriate
empirical therapy, advanced age, and persistent
bacteriuria [41,70].

Carbapenem-Resistant Enterobacterales
The prevalence of CRE infection after SOT varies according to the
type of organ, being higher among liver (2%–10%) and lung (5%–
7%) transplant recipients [91]. These rates seem to be a little
higher in HIC than in LMIC (see Table 1) [42–45,49–52]. The
rate of CRE infection is on average 30% among CRE carriers [53].
Usually, CRE infection occurs in the first 4–8 weeks after
transplant, earlier infections (within 2 weeks) are observed in
pre-transplant carriers and/or in donor derived infections (DDI)
[48,53,92]. Notably, incidence of DDI due to CRE is high in
China, one study focused on KT patients reported that possible
DDI increased the risk of CRE infection by more than six times
[75]. Authors reported varying prevalence rates of CRE among
donor or preservation fluid cultures, ranging from 1.6% to
19.2% [93–95].

CRE infection after SOT often presents as severe infection with
BSI and/or lung involvement [76,91].

Carbapenemases show significant geographical variation—K.
pneumoniae carbapenemases (KPC) remain the commonest in
United States, the metallo-beta-lactamases (MBLs) are most
common in the countries of South and Southeast Asia and
OXA-48-type carbapenemases in the Middle East,
Mediterranean and northern African countries [96–98]. In the
two studies assessing molecular characteristics of MDR-E isolated
from SOT recipients, the main mechanisms of carbapenem
resistance were OXA-48 in Spain accounting for 78% of the
isolates, and KPC in US detected in 72% of CRE [39,72]. These
mechanisms were mostly detected in K. pneumoniae isolates. Few
studies in LMICs investigated this issue. The proportion of strains
with carbapenemase-producing is reported to be 46%–84%
among OLT recipients and 83% among KT recipients. KPC-
producing CRE appears to be the most frequent. The secondmost

common carbapenemase is NDM, which corresponded to 28% in
an OLT cohort in China and 2% in a KT cohort in Brazil. Despite,
CRE post-transplant infection rates are high in India, details
about the proportion of NDM and KPC are not available [99].
Other carbapenemases, such as IMP, are less frequent and often
associated with outbreaks [77,78,100,101].

Risk factors for CRE infection have been usually investigated
in specific organ transplant settings and most commonly in OLT
recipients (see Table 2) [48,75,79,80]. Carriage, either acquired
before or after transplant, and peri-surgical complications have
been associated with highest risk of developing CRE infection
[48,77]. For pre-transplant carriage, shorter the time of detection
before SOT, higher is the risk of infection after SOT [81]. For
post-transplant carriage, it is worth mentioning that this occurs
2-3 times as more frequently than pre-transplant carriage, thus in
high endemic areas it could be considered to repeat the screening
for rectal carriage, which is usually done before or at transplant
time, also during the post-transplant period during ICU or
hospital stay. Conversely, the role of T-PAP for CRE is under
debate [74,82].

Rates of mortality and graft failure in patients developing CRE
infection after SOT are as high as on average 40% and 20%,
respectively. After adjusting for confounding variables CRE
infection was found as a significant predictor of
poor outcome [83].

Difficult-To-Treat Resistant Pseudomonas aeruginosa
Assessing the burden of difficult-to-treat resistant (DTR) P.
aeruginosa (DTR-Pa) in SOT recipients is difficult for several
reasons including: i) different drug resistance definitions
used across centers and study periods; ii) analysis of
respiratory isolates generally available only for LuT
recipients while for other types of transplant most data
come from studies on BSI; iii) cumulative data on drug
resistance provided including also other pathogens; and
iv) lack of large multicenter studies.

With this premise, DTR-Pa appears to be the MDRO with
the lowest prevalence among SOT in LMIC, described from
0.8% to 3.9% in KT and OLT recipients (Table 1) [54–58]. In
HIC, Pa generally ranked first among pathogens isolated from
LuT recipients, with rates of MDR ranging from 7% to 50%
[59,60,84]. In a single-center Spanish study, including
318 consecutive episodes of BSI in a cohort of non-lung
SOT recipients, 44 (15%) BSI were caused by Pa with 31
(63%) strains classified as XDR [61]. The most frequent
source was UTI, and the median time from transplantation
to BSI was shorter for XDR episodes (66 vs. 278 days).
Independent risk factors for XDR Pa BSI were prior
transplantation, nosocomial acquisition and septic shock
[85]. Only colistin and amikacin maintained activity against
XDR strains. Compared to patients with susceptible-Pa BSI,
those with XDR-Pa BSI received more frequently
inappropriate empirical treatment (58% vs. 22%), and had
higher 7-day (20.7% vs. 8.5%) and 30-day (38% vs. 16%)
mortality rates.

Few data are available about the mechanisms underlying DTR
and CR phenotypes in Pa. In a recent study including CR-Pa from
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TABLE 2 | Risk factors for MDRO infection and for mortality.

Type of resistance Risk factors for infection Risk factors for mortality

ESBL-E
[13,34,40,70,71,73]

General Characteristics
- Female gender
- Kidney Transplant
- MELD score >25

Colonization status
- ESBL-Enterobacterales carriage in the prior 1 year

Pre-SOT antibiotic exposure/prophylaxis
- Pre-operative prophylaxis for spontaneous bacterial peritonitis
- Carbapenems prophylaxis
- Exposure to third-generation cephalosporin, TMP/SMX or echinocandins in the prior

6 months
Post-SOT condition
- Acute rejection in prior 3 months
- Reoperation
- Corticosteroid containing immunosuppressive regimen

Severity of patient and/or condition
- Pitt bacteremia score
- Mechanical ventilation at the time of infection
diagnosis

CRE [42,43,48,74–83] General Characteristics
- Male gender
- Older age
- Time of hospitalization
- Lung transplant
- Liver transplant
- Multiple infected organisms or sites
- Previous infections
- Dialysis
- MELD score >32
- Median lymphocytes count under 700 cell/mm3

Colonization status
- Pre/post-transplant CRE carriage
- Multisite colonization
- Colonization by more than one species of CRE

Pre-SOT antibiotic exposure
- Carbapenem use (OR 2.53, OR 2.80)

Post-SOT condition
- Combined transplant
- Prolonged mechanical ventilation
- Possible donor -derived infection
- Delayed kidney function/Ureteral stent
- CMV infection
- Re -transplantation
- Rejection
- Mycophenolate use

General Characteristics
- older age
- CMV disease
- Lymphocytes ≤600 U/mm3

- Pitt bacteremia score
- Graft failure

Severity of patient and/or condition
- Septic shock
- High SOFA score
- Multiple infected organisms or sites
- Genitourinary source
- No source control
- INCREMENT-CPE mortality score ≥8

Antibiotic exposure
- Appropriate empiric therapy (protective)
- Polymyxin exposure in the prior 6 months

DTR-Pa [54,59–61,84,85] General Characteristics
- Hospital stay > 10 days
- Lower median lymphocyte counts
- Central venous catheter
- Urinary catheter
- Prior transplantation
- ICU admission in previous year
- Septic shock

Pre-SOT antibiotic exposure
- Prior carbapenem use
- Prior ciprofloxacin use

Post-SOT condition
- re-transplantation
- urological surgical procedure after Kidney transplant

Severity of patient and/or condition
- Bacteremia
- creatinine >1,5
- onset of BSI while in ICU

CR-Ab [20,44,62,86–89] General Characteristics
- Liver Transplant performed because of fulminant hepatitis
- high preoperative serum levels of BUN
- pre-operative hypoalbuminemia

Post-SOT condition
- Fungal culture positivity after SOT
- long duration of surgery
- tracheal intubation twice
- longer cold ischemia time
- post-Liver transplant need for dialysis

Severity of patient and/or condition
- Platelet count < 50,000/mm3
- Mechanical ventilation at the onset of CRAb
- ICU-acquired infection

Antibiotic exposure
- Inappropriate empiric therapy
- Colistin-carbapenem regimens
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972 individuals (USA n = 527, China n = 171, south and central
America n = 127, Middle East n = 91, Australia and Singapore n =
56), almost a quarter of strains were shown to produce a
carbapenemase, mostly consisting of KPC-2 (49%) or VIM-2
(36%), with a prevalence varying across south and central
America 69%, Australia and Singapore 57%, China 32%,
Middle East 30%, US 2% [4]. In a study on 163 clinical P.
aeruginosa isolates in adult cystic fibrosis and LuT in
Australia, 32 (19.6%) were XDR, 82% of strains were
susceptible to ceftolozane/tazobactam [102].

Mortality risk associated with DTR/XDR or CR Pa infection
after SOT seems to be higher in patients with septic shock and/or
multiorgan failure and ICU stay [61].

Carbapenem-Resistant Acinetobacter baumannii
The overall rate of CRAb infection among SOT recipients varies
from 1% to 6% in HIC [66–69]. In a study conducted in US on
248 patients with A. baumannii infection, CRAb rates were higher
among SOT compared to non-SOT patients (43% vs. 14%) [103].

CRAb prevalence after SOT in China and Brazil can reach 29%
[10,16,62,63,86]. A systematic review focused on uro-pathogens
among KT recipients highlighted A. baumannii as the third most
frequently encountered Gram-negative bacteria, displaying a
prevalence rate of 8% in the Middle-East [104] Additionally,
4%–10% of OLT recipients have pneumonia attributed to CRAb
in China, Brazil, Egypt and Uruguay [64,65,87,88] A Chinese
study involving 107 LuT recipients found that CRAb was the
predominant MDRO infection agent, accounting for 35% of
Gram-negative MDRO [63]. Thus local epidemiology is pivotal
in planning screening for CRAb before and after SOT.

A. baumannii is intrinsically resistant to a wide range of
antibiotic classes, caused by simultaneous mechanisms of
resistance [105]. Among these, decreased outer-membrane

porins, constitutional expression of efflux pumps, intrinsic
harboring of β-lactamases and plasmidial carbapenemase, has
been widely described. Among carbapenemases, OXA-23-like are
the most common. However, CRAb isolates harboringMBL, such
as blaNDM-1 genes, has been associated with increased mortality
rates in a study conducted from Pakistan [106–108]. Resistance to
polymyxin is infrequent and appears to be linked to
outbreaks [46,62,86,109].

Data about risk factors for CRAb infections were exclusively
reported for OLT recipients from LMICs [87,88]. (Table 2) CRAb
infection mortality rates are the highest among SOT MDRO
infections and often exceed 40% (ranging from 20% to 47%)
[62,86,87,89,110].

Diagnosis of MDRO Infections After SOT
Timely diagnosis of MDRO infections in SOT recipients is
critically important to patient and allograft survival. Advanced
diagnostic methodologies may aid in shortening the time to
narrowest appropriate antibiotic administration; however, data
on their optimal use and interpretation in this specific population
are limited [111]. In addition, the availability of rapid diagnostics
may vary by location.

In a survey amongAmerican Society Transplant (AST)members,
19 respondents indicated frequently ordering multiplexed molecular
assays (82%) and antimicrobial susceptibility to new antibiotics
(76%), and >80% of respondents reported to change treatment
according to the results of such tests [112]. However, data from other
countries are missing.

Preliminary data on the use of a multiplex PCR panel in
29 transplant recipients with 45 bloodstream infections remarked
the possibility of off-target pathogens [113]. Indeed, a consensus
conference to define the utility of these new diagnostics in SOT
concluded that prospective multicenter studies are needed to

FIGURE 3 | Spectrum of various novel agents active against carbapenem-resistant Gram-negative organisms (modified from: European Respiratory Review
2022 31: 220119) *This drug may retain activity against serine-type carbapenemases (e.g., GES) but are inactivated by metallobetalactamases T̂his combination has
been shown to be active in vitro against some MBL producing P. aeruginosa strains.
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investigate their performance and reproducibility compared to
reference standards, the optimal timing of testing to predict
and/or diagnose disease, the impact on clinical outcomes, and
the cost-effectiveness also for point-of care applications [112].

ESBL-Producing Enterobacterales
Molecular detection of ESBL genes may aid in decreasing the time to
diagnosis and initiation of targeted antimicrobials in SOT recipients.
Several systems capable of detecting ESBL-producing Enterobacterales
in lower respiratory tract specimens and blood are commercially
available; however, not all genes responsible for ESBL production,
including blaTEM and blaSHV are included on all panels. Moreover,
assays used for rapid genotypic resistance detection display reduced
accuracy in polymicrobial infections [111,112]. Rapid phenotypic
antimicrobial susceptibility testing has also been demonstrated to
reduce the time to optimal therapy among bacteremic non-transplant
patients [111,114].Current recommendations underscore the need for
conventional antimicrobial susceptibility testing to verify results of
rapid genotypic and phenotypic testing when there is concern for a
highly resistant phenotype and for polymicrobial infection [1,111].

Carbapenem-Resistant Enterobacterales
Several rapid diagnostic tests for carbapenem resistance are
commercially available and include real-time polymerase chain
reaction and nucleic acid tests such as the Xpert® Carba-R
(Cepheid), Verigene® BC-GN (Luminex), and BioFire®
FilmArray® Blood Culture Identification 2 Panel, which test

for blaKPC, blaNDM, blaOXA, blaVIM, and blaIMP gene sequences
[115,116].However, this assays display reduced accuracy in
polymicrobial infections [111,112]. Other methods for rapid
diagnosis of CRE include chromogenic assays as RAPIDEC®
CARBA NP (bioMérieux) and Rapid CARB Blue (Rosco
Diagnostics) and matrix-assisted laser desorption ionization-
time-of-flight mass spectroscopy (MALDI-TOF MS) [117–119].
While rapid diagnostic assays for the detection of carbapenem
resistance may reduce the time to effective antimicrobial therapy,
current guidelines and expert consensus recommendations
recommend conventional antimicrobial susceptibility testing to
confirm the diagnosis of a CRE infection [1,111].

According to local availability, antimicrobial susceptibility to
old and new agents is advisable not only on the clinical isolate but
also on the colonizing strain in order to start promptly an
appropriate treatment upon the onset of infection symptoms/signs.

Difficult-To-Treat Resistant Pseudomonas aeruginosa
Difficult-to-treat resistance has been defined as P. aeruginosa
which exhibits non-susceptibility to aztreonam, piperacillin-
tazobactam, ciprofloxacin, levofloxacin, ceftazidime, cefepime,
meropenem, imipenem-cilastatin [120].

Rapid diagnostic tests for the identification of P. aeruginosa
are commercially available and include nucleic acid tests,
MALDI-TOF MS, and peptide nucleic acid fluorescent in situ
hybridization (PNA FISH; AdvanDx) [121]. However, given that
DTR-Pa evolves due to multiple resistance mechanisms, current

FIGURE 4 | Treatment flowchart.
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guidelines recommend against rapid diagnostic testing to guide
empiric treatment [1].

Carbapenem-Resistant Acinetobacter baumannii
In low-prevalence areas, use of rapid diagnostic and
phenotypic tests for the detection of CRAB has posed
clinical challenges. A recent study comparing the NG-Test
CARBA 5 (NG-Biotech) version2 with the Xpert-Carba-R
assay, modified carbapenem inactivation method (mCIM),
and the CIMTris assay with whole-genome sequencing as
the reference standard demonstrated that the NG-Test
CARBA 5 and Xpert Carba-R had an overall percentage
agreement of 6.2%, noting OXA-type carbapenemases are
not included, and the CIMTris had an overall percentage
agreement of 99%. In addition, approximately 96% of
isolates incorrectly tested positive for IMP on NG-Test
CARBA 5 [122]. Supplementary studies are being
undertaken to identify opportunities for rapid diagnostics
for CR-Ab infections [123,124].

Management of MDROs in SOT patients
The management of MDRO infections in SOT patients is not
different from that recommended in other patients in view of
choice agent/regimen and treatment duration. The outsized
burden of AMR in the LMICs is further complicated by non-
availability of recently approved antibacterial agents. For
example, in the South Asian region, where carbapenem-
resistant infections are very common, cefiderocol, sulbactam-
durlobactam, meropenem-vaborbactam, imipenem-relebactam,
eravacycline and plazomicin are not yet available. The
treatment for severe infections, with bacteraemia as a
prototype, is discussed here. Overall, spectrum of activity of
various antimicrobial agents is shown in Figure 3. Selection of
agents should be based on in vitro activity and local availability.
An algorithm for treatment approaches is proposed in Figure 4.

Third-Generation Cephalosporin-Resistant
Enterobacterales
Carbapenems are considered the drug of choice for the
management of severe ESBL-E infections in SOT patients
[120,125]. The MERINO trial compared piperacillin-tazobactam
versus meropenem for the management of ceftriaxone-resistant
E. coli and Klebsiella spp. bacteremia. Thirty-day mortality, was
higher in the piperacillin-tazobactam group (12% vs. 4%; absolute
risk difference 9%), failing to meet the non-inferiority margin
[126]. The carbapenem superiority appears to be related to elevated
piperacillin-tazobactam MICs with co-occurrence of narrow
spectrum oxacillinases [127]. Ertapenem is generally deferred as
an upfront therapy in critically ill patients [128]. Carbapenems
including ertapenem, fluoroquinolones, TMP-SMX and
aminoglycosides are options for stable patients with pyelonephritis
and other UTI. Switch to oral regimens can be considered once
clinical stability is achieved and susceptible oral agents with good
intestinal absorption are available [125].

Klebsiella aerogenes, Enterobacter cloacae complex, and
Citrobacter freundii are commonly associated with higher
risk of AmpC-β-lactamase production [129]. Despite its

limited ability to induce AmpC-β-lactamases, piperacillin-
tazobactam is considered inferior for treatment due to the
risk of hydrolysis [130]. MERINO 2, a small RCT evaluating
piperacillin-tazobactam versus meropenem in bacteremia
with presumed AmpC-producing organisms showed no
difference between the two agents in clinical failure and
mortality [131]. However, some observational data point to
poorer outcomes with piperacillin-tazobactam [132–134].
Cefepime minimally induces AmpC β-lactamases and is
relatively stable to AmpC hydrolysis. Some observational
studies show higher mortality with cefepime MICs 4–8 μg/
mL (susceptible dose-dependent range), probably correlating
with co-production of ESBLs [135]. Carbapenems are stable
against AmpC β-lactamases and are the drugs of choice for
severe infections and/or upon isolates with MICs ≥4 μg/mL
for cefepime [120].

Studies addressing the role of intestinal decolonization for
SOT recipients colonized with ESCR-E are limited. One case-
control study described the successful use of a 5-day course of
norfloxacin in reducing the burden of ESBL-E in stool samples
obtained from OLT recipients during an outbreak in a transplant
unit [136]. However, other studies have described the
development of colistin- and tobramycin-resistant K.
pneumoniae after attempted decolonization with orally
administered colistin [137,138]. Given the risk of selecting
resistant organisms, this approach is not recommended [139].

Carbapenem-Resistant Enterobacterales
Once the CRE is confirmed, carbapenamase testing and
antimicrobial susceptibility for all available agents are
recommended. For KPC-producing CRE isolates, ceftazidime-
avibactam, meropenem-vaborbactam, and imipenem-relebactam
are the first line options of therapy [125]. Cefiderocol can be
used provided susceptibility testing is available. For OXA-48 type
carbapenemase-producing CRE, ceftazidime-avibactam is the
preferred agent of choice. Cefiderocol is an alternative [140,141].
NDM-producing CRE is best treated with a combination of
ceftazidime-avibactam and aztreonam. Aztreonam retains activity
against MBL but is inactivated by coexistent ESBLs, AmpCs or
OXA-48 like enzymes. Avibactam protects the aztreonam from these
mechanisms. Cefiderocol is a potential option for treatment of
NDM- and other MBL-producers if the isolate is susceptible to
this agent. In MBL-producing E coli, presence of four-amino acid
(YRIN or YRIK) inserts in Penicillin binding protein 3 (PBP3) are
common in countries like India and China, reducing the interaction
of aztreonam at that site, leading to higher MICs [142,143]. The
efficacy of ceftazidime-avibactam plus aztreonam may not be
retained in MBL producing E coli isolates with PBP3 inserts.

Few studies have assessed the efficacy of the new drugs
specifically in SOT recipients. Most data are available for
ceftazidime-avibactam as it was first introduced in Europe and
US. A multicentre observational study of 210 SOT recipients with
BSI due carbapenemase producing K. pneumoniae, 149 received
active primary therapy with CAZ-AVI (66/149) or best available
treatment (BAT) (83/149). Patients treated with CAZ-AVI had
higher 14-day (80.7% vs. 60.6%, p = 0.011) and 30-day (83.1%
vs. 60.6%, p = 0.004) clinical success and lower 30-day mortality
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(13.25% vs. 27.3%, p = .053) than those receiving BAT. In the
adjusted analysis, CAZ-AVI increased the probability of clinical
success; in contrast, it was not independently associated with 30-day
mortality. In the CAZ-AVI group, combination therapy was not
associated with better outcomes [144].

There is a paucity of data regarding intestinal decolonization of
SOT recipients colonized with CRE. A clinical trial on SOT colonized
with MDRO failed to show a benefit from decolonization with oral
colistin plus neomycin, conversely decolonizationwas associatedwith
adverse events [145]. Thus, this approach is currently not
recommended. The role of fecal microbiota transplantation in
restoring intestinal microbial diversity in SOT recipients colonized
with MDROs seems promising; however, more data on clinical
effectiveness and safety are needed [146].

Difficult to Treat Resistant P. aeruginosa
Treatment of Pa with carbapenem resistance can be approached
in three ways. If a traditional agent like piperacillin-tazobactam,
cefepime, ceftazidime or fluoroquinolones remains susceptible
with carbapenem resistance, they can be used in optimal doses
[147]. This is primarily due to lack of functional OprD which is
required for carbapenem entry.

If there is resistance to traditional agents and to carbapenems
(e.g., a XDR or DTR strain), it is important to check for
carbapenemases [148,149]. If carbapenemase testing is
negative, ceftolozane-tazobactam is considered the drug of
choice when in vitro activity is confirmed. For CR-Pa where
resistance is mediated by a non-MBL carbapenemase (e.g., KPC,
GES) ceftazidime-avibactam or imipenem-relebactam could be
used; cefiderocol is an alternative option.

For CR-Pa isolates with documented MBL production, the
therapeutic options are limited. Cefiderocol or polymyxins are
generally the only drugs maintaining in vitro activity. However,
data on clinical efficacy are controversial for cefiderocol, and
generally poor for polymyxin/colistin mainly due to toxicity. The
combination of ceftazidime-avibactam and aztreonam could be
an option although clinical experience is limited [150,151].
Cefepime-zidebactam has been reported as a salvage option in
these patients [152,153].

Carbapenem Resistant Acineotacter baumannii
The therapy of CRAb infections is particularly complex in view of
difficulty in differentiating between colonization and invasive
infection, especially in the lung, with extremely limited therapeutic
options. There is no single antibiotic available as a preferred agent in
the management of CRAb infections. One of the recent promising
agents is sulbactam-durlobactam. In a phase 3 RCT, 28-day all-cause
mortality was 19% in the sulbactam–durlobactam group and 32% in
the colistin group, an absolute difference of−13.2%,meeting the non-
inferiority criteria. In both groups, combination with imipenem-
cilastatin was used. Most guidelines currently recommend sulbactam
based therapy and wherever possible in combination with other in-
vitro active agents [125]. Sulbactam is a competitive betalactamase-
inhibitor with independent anti-Acinetobacter activity via saturation
of PBP1 and PBP3 in high doses [154]. But the susceptibleMIC range
for sulbactam is not established. Also, changes in the above PBPs can
decrease its affinity and result in resistance. Few studies have

supported the benefit of ampicillin-sulbactam especially
against polymyxins [105]. The options for combination
therapy with sulbactam include minocycline, tigecycline,
polymyxins and cefiderocol. Colistin is frequently active
in vitro; however, the unfavourable PK/PD profile of this
drug results in low efficacy and high toxicity rates. Two large
randomized controlled studies have shown the addition of high-
dose meropenem to colistin does not result in clinical benefit
[155,156]. Nebulised polymyxins are not currently
recommended in view of preferential distribution to the
unaffected areas of the lung, absence of benefit in randomized
trials and potential for bronchospasm [157–159]. The role of
cefiderocol is debated [160,161]. This drug shows high rates of
in vitro activity and, despite it was associated with higher mortality
compared with standard treatment (mostly consisting of colistin-
based regimens) in patients with CR-Ab infections in the phase III
CREDIBLE-CR trial [161], it has been shown to bemore or equally
effective than older regimens, with a significantly lower toxicity, in
several real-word observational studies [162].

CONCLUSION

To conclude, to draw the global burden of MDROs in SOT
recipients is difficult due to the lack of standardization in
screening and reporting colonization and/or infections with
such pathogens; and the access to diagnostic and therapeutic
resources could be variable across countries. To improve
outcomes associated with MDRO colonization and/or
infections in SOT recipients, new rapid advanced diagnostics
could be supportive, as well as the prompt availability of
phenotypic susceptibility to old and new drugs. Use of these
tests should be guided by local epidemiology and patient risk
factors, their impact on outcome should be investigated.
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The total burden of infections after transplantation has not been compared in detail
between recipients of simultaneous pancreas-kidney transplantation (SPK) and kidney
transplantation alone (KTA). We compared infection-related hospitalizations and
bacteremias after transplantation during 1- and 5-year follow-up among 162 patients
undergoing SPK. The control group consisted of 153 type 1 diabetics undergoing KTA
with the inclusion criteria of donor and recipient age < 60, and BMI < 30. During the first
year, SPK patients had more infection-related hospitalizations (0.54 vs. 0.31 PPY, IRR
1.76, p = <0.001) and bacteremias (0.11 vs. 0.01 PPY, IRR 17.12, p = <0.001) compared
to KTA patients. The first infection-related hospitalizations and bacteremias occurred later
during follow-up in KTA patients. SPK was an independent risk factor for infection-related
hospitalization and bacteremia during the first year after transplantation, but not during the
5-year follow-up. Patient survival did not differ between groups, however, KTA patients
had inferior kidney graft survival. SPK patients are at greater risk for infection-related
hospitalizations and bacteremias during the first year after transplantation compared to
KTA patients, however, at the end of the follow-up the risk of infection was similar
between groups.

Keywords: kidney transplantation, pancreas transplantation, infection, bacteremia, infection-related
hospitalization, complication, survival

INTRODUCTION

The results of simultaneous pancreas-kidney transplantation (SPK) have improved during the last
decades due to advanced surgical techniques and immunosuppressive therapies [1, 2]. Many studies
have shown superior patient and kidney graft survival in SPK patients compared to kidney
transplantation alone (KTA) [3–8], as well as the reduction of micro- and macrovascular
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complications of diabetes [9–12]. However, postoperative
complications are common in SPK patients with relaparotomy
rates reported to range from 23% to as much as 44% [13–15], and
the incidence of surgical site infections is among the highest in
solid organ transplant (SOT) recipients [16]. Surgical
complications cause significant morbidity and may adversely
affect the pancreas graft survival [14]. In addition, more
intensive immunosuppression, and especially the use of
lymphocyte-depleting agents, may predispose SPK patients to
increased infections compared to KTA patients.

On the other hand, KTA patients continue to be exposed to the
hyperglycemic conditions and studies have shown increased risk
of infections [17] and infection-related mortality [18] among
patients with diabetes compared to the general population. Also,
in a large study comparing infections among kidney transplant
recipients, the infection-related mortality was higher for diabetics
compared to non-diabetics [19]. Therefore, the ongoing diabetes
and hyperglycemia may continue to act as a risk factor for
infections in diabetic KTA patients compared to SPK patients
who usually achieve normoglycemia after a functional pancreas
transplant.

Data about the long-term infectious complications in SPK
patients compared to KTA patients are limited and studies
comparing the infection burden of specifically diabetic KTA
patients with SPK patients do not exist to our knowledge. The
primary aim of this study is to compare infection-related
hospitalizations and bacteremias between SPK and type
1 diabetic KTA patients after transplantation during 1-year

and 5-year follow-up time. Our aim is also to characterize the
site of infections, the risk factors for infection-related
hospitalizations and bacteremias, as well as the impact of
infection-related hospitalization and bacteremia on patient and
graft survival in both groups. In addition, we compare overall
patient and graft survival between SPK and KTA patients.

MATERIALS AND METHODS

We analyzed retrospectively all patients undergoing SPK for type
1 diabetes since the program was launched in Finland from
March 2010 to December 2019. All transplantations were done
in Helsinki University Hospital, the only transplant center in
Finland. The control group consisted of patients with end-stage
kidney disease secondary to type 1 diabetes who received KTA
from a deceased donor in our institution during 2004–2013,
which was before the routine implementation of the SPK
program. The inclusion criteria for the controls were donor
and recipient age < 60 and BMI < 30, the same age and
weight limit used for SPK. This study had the approval of the
Helsinki University Hospital institutional review board, and the
Finnish Institute for Health andWelfare regarding the use of their
administrative health data on hospitalizations in this study (THL/
1877/5.05.00/2019).

All transplantations were ABO compatible and cytotoxic
cross-match negative. For the SPK group, immunosuppression
comprised tacrolimus, mycophenolate mofetil (MMF) and
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steroid. All SPK patients received induction with single-dose
antithymocyte globulin (8 mg/kg) pre-transplantation. The
post-transplantation trough level target for tacrolimus was
12–15 ug/L the first 14 days and 10–12 ug/L for days
15–90 after transplantation. From three to 12 months post-
transplantation, the trough level target was 9–11 ug/L, from
12 to 24 months 8–10 ug/L, and thereafter 7–9 ug/L. Steroid
was discontinued after 6 months unless donor-specified-
antibodies existed, in which case methylprednisolone 2–4 mg
remained as part of the immunosuppression. All
transplantations were performed using enteric proximal jejunal
exocrine drainage. For the KTA patients, baseline
immunosuppression comprised primarily of cyclosporine
combined with MMF and steroid. The cyclosporine trough
level target was 170–200 ug/L for the first 3 months, from
three to 6 months 160–190 ug/L, six to 12 months 100–120 ug/
L, 12–24 months 80–120 ug/L, and thereafter 60–100 ug/L.
Immunologically high-risk KTA patients received tacrolimus
(trough level target 6–8 ug/mL for the first 3 months) and in
selected cases induction therapy with basiliximab was
administered. Steroid was usually discontinued after 1-year
post-transplantation in KTA patients.

All SPK patients received perioperative antibiotic prophylaxis
with piperacillin-tazobactam and ciprofloxacin in addition to
anti-fungal prophylaxis with fluconazole or anidulafungin.
These prophylaxis regimens were continued for three to 5 days
postoperatively intravenously. In KTA patients, a single-dose of
cefuroxime was administered during operation and another dose
after operation. All patients received a 6-month prophylaxis for
Pneumocystis jirovecii pneumonia with trimethoprim/
sulfamethoxazole. Ureteral stent was removed 3–4 weeks after
transplantation in both groups.

Six-month CMV prophylaxis with valganciclovir (900 mg once
daily, or dose adjusted to renal function) was intended for all patients
with CMVD+/R− constellation in both groups. This 6-month CMV
prophylaxis protocol has been used since 2004 in our institution for
these high-risk patients. Also, SPK patients with CMV R+ status
received a 3-month valganciclovir prophylaxis since 2019, regardless
of donor CMV status. KTA patients with other constellation besides
D+/R− did not receive any prophylaxis. Patients without prophylaxis
were monitored preemptively during their routine follow-up visits
for DNAemia and antiviral treatment was initiated if the viral load
exceeded 1,000 IU/mL. In viral loads lower than that, viremia was
usually only monitored. In the case of treatment for acute rejection,
CMV prophylaxis was given for one-to-three months depending on
the used rejection treatment.

We analyzed all infections requiring hospital admission
during 5 years after transplantation. Infections during the
admission for transplantation were excluded due to higher risk
of infections related to surgical complications in SPK. All SPK
patients were followed at our institution and the hospitalizations
gathered from the national transplant register and patient
electronic medical records. In KTA patients, the infection
related hospitalizations were gathered from the Finnish Care
Register for Healthcare, which is a national administrative health
registry maintained by the Finnish Institute for Health and
Welfare, using ICD-10 codes A00–B99, J00–J99 and

R50–R50.9 for primary diagnosis or as a secondary diagnosis
when primary diagnosis was type 1 diabetes or diabetic
nephropathy (N039*E10). Reporting of hospitalizations to the
registry is mandatory by law. Additionally, in KTA patients, the
follow-up data was also obtained from the national transplant
register. The data were collected until 5 years from
transplantation or until January 2022 in SPK patients who did
not fulfil the 5-year follow-up time. Bacteremia was defined as
presence of bacteria in the blood. Due to the lack of clinical
information considering KTA patients, no further
categorization was made.

The interval from transplantation to the first infection-related
hospitalization was compared between SPK and KTA patients.
The localizations of the infections were categorized as skin and
soft tissue, gastrointestinal, pulmonary, pyelonephritis,
unspecified, bacteremia, and CMV disease.

Statistical tests were performed using SPSS Version 28. For the
comparison of study groups, 2-sided Mann-Whitney U-Test was
used for continuous variables and chi-squared test for categorical
variables. For the comparison of first infection-related
hospitalizations or bacteremias between groups, Kaplan-Meier
estimates were applied and censored for death or kidney graft loss
which was defined as return to dialysis or death with functioning
graft. Survival probabilities were also executed using Kaplan-
Meier estimates. The SPK patients with initially functioning
pancreas graft were included in the analysis. SPK patients who
lost their pancreas graft, were still included in the SPK group after
graft loss as they were exposed to the surgical procedure and the
immunosuppression used in SPK patients. Pancreas graft failure
was defined according to the definitions implemented in 2018 by
the Organ Procurement and Transplantation Network (OPTN)
including any of the following: recipient’s transplanted pancreas
is removed, recipient reregisters for a pancreas transplant,
recipient registers for an islet transplant after undergoing a
pancreas transplant, recipient dies or recipient’s total insulin
use is greater than or equal to 0.5 units/kg/day for
90 consecutive days. Cox regression models were used to
study SPK as a risk factor for the first infection-related
hospitalization and bacteremia after transplantation compared
to KTA using only variables present at the time of
transplantation. In the multivariable analysis SPK was adjusted
with only recipient age and recipient sex since many of the other
baseline characteristics are associated to SPK itself. Variables with
p < 0.05 were considered statistically significant. All the infection-
related hospitalizations and bacteremias during the follow-up was
compared with incidence rate ratio since not all SPK patients
fulfilled the 5-year follow-up. The effect of infection-related
hospitalization or bacteremia on patient and kidney graft
survival were studied with Cox’s regression using the first
infection-related hospitalization or bacteremia as time-
dependent variables, adjusted with patient’s age and sex.

RESULTS

Altogether 163 pancreas transplantations were performed
between March 2010 and December 2019 in our institution. In
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total, 161 were SPK patients and two patients received pancreas
after kidney transplantation. One patient with hyperacute
pancreas graft rejection and immediate removal of the graft
was excluded from the analyses resulting in 162 SPK patients
included in the study. For the control group, 153 patients with
end-stage kidney disease (ESKD) due to diabetic nephropathy
who underwent KTA, met the inclusion criteria (recipient and
donor BMI < 30 and age < 60) and were included in the study.
The baseline characteristics of patients are shown in Table 1. The
median follow-up time for SPK patients was 4.7 years (range
0.2–5.0, IQR 3.1–5.0) and for KTA patients 5.0 years (range
0.3–5.0, IQR 5.0–5.0). Altogether 84 patients of the SPK
patients fulfilled the 5-year follow-up (unless died or lost their
kidney graft) and 78 patients had a follow-up time varying from
two-to-five years.

All SPK patients received tacrolimus-based
immunosuppression and ATG induction. Among KTA
patients, 128 (84%) were initially on cyclosporine and 25
(16%) on tacrolimus. Altogether 6 (4%) KTA patients received
induction therapy with basiliximab and 147 (96%) did not receive
any induction therapy. In KTA patients on cyclosporine, the
mean trough level at three and 12 months was 169 ± SD 42 ug/L
and 120 ± SD 32 ug/L, respectively. In SPK patients, mean
tacrolimus trough level was 11.6 ± SD 3.4 ug/L at 3 months
and 9.3 ± SD 2.4 ug/L at 12 months post-transplantation.

TABLE 1 | Baseline characteristics of all the patients included in the study
(n = 315).

Patient characteristics SPK (n = 162) KTA (n = 153) p-value

Recipient age (years) 42.6 ± 8.1 45.3 ± 8.5 0.004
Recipient male sex (%) 108/163 (67) 101/153 (66) 0.91
Recipient BMI 24.2 ± 3.2 24.5 ± 3.1 0.39
Donor age (years) 38.5 ± 13.6 44.4 ± 13.1 <0.001
Donor male sex (%) 83/162 (51) 80/153 (52) 0.91
Donor BMI 23.6 ± 2.9 24.1 ± 2.9 0.09
Kidney cold ischemia time (min) 573 ± 124 1,298 ± 222 <0.001
Time in dialysis (months) 15.0 ± 11.3 29.5 ± 18.2 <0.001
Diabetes duration (years) 33.1 ± 8.2 33 ± 8.4 0.88
HLA-AB-mismatch 2.65 ± 0.9 1.65 ± 0.9 <0.001
HLA-DR-mismatch 1.49 ± 0.6 0.62 ± 0.5 <0.001
CMV D+/R− (%) 40/162 (25) 28/153 (18) 0.17
Hemodialysis before tx (%) 68/162 (42) 66/153 (43) 0.91
Peritoneal dialysis before tx (%) 88/162 (54) 85/153 (56) 0.91
Preemptive (%) 6/162 (4) 2/153 (1) 0.28
Kidney DGF (%) 18/162 (11) 40/153 (26) <0.001
Rejection treatment (%) 53/162 (33) 26/153 (17) 0.002
Relaparotomy (%) 37/162 (23) 2/153 (1) <0.001
Creatinine 1 year (mg/dL)a 1.3 ± 0.8 1.2 ± 0.4 0.48
Creatinine 5 years (mg/dL)b 1.2 ± 0.5 1.43 ± 0.63 0.04

All values presented as mean ± standard deviation unless otherwise noted. BMI, body
max index; CMV, cytomegalovirus; D+/R−, pre-transplant donor seropositive/recipient
seronegative to CMV; DGF, delayed graft function.
aData available in 156/162 SPK patients and 129/153 KTA patients.
bData available in 73/162 SPK patients and 122/153 KTA patients.

FIGURE 1 | First infection-related hospitalization during 5 years after transplantation between SPK (simultaneous pancreas-kidney transplantation) and KTA
(kidney transplantation alone) patients, p = 0.87.
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Infection-Related Hospitalizations and
Bacteremias After Transplantation
The first infection-related hospitalization during 5-year follow-up
time occurred earlier and mostly during the first year in SPK
patients, whereas in KTA patients the first infection-related
hospitalizations occurred later during follow-up (Figure 1).
During the first year after transplantation, SPK patients had
0.54 infection-related hospitalizations/person year and KTA
patients 0.31 infection-related hospitalizations/person year
with an incidence rate ratio of 1.76 (95% CI 1.2211–2.5672,
p = <0.001). During 5 years after transplantation, SPK patients
and KTA patients had both 0.18 infection-related

hospitalizations/person year, with an incidence rate ratio of
1.00 (95% CI 0.7971–1.3348, p = 0.81).

Figure 2 depicts the first bacteremia during 5 years after
transplantation between the groups. In SPK patients, the
majority of bacteremias occurred during the first year while in
KTA patients the first bacteremias occurred mainly after the first
year and were divided more constantly for the following years.
During the first year after transplantation, SPK patients had
altogether 0.11 bacteremias/person year and KTA patients
0.01 bacteremias/person year with an incidence rate ratio of
17.12 (95% CI 2.704–713.40, p = <0.001). During 5 years after
transplantation SPK patients had 0.034 bacteremias/person year

FIGURE 2 | First bacteremia during 5 years after transplantation between SPK (simultaneous pancreas-kidney transplantation) and KTA (kidney transplantation
alone) patients, p = 0.12.

TABLE 2 | Site of all the infection-related hospitalizations in SPK (simultaneous
pancreas-kidney transplantation) and KTA (kidney transplantation alone)
patients during 5 years after transplantation.

SPK 120 episodes KTA 143 episodes

Skin and soft tissue (%) 17/120 (14) 24/143 (17)
GI (%) 24/120 (20) 29/143 (20)
Pulmonary (%) 10/120 (8) 37/143 (26)
UTI (%) 18/120 (15) 9/143 (6)
Unspecified (%) 19/120 (16) 16/143 (11)
Bacteremia (%) 22/120 (18) 15/143 (11)
CMV (%) 10/120 (8) 13/143 (9)

GI, gastrointestinal; UTI, urinary tract infection; CMV, cytomegalovirus.

TABLE 3 |All pathogens for bacteremia in SPK and KTA patients during the 5-year
follow-up.

SPK (22 episodes) KTA (15 episodes)

Escherichia Coli 8 Escherichia Coli 5
Staphylococcus Aureus 6 Staphylococcus Aureus 4
Enterococcus Cloacae Pseudomonas 2
Klebsiella Pneumoniae Klebsiella Pneumoniae 2
Staphylococcus heamolyticus Unspecified pathogen 2
Pseudomonas
Candida Albicans
Enterobacter species
Enterococcus feacium
Candica Glabrata
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and KTA patients 0.017 bacteremias/person year with an
incidence rate ratio of 1.89 (95% CI 0.9052–4.059, p = 0.07).

Site of Infections
The site of all the infections during the 5-year follow-up,
including patients with multiple infection episodes, are shown
in Table 2. In the SPK group, the most frequent cause of
infection-related hospitalization were gastrointestinal infections
(24 episodes, 20%) and bacteremias (22 episodes, 18%). From the
gastrointestinal infections, the most common cause was
Clostridioides difficile infection (nine episodes, 38%). One
patient had persistent Clostridioides difficile enteritis and was
admitted four times and finally treated with bezlotoxumab.
Norovirus gastroenteritis accounted for 25% of the cases (six
episodes). Three patients suffered from prolonged norovirus
gastroenteritis and two of these patients received treatment
with nitazoxanide. Altogether 25% of the gastrointestinal
infections (six episodes) were of unknown etiology. Pulmonary
infection in SPK (10 episodes, 8%) were mainly bacterial
pneumonias with unknown pathogen. Urinary tract infections
(UTI) in SPK patients (18 episodes, 15%) were mainly caused by
Escherichia Coli and Klebsiella pnemoniae.

In the KTA group, pulmonary infections (37 episodes, 26%)
were the most common cause for hospitalization and the majority
were bacterial pneumonias and unspecified bronchitises.

Gastrointestinal infections were the second most common site
of infection (29 episodes, 20%) with the majority of unknown
etiology. Hospitalization due to UTI was only 6% (9 episodes),
with Escherichia Coli the main pathogen.

All the pathogens causing bacteremia are listed in Table 3, in
both groups, the most common pathogens causing bacteremia
were Staphylococcus aureus and Escherichia coli.

The Outcome in SPK and KTAWith Infection
Related Hospitalization or Bacteremia
Infection-related hospitalization was not related to worse patient
or kidney graft survival compared to patients without infection-
related hospitalization in 5-year follow-up in either group
(Supplementary Figures S1A–D). However, in both groups,
bacteremia was associated with both inferior kidney graft and
patient survival (Supplementary Figures S2A–D).

Risk Factor Analysis
The results of univariable and multivariable analyses of risk
factors associated with infection-hospitalization and
bacteremia during the first year after transplantation are
shown in Tables 4, 5, respectively. In the univariable analysis
for infection-related hospitalization, no significant risk factors
were found. When adjusted with recipient age and sex in the
multivariable model, SPK was identified as a risk factor for
infection-related hospitalization during the first year after
transplantation. In addition, SPK was a risk factor for
bacteremia in both univariable and multivariable models
during the first year after transplantation.

In the 5-year risk analysis for infection-related hospitalization
and bacteremia, SPK was not a risk factor in the univariable
analysis or when adjusted with recipient age and sex. Donor age
was found to be a risk factor for bacteremia in the univariable
analysis (Supplementary Tables S1, S2).

Mortality and Graft Survival
Altogether 7/162 (3.7%) SPK patients died during follow-up with
functioning grafts. Three of these deaths were considered infection-
related, one patient died from pulmonary embolism 8months post-
transplantation after being treated for bacteremia, one patient died
from complicated atypical mycobacterial infection combined with
pancreatitis of the patient’s native pancreas 4 months after
transplantation, and one patient died due to Fournier’s gangrene
and septic shock 10months after transplantation.

In addition, altogether six patients experienced pancreas graft
failure during follow-up and the death-censored 5-year pancreas
graft survival was 96.3% Five pancreas grafts were removed
during follow-up and four of these were removed during the
first 3 months due to persistent intra-abdominal fungal
infections. One patient with severe leukopenia had recurrent
infections and was diagnosed with necrotic ulcer in the bowel.
This progressed into septic fungal infection and pancreas graft
had to be removed 9 months after transplantation. In addition,
one patient had pancreas graft failure without known reason
32 months after transplantation and returned to full-dose
insulin treatment.

TABLE 4 | Hazard Ratios (HR) with 95% confidence intervals by Cox’s regression
of the risk factors for infection-related hospitalization during the first year after
transplantation.

Univariable (95 % CI) Multivariable (95 % CI)

SPK vs. KTA 1.5 (1.0–2.4), p = 0.06 1.6 (1.0–2.5), p = 0.04
Recipient age 1.0 (1.0–1.0), p = 0.34 1.0 (1.0–1.0), p = 0.2
Recipient male sex 1.0 (0.6–1.5), p = 0.90 0.9 (0.6–1.5), p = 0.77
Recipient BMI 1.0 (0.9–1.1), p = 0.61
Donor age 1.0 (1.0–1.0), p = 0.28
Donor male sex 0.9 (0.6–1.3), p = 0.47
Time in dialysis 1.0 (1.0–1.0), p = 0.14
Diabetes duration 1.0 (1.0–1.0), p = 0.98
DGF (kidney) 1.6 (1.0–2.7), p = 0.06

BMI, body max index; DGF, delayed graft function; SPK simultaneous pancreas-kidney
transplantation; KTA, kidney transplantation alone.

TABLE 5 | Hazard Ratios (HR) with 95% confidence intervals by Cox’s regression
of the risk factors for bacteremia during the first year after transplantation.

Univariable (95 % CI) Multivariable (95 % CI)

SPK vs. KTA 13.8 (1.8–104.7), p = 0.01 16.3 (2.1–125.1), p = 0.01
Recipient age 1.0 (1.0–1.1), p = 0.32 1.1 (1.0–1.1), p = 0.1
Recipient male sex 0.6 (0.2–1.6), p = 0.27 0.5 (0.2–1.4), p = 0.2
Recipient BMI 1.0 (0.8–1.2), p = 0.92
Donor age 1.0 (1.0–1.1), p = 0.18
Donor male sex 1.1 (0.4–2.9), p = 0.91
Time in dialysis 1.0 (0.9–1.0), p = 0.09
Diabetes duration 1.1 (1.0–1.1), p = 0.11
DGF (kidney) 1.1 (0.3–3.9), p = 0.90

BMI, body max index; DGF, delayed graft function; SPK simultaneous pancreas-kidney
transplantation; KTA, kidney transplantation alone.
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Furthermore, four patients had deteriorated pancreas function
and required insulin treatment despite detectable C-peptide
concentration. Also, 13 patients developed insulin-resistance
during follow-up and required oral hypoglycemic therapy. In
patients with SPK, all kidney grafts were functioning at the end of
the follow-up.

In the KTA group, 12/153 (8.5%) patients died during the 5-
year follow-up. Only 1/13 of the deaths was considered as
infection-related, a patient who died from urosepsis 44 months
after transplantation. In addition, seven patients returned to
dialysis during follow-up. The earliest return to dialysis
occurred 2 years 4 months after transplantation.

No differences were observed in patient survival between
groups during 1- or 5-year follow-up between SPK and KTA
patients (Figure 3). However, at the end of the 5-year follow-up,
kidney graft survival was lower in KTA patients compared to SPK
patients (Figure 4).

DISCUSSION

Our study showed that the risk of infection-related
hospitalizations and bacteremias concentrates especially to the
first post-transplant year after SPK and is higher compared to
KTA patients with type 1 diabetes. However, during longer
follow-up the risk of infections declines in SPK patients

whereas in KTA patients, the infection-related hospitalizations,
mainly due to community acquired infections, become
increasingly common.

Previous studies have indicated that the incidence of infections
has been high during the early post-transplant phase in SPK patients,
but the risk of infections seems to decline in the long run [20, 21].
Similarly, our study showed thatmajority of first infections requiring
hospitalization occurred during the first year after transplantation in
SPK patients. In a study comparing the rate of sepsis in SPK and
KTA patients, SPK patients showed higher incidence and an earlier
onset of sepsis compared to KTA patients [22], which also is in line
with our results even though we excluded early infections during the
primary admission and focused on the later posttransplant course.
Of note, in our study we specifically compared SPK patients only
with KTA patients with type 1 diabetes, whereas previous studies
have used KTA patients from all ESKD etiologies as controls.

When assessing the site of infections, gastrointestinal
infections were the most common reasons for hospitalization
in SPK patients, and the second most common reason in the KTA
group. In SPK patients, the majority of identified pathogens were
Clostridioides difficile and norovirus. Overall, the high risk of
gastrointestinal infections in SPK patients may be related to
surgery involving the bowel, and Clostridioides difficile
infections to ATG induction therapy and longer prophylactic
antibiotic treatment. In previous study, age older than 55 years,
transplant other than kidney transplantation alone, and ATG

FIGURE 3 | Patient survival during 5 years after transplantation between SPK (simultaneous pancreas-kidney transplantation) and KTA (kidney transplantation
alone) patients, p = 0.32.
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induction were associated with higher risk of Clostridioides
difficile associated diarrhea in SOT patients [23]. Pneumonia
or infection of the upper respiratory tract was the most common
reason for hospitalization in KTA patients accounting for 26% of
all hospitalizations. In a large multicenter study in SOT
recipients, pneumonia was similarly a frequent complication
after transplantation, and among renal transplant recipients
over half of the cases occurred later (>6 months) after
transplantation [24]. The low incidence of infection-related
hospitalizations due to UTIs in our study is probably due to
the fact that bacteremias that were derived from the urinary tract
were classified as bacteremias not as UTIs. In addition, as this
study focused only on the infection-related hospitalizations, it
does not provide information about the overall risk of UTIs after
transplantation.

In risk factor analysis, SPK was found to be a risk factor for
infection-related hospitalizations and bacteremia during the first
year after transplantation but no longer during the 5-year follow-
up compared to KTA patients. This suggests that stronger
immunosuppression and the use of lymphocyte-depleting
agents predisposes SPK patients to infections especially during
the first year after transplantation. In addition, the higher rate of
relaparotomy and rejection after SPK is a possible explanation for
the higher infection risk. Female sex was a near-significant risk
factor for bacteremia, the association of recipient female sex and
bacteremia has been shown in a previous large cohort study in

kidney transplant recipients and is most likely relates to the
increased risk for urinary tract infections [25].

According to the U.S. Renal Data System Annual Data Report,
sepsis was one of the most commonly known cause of mortality
among kidney transplant recipients, in addition to cardiovascular
causes andmalignancies [26]. In our study, bacteremia was associated
with inferior kidney graft and patient survival in both groups.

When comparing overall patient and kidney graft survival
between groups, no difference was detected in patient survival.
However, kidney graft survival was inferior in KTA group during
5-year follow-up, as none of the SPK patients alive at the end of
the follow-up lost their kidney transplant. These excellent results
of kidney graft outcome in SPK patients were also demonstrated
by the recent OPTN/SRTR Annual Data Report on pancreas
transplantation [27]. In our patients, five pancreas grafts had to be
removed and four of these graft removals were due to persistent
intra-abdominal fungal infections, emphasizing the high risk of
graft loss related to fungal infections in SOT patients [28].

Our study had some limitations of note and the most
important limitation to our study is the difference in
immunosuppression between the groups. All SPK patients
received lymphocyte-depleting induction and tacrolimus-based
immunosuppression which probably explains the higher risk of
infections during the first post-transplant year. Despite this, the
risk of infections seems to be similar during the first 5 years
suggesting that improved glycemic control in SPK patients could

FIGURE 4 |Kidney graft survival during 5 years after transplantation between SPK (simultaneous pancreas-kidney transplantation) and KTA (kidney transplantation
alone) patients, p = 0.04.
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protect SPK patients from infectious risks. Second, this was a
single center study as our center is the only transplant center in
Finland, and results may not be comparable to other populations.
Third, KTA patients were selected by the recipient and donor
BMI and age criteria, similar to the criteria used for SPK patients
in our center, from a time period of 2004–2009 when SPK was not
performed in Finland, or during the early years of SPK
transplantation in 2010–2013, when the activity was very low.
Our baseline assumption was that during later years, these
patients could have been considered for SPK. Baseline
characteristics were relatively similar between the groups
regarding diabetes duration and BMI, although SPK patients
were slightly younger and had shorter waiting time to
transplantation, and therefore shorter exposure to
pretransplant dialysis treatment. There were also differences in
HLA mismatch, cold ischemia time, and prophylactic antibiotic
regimens between the groups, resulting in possible bias in our
findings. We acknowledge that there might be also other
unmeasured factors, associated with either the type of
transplantation, or the era of transplantation, that could
confound our findings. Also, the extension of the CMV
prophylaxis criteria in SPK patients in 2019 that may have
decreased the hospitalizations caused by CMV. In addition,
not all the SPK patients fulfilled the 5-year follow-up, limiting
our possibilities to compare infection-related hospitalizations
during the whole study period.

In conclusion, simultaneous pancreas-kidney transplantation
(SPK) patients are at greater risk for infection-related
hospitalizations and bacteremias compared to kidney
transplantation alone (KTA) patients with type 1 diabetes
during the first year after transplantation, which may be
associated with the use of stronger immunosuppression and
lymphocyte-depleting induction in simultaneous pancreas-
kidney transplantation, and this should be taken account
during pretransplant evaluation for candidacy. However,
during longer follow-up, the risk of infection-related
hospitalizations was similar between SPK patients and KTA
patients, suggesting that the relative risk of infections after the
first posttransplant year is lower among SPK patients.
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Solid organ transplant (SOT) recipients have a higher risk of developing invasive mould
diseases (IMD). Isavuconazole is a novel broad-spectrum azole active against Aspergillus
spp. and Mucor, well tolerated, with an excellent bioavailability and predictable
pharmacokinetics, that penetrates in most tissues rapidly, and has few serious adverse
effects, including hepatic toxicity. Contrary to other broad-spectrum azoles, such as
voriconazole and posaconazole, isavuconazole appears to show significant smaller drug-
drug interactions with anticalcineurin drugs.We have performed an extensive literature review
of the experience with the use of isavuconazole in SOT, which included the SOTIS and the
ISASOT studies, and published case reports. More than 140 SOT recipients treated with
isavuconazole for IMD were included. Most patients were lung and kidney recipients treated
for an Aspergillus infection. Isavuconazole was well tolerated (less than 10% of patients
required treatment discontinuation). The clinical responses appeared comparable to that
found in other high-risk patient populations. Drug-drug interactions with immunosuppressive
agents were manageable after the reduction of tacrolimus and the adjustment of mTOR
inhibitors at the beginning of treatment. In conclusion, isavuconazole appears to be a
reasonable option for the treatment of IMD in SOT. More clinical studies are warranted.

Keywords: isavuconazole, solid organ transplantation, invasive mould disease, invasive fungal infections, invasive
aspergillosis

INTRODUCTION

Solid organ transplant (SOT) recipients have a significant high risk of developing invasive mould
diseases (IMD) due to the impact of the immunosuppressive drugs on the patient’s immune
response [1]. IMD in SOT are mainly caused by Aspergillus spp., followed by mucormycosis
(zygomycosis), Fusarium, Scedosporium, and by dematiaceous fungi (dark molds) [2]. Lung
transplant recipients have a higher risk for developing invasive aspergillosis (IA)
(tracheobronchitis and pulmonary aspergillosis [IPA]) due to specific characteristics related
to this transplant: higher rate of pre-transplant colonization, airway ischemia, impaired ciliary
function, blunted cough reflex, and denervation injury [3]. Other known risk factors for IMD are
post-transplantation renal replacement treatment, cytomegalovirus infection, treatment for
acute rejection, mechanical ventilation, extracorporeal membrane oxygenation (ECMO), and
liver re-transplantation or transplantation due to fulminant hepatic failure [4, 5]. The morbidity
and mortality associated with these infections is extremely high. In most cases, diagnosis is made
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after invasive procedures, and treatment usually requires a
prompt and multidisciplinary treatment, requiring surgical
resection of the infection site in some cases [6].

The treatment of choice for IA is voriconazole [7, 8], but the
potential hepatotoxicity associated to the drug, as well as its
inhibition of cytochrome CYP3A4 and the consequent elevation
of serum levels of immunosuppressive drugs (tacrolimus,
cyclosporine, and sirolimus/everolimus), makes its use
problematic in SOT recipients [9]. Liposomal amphotericin B
is the antifungal of choice for the treatment of mucormycosis,
while posaconazole is used as a second-line drug [10]. However,
the increased risk of nephrotoxicity associated with amphotericin
B [11] and the interactions between posaconazole and
immunosuppressive drugs [12], entails that the administration
of these antifungals in SOT is not without risk.

Isavuconazole (Cresemba®; Pfizer, New York City,
United States) is the drug most recently incorporated into the
azoles. The drug shows predictable pharmacokinetics, good
tolerance and few adverse effects (a low incidence of
gastrointestinal symptoms, headache, peripheral edema, and
dose-dependent shortening of the QT interval have been
described), excellent oral bioavailability and good diffusion to
tissues, including the central nervous system [13]. Moreover, the
intravenous formulation of isavuconazole does not contain the
excipient sulfobutyl ether β-cyclodextrin sodium (SBECD),
which would facilitate its use in patients with moderate or
severe renal insufficiency. Experimental animal studies have
also confirmed the synergistic action between isavuconazole
and micafungin in the treatment of IPA [14].

We have performed an extensive literature review concerning
the use of isavuconazole in SOT, and described the most frequent
side-effects, clinical response and mortality when isavuconazole
was prescribed for the treatment of an IMD.

PATIENTS AND METHODS

We conducted a computer-based PubMed (Medline) search with
the MeSH (Medical Subject Headings) terms “Isavuconazole,”

“Solid Organ Transplantation,” “Infection Fungal Infection” or
“Invasive Mould Disease” to identify published literature between
March 2015 and June 2023 pertaining the clinical use of
isavuconazole in SOT for the treatment of IMD. We searched
for articles written in English language.

We have especially focused on the adjustments made on the
maintenance immunosuppressive regimen during isavuconazole
treatment, the rate of adverse events associated to the antifungal
drug, and the clinical response of the IMD to the treatment with
isavuconazole.

Case reports, and prospective or retrospective clinical studies
which included SOT recipients treated with isavuconazole for an
IMD were considered. Articles for which data could not be
extracted from the published results were not considered.

We have defined “end of follow-up period” as the last follow-
up visit described in the revised articles. “IMD-related mortality”
was defined as all demise which resulted of the IFI for which the
patient was being treated. For prospective or retrospective
clinical studies, IMD-related mortality was determined based
on the rates presented by the authors of the articles. For case
reports, we have carefully reviewed all the clinical cases, and
determine, in case of the patient’s demise, if this was related to
the IMD for which the patient was being treated with
isavuconazole.

Statistical Analysis
Quantitative variables are shown as mean (or median) ± standard
deviation (or interquartile range [IQR]), whereas qualitative
variables are depicted as absolute and relative frequencies. The
statistical analysis was carried out using SPSS v. 23.0 (IBM Corp,
Armonk, NY).

RESULTS

Clinical Characteristics of the Study
Population
We identified 20 studies which included at least one SOT recipient
who received isavuconazole as treatment for an IMD (Figure 1).

FIGURE 1 | Flowchart of the study.
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Overall, 13 studies met the inclusion criteria, including one
prospective observational study which described 53 SOT
recipients treated with isavuconazole for fungal infections [15],
one multicenter retrospective study with 81 SOT recipients with
proven or probable IMD treated with isavuconazole for ≥24 h as
first-line or salvage therapy [16], and eleven case reports [17–27].
One case report was not included as it lackedmost data related to the
transplantation and six studies were excluded as they included both
SOT and patients with hematologic malignancies and stem cell
transplantation. The key features of the included studies are available
in the Supplementary Table S1.

A total of 145 SOT recipients were included (Table 1). Mean age
at diagnosis of IMD was 58.3 ± 2.9 years, and 36.6% of recipients
were female. Lung transplant accounted for 48.3% of recipients,
followed by kidney transplant (24.8%) and liver transplant (13.8%).
Median time from the transplantation and diagnosis of IMD was
174 days (IQR 122–174). The majority of recipients were receiving
corticosteroids (94.5%), tacrolimus (91.0%) and mycophenolate
mofetil/mycophenolate sodium (78.6%) as maintenance
immunosuppressive regimen. Interestingly, 13.8% of patients were
receiving an mTOR inhibitor. Also noteworthy, 40.0% of patients
were receiving anti-mould prophylaxis previous the diagnosis of IFI,
especially nebulized amphotericin B (34.5%) (Table 1).

Clinical Characteristics of the Invasive
Fungal Infections and Efficacy of
Isavuconazole Therapy
The most common IFI in our review was produced by Aspergillus
spp. (82.1%), followed by mucormycosis (9.7%), Alternaria

(2.1%), Lomentospora prolificans (0.7%), Cladophialophora
bantiana (0.7%), Diaporthe spp (0.7%) and Purpureocillium
lilacinus (0.7%) (Table 2). It’s import to mention that up to
four patients (2.8%), who were included in the ISASOT study [15]
and that received treatment with isavuconazole, were diagnosed
with an IFI which was not produced by a mould. The most
common presentation was fungal pneumonia (44.8%) followed
by tracheobronchitis (22.1%). Approximately 8.3% of the patients
presented disseminated fungal infection.

TABLE 1 |Baseline and clinical characteristics of the 145 SOT recipients included.

Recipients included (n = 145)

Age at diagnosis of IMD, mean ± SD, y 58.3 ± 2.9
Female gender, n (%) 53 (36.6)
Type of transplant, n (%)a

Lung transplant 70 (48.3)
Kidney transplant 36 (24.8)
Liver transplant 20 (13.8)
Combined liver-kidney 1 (0.7)
Sequential pancreas after kidney 1 (0.7)
Heart transplant 14 (9.6)
Small bowel/multivisceral 4 (2.8)

Maintenance immunosuppressive regimen, n (%)
Corticosteroids 137 (94.5)
Tacrolimus 132 (91.0)
Cyclosporine 4 (2.8)
MMF/MPS 114 (78.6)
Azathioprine 5 (3.4)
Everolimus 13 (9.0)
Sirolimus 7 (4.8)

Posttransplant complications, n (%)
ECMO 9 (6.2)
COVID-19 infection 13 (9.0)
Use of prophylaxis previous diagnosis, n (%) 58 (40.0)
Echinocandin 8 (5.5)
Nebulized amphotericin B 50 (34.5)

COVID-19, coronavirus disease 2019; ECMO, extracorporeal membrane oxygenation;
MMF/MPS, mycophenolate mofetil/mycophenolate sodium.
aOne recipient received a combined single sequential lung and liver transplantation.

TABLE 2 | Clinical characteristics of the fungal invasive infections.

Recipients included (n = 145)

Time from transplantation to IFI, median (IQR), d 174 (122–174)
Moulds isolated, n (%)a

Aspergillus 119 (82.1)
Mucormycosis 14 (9.7)
Alternaria 3 (2.1)
Lomentospora prolificans 1 (0.7)
Cladophialophora bantiana 1 (0.7)
Diaporthe spp. 1 (0.7)
Purpureocillium lilacinus 1 (0.7)

Type of fungal infectionb

Tracheobronchitis 32 (22.1)
Fungal pneumonia 65 (44.8)
Bronchial anastomotic infection 2 (1.4)
Mycetoma 6 (4.1)
Cutaneous infection 3 (2.1)
Disseminated fungal infection 12 (8.3)
Osteomyelitis 2 (1.4)
Chronic otitis media 1 (0.7)
Rhino-sinusal-cerebral mould infection 3 (2.1)
Primary gastric 2 (1.4)
Primary colonic mucormycosis 1 (0.7)
Primary hepatic IA 1 (0.7)
Primary mediastinal IA 2 (1.4)
Skin and deep soft tissues infection 5 (3.4)
Isolation in donor 2 (1.4)
Post-traumatic wound 1 (0.7)
No proven or probable FI 6 (4.1)

First line-therapy with isavuconazole, n (%) 98 (67.6)
Previous antifungal treatment, n (%)c 47 (32.4)
Reasons to stop previous treatment, n (%)
IV-to-oral switch and avoiding interactions 14 (9.6)
No previous clinical response 11 (7.6)
Switch according to antifungal susceptibility 4 (2.8)
Adverse events with previous treatment 17 (11.7)

Clinical response at last clinic follow-up visitd 80 (55.2)
All-cause mortality at last clinic follow-up visitd 52 (35.9)
IFI-related mortalitye 23 (15.9)

IA, invasive aspergilosis; IFI, infection fungal infection; IQR, interquartile range.
aFour SOT, recipients received isavuconazole for an IFI, which was produced by a yeast,
whereas in one case, isavuconazole was prescribed for an unidentified new mould
species.
bOne patient in the ISASOT study was treated for a fungal tracheobronchitis and a
subcutaneous infection at the same time.
cIsavuconazole was added to an ongoing lipid complex amphotericin therapy in
1 recipient.
dIn the ISASOT study the last follow-up visit was performed 90 days after the end of
treatment, whereas in the SOTIS, study the clinical response was evaluated 12 weeks
after the initiation of isavuconazole. In the case reports, follow-up spanned from 45 days
to 12 months.
e2 patients died from a fungal pneumonia, 1 from a disseminated aspergillosis, 1 from a
disseminated mucormycosis and 1 from a disseminated C. bantiana infection, with
central nervous system involvement. Detailed data of the 18 cases of IFI-related mortality
included in the SOTIS study was not available.

Transplant International | Published by Frontiers December 2023 | Volume 36 | Article 118453

Silva et al. Isavuconazole in SOT for IMD

120



Isavuconazole was prescribed as first line-therapy in 67.6% of
recipients, whereas 32.4% of patients had already started an
antifungal treatment. The most common reasons to perform a
change to isavuconazole were adverse events associated with the
first antifungal drug (11.7%), intravenous-to-oral switch and
avoid interactions (9.6%), and absence of a clinical response
(7.6%). In a specific patient, isavuconazole was added to
liposomal amphotericin B as treatment for a mucormycosis.

At the last clinic follow-up visit, approximately 55.2% of
patients presented a clinical response to the isavuconazole
treatment (Table 2). All-cause mortality and IMD-related
mortality was available in all of the 13 included studies.
Overall, the all-cause mortality was of 35.9%, with an IFI-
related mortality of 15.9%.

Safety Outcomes
Approximately 29.7% of patients were diagnosed with an
isavuconazole-related adverse event (Table 3). The most
common adverse events were liver enzyme elevation (18.6%),
myopathy (5.5%) and nausea and vomiting (4.1%). No cases of
QT shortening were diagnosed. Noteworthy, only 9.0% of
patients required premature discontinuation of isavuconazole
due to an adverse event (Table 3).

Dose Adjustment and TDM of
Immunosuppressive Agents
Tacrolimus was adjusted in 99 of the 132 patients who were
receiving the immunosuppressive drug (75.0%) (Table 4). mTOR
inhibitors were adjusted in 60% of patients who were receiving
these immunosuppressors (Table 4). A total of 14 recipients were
able to concomitantly receive an mTOR inhibitor and
isavuconazole.

DISCUSSION

We have performed an extensive literature review which included
a total of 145 SOT recipients treated with isavuconazole for an
IMD. We observed that isavuconazole appeared to be well-
tolerated, and that interactions between isavuconazole and the
immunosuppressive drugs were manageable. Clinical responses
were also similar to that found in other high-risk patient
populations.

Isavuconazole was recently approved for the treatment of IA
and mucormycosis based in two pivotal trials. In the SECURE
trial, a phase 3, double-blind, global multicentre, comparative-
group study, patients with suspected invasive mould disease were
randomized to receive isavuconazole or voriconazole [28]. A total
of 532 patients were enrolled, with 258 patients in each arm. The
authors concluded that isavuconazole was non-inferior to
voriconazole for the primary treatment of suspected invasive
mould disease, and that was better tolerated when compared with
voriconazole, with fewer drug-related adverse events (42% vs.
60%, p < 0.001) [28]. In the VITAL trial, 37 patients diagnosed
with mucormycosis were treated with isavuconazole for a median
of 84 days [29]. Patients were matched with up to three
contemporaneous FungiScope patients who had received a
primary amphotericin B-based treatment for proven or
probable mucormycosis. The authors concluded that
isavuconazole was active as primary or secondary treatment
(refractory or intolerant to other antifungals), with an overall
end-of-treatment complete and partial response similar to those
associated with liposomal amphotericin B [29]. Interestingly,
isavuconazole showed a significantly fewer hepatobiliary
adverse events than voriconazole in the SECURE trial (9% vs.
16%, p = 0.016), and in the VITAL study less than 10% of enrolled
patients experienced an increase in the liver enzymes [28, 29].
Unfortunately, data was still extremely scarce in SOT, since SOT
recipients were not included in the SECURE trial, and only one
SOT recipient was included in the VITAL trial.

This review included more than 140 SOT patients who
received isavuconazole as treatment for an IMD. We have
especially addressed clinical response, adverse events and
drug-drug interactions.

Although effectiveness was not the main objective of the
reviewed studies, we have calculated a clinical response and an
all-cause mortality at last clinic follow-up of 55.2% and 35.9%,
respectively, and an IFI-related mortality of 15.9%. Our results
are similar to other published studies in which SOT recipients
were primarily treated with other antifungal drugs. A recently

TABLE 3 | Isavuconazole-related adverse events.

Recipients included (n =
145)a

Total number of patients with TEAE, n (%) 43 (29.7)
Type of TEAE, n (%)
Liver enzyme elevation 27 (18.6)
Myopathy 8 (5.5)
Nausea and vomiting 6 (4.1)
Neurologic or visual disturbances 4 (2.8)
Fatigue 3 (2.1)
Diarrhea 3 (2.1)
Electrolyte disturbance 1 (0.7)
Weight loss 1 (0.7)
Hyporexia 1 (0.7)
Acute renal failure 1 (0.7)
Sinus tachycardia 1 (0.7)
Tacrolimus overdose 1 (0.7)

TEAE requiring premature discontinuation of
isavuconazole, n (%)a

13 (9.0)

TEAE, treatment-emergent adverse event.
aIsavuconazole was stopped due to hepatoxicity (4 recipients), gastrointestinal
disturbances (3 patients), fatigue (2 cases), myopathy (2 patients), neurological adverse
event (1 patient) and due to an isavuconazole-induced diarrhea, which promoted
tacrolimus overdose and acute renal failure, followed by multiple episodes of sinus
tachycardia (1 recipient).

TABLE 4 | Dose adjustments of tacrolimus and mTOR inhibitor agents after
initiating isavuconazole.

Recipients included (n = 145)

Tacrolimus, n (%)
Any dose adjustment, n (%) 99/132 (75.0)

mTOR inhibitor
Any dose adjustment, n (%) 12/20 (60.0)a

aIn six patients, the mTOR inhibitor was withdrawn, whereas in six recipients the dose of
the immunosuppressive drugs was decreased.
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published Spanish cohort study (Diaspersot study), which included
85 (67.4%) SOT recipients with IAmostly treated with voriconazole
reported a clinical improvement of 54.6%, a global mortality of
34.1% and an attributed mortality of 24.6% at the third month of
diagnosis [30]. The Swiss Transplantation Cohort Study, which
included 70 patients diagnosed with probable and proven IA that
were treated with antifungal drugs different than isavuconazole,
described a mortality rate of 22.9% at the third month of IA
diagnosis [31]. Finally, a multinational study which included
112 KT recipients diagnosed with pulmonary IA, who were also
treated with antifungal drugs different than isavuconazole, reported
that 39.3% of patients had died by the third month of diagnosis, a
mortality rate similar to the found by us [32].

The rate of isavuconazole-related side effects and the rate of
isavuconazole-emergent adverse events which required
permanent discontinuation of treatment in our review was in
line with the SECURE trial (29.7% vs. 42%, and 9.0% vs. 14%,
respectively) [28]. Moreover, the Diaspersot study reported that
of the 85 recipients treated with voriconazole, 30 (35.3%)
presented some degree of toxicity and 13 (15.3%) required a
premature discontinuation of the triazole [30]. These results
indicate that isavuconazole could be associated with a lower
rate of drug-induced toxicity in SOT recipients than
voriconazole (29.7% vs 35.3% and 9.0% vs 15.3%,
respectively). Finally, patients in the ISASOT study, who
required discontinuation of voriconazole due to adverse events
were able to continue treatment with isavuconazole [15].
Therefore, the rate of isavuconazole-related adverse events and
the rate of permanent discontinuation of the drug seems to be
considerably lower in SOT when compared to voriconazole.

In most patients, the daily dose of tacrolimus was lowered at the
beginning of therapy and increased after isavuconazole
discontinuation. Afterwards, tacrolimus was managed according
to the plasmatic levels’ during the treatment. Some patients
receiving mTOR inhibitors at the beginning of isavuconazole
were also able to maintain the immunosuppressive drug, with an
overall good tolerance. Based on our review, drug–drug interactions
between isavuconazole and immunosuppressive agents appear to be
reasonably manageable in the daily clinical practice. These results
are in line with previously published studies which concluded that
the degree of interactions between isavuconazole and
immunosuppressive agents is smaller than that reported for
other triazole antifungal agents [33], and that, because of
significant interpatient variability and between each type of SOT,
therapeutic drug monitoring (TDM) of the immunosuppressive
drugs is recommend in guiding the drug dosing [34].

There are some limitations of this study that have to be taken
into account. As we have previously mentioned, both the SOTIS
and the ISASOT studies did not include a parallel comparator
group which was treated with a different antifungal drug.
Moreover, the ISASOT study included a significant high
number of lung transplant recipients (83.0%), who were
treated with isavuconazole for a fungal tracheobronchitis (25/
53 [47.1%]). It would also have been interesting to determine the
rate of combined treatment used in these studies; unfortunately,
these data were not fully available. The length of the follow-up
was also different in both the studies and in the case reports, and

the total duration of the isavuconazole treatment was not
described in some of the case reports. Unfortunately, TDM of
isavuconazole was only available in eight patients (5.5%).
Interestingly, one patient, after a month of therapy, presented
isavuconazole trough levels below the therapeutic range. It was
decided to increase the daily dose of isavuconazole to 200 mg
every 12 h. Isavuconazole blood levels arose to therapeutic range
afterwards [16]. Another patient with isavuconazole trough levels
of 7.2 mg/L, required the withdraw of the antifungal drug due to
multiple side effects [19]. Two retrospective studies which
included 55 and 26 SOT recipients that received isavuconazole
as prophylaxis, and had TDM performed for both isavuconazole
and tacrolimus, concluded that the interaction between these
drugs was more significant after liver transplantation, that the
impact of isavuconazole on tacrolimus levels varied between
individuals and that a moderate interpatient variability in
isavuconazole pharmacokinetic parameters could be observed
[35, 36]. It should be remarked that, nowadays, isavuconazole
TDM is especially recommended in patients who are
unresponsive to treatment, who have unexpected toxicity or
possible drug-drug interactions, or if the infection is produced
by a mould with elevated minimum inhibitory concentration
(MIC) or is located in sanctuary sites such as the central nervous
system (CNS) [8]. The strength of our study lies in the fact that it
describes the majority of published cases using isavuconazole in
SOT for the treatment of IMD, including its use in patients with
non-Aspergillus spp. fungal infections, such as Alternaria,
Lomentospora and mucormycosis.

In conclusion, isavuconazole appears to be a well-tolerated
drug in SOT recipients, with clinical responses comparable to that
found in other high-risk patient populations, and manageable
drug–drug interactions, even with calcineurin and mTOR
inhibitors. We consider that isavuconazole could be also an
acceptable option in non-Aspergillus infections in SOT
recipients. More future prospective studies are warranted.
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Expected and unexpected donor-derived infections are a rare complication of solid organ
transplantation, but can result in significant morbidity and mortality. Over the last years, the
growing gap existing between patients on the waiting list and available organs has favored
the use of organs from donors with suspected or confirmed infections, thanks to the
improvement of risk mitigation strategies against transmission of well recognized and
emerging infections. Given the recent developments, the particular interest of this review is
to summarize data on how to maximize utilization of HIV+ donors in HIV+ recipients, the
use of HCV-viremic donors and HBV positive donors. This article also covers the
implications for recipient of organs from donors with bacteremia and the challenge of
multidrug resistant (MDR) infections. Lastly this review describes emerging risks
associated with recent Coronavirus Disease-2019 (COVID-19) pandemics.

Keywords: donor derived infections, emerging pathogens, HIV, hepatitis, SARS-CoV-2, bacteremia,
multidrug resistant

INTRODUCTION

Expected and unexpected donor-derived infections (DDI) remain an inherent risk of solid organ
transplant (SOT) and are associated with significant morbidity andmortality, especially in the setting
of parasitic and fungal diseases [1, 2].

The mitigation risk process for DDIs is based on the prevention of the transmission of infections
with SOT with adequate safety simultaneously decreasing organ discard [3]. This complex
methodological approach needs to adapt continuously to the changing landscape of infectious
disease and the emerging evidence of new therapeutic and preventive options [4, 5]. While it is not an
exhaustive list of potential pathogens impacting donors, the conditions demonstrate different
approach to donor-derived disease mitigation. The aim of this review is to provide an update on
DDIs to maximize organ utilization.
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HEPATITIS B POSITIVE DONORS

The availability of effective antivirals with low risk of developing
drug resistance and hepatitis B (HBV) vaccination have changed
the epidemiology of HBV. All organ transplant candidates who
are nonimmune to the virus, based on serologic testing, should be
vaccinated against HBV infection. Active immunization against
HBV in transplant candidates should be strongly encouraged not
only because of the expected acquisition of protection against
HBV, but also because it might allow the use of organs from
HBV-positive donors [6]. Reducing the incidence of the disease
has significantly reduced the carrier rates, HBV-related mortality
(mainly due to cirrhosis and hepatocellular carcinoma) and the
need for liver transplantation, allowing to expand the donor pool
without impairing transplant outcomes [7–9].

Organ donors should be screened for serological evidence of
HBV infection with chemiluminescence immunoassay (CLIA)

techniques for HBV surface antigen (HBsAg) and core antigen
antibodies (anti-HBc). In addition, nonstandard risk donors and
donors with positive screening (HBsAg+ or anti-HBc+) should be
screened for HBV infection by nucleic acid testing (NAT)
(Table 1) (Figure 1) [10–12]. Of note that HBV antibody
screening assays may not be reactive during the serologic
window period (≈44 days), and NAT may also fail to detect
the pathogen in the blood or plasma during the eclipse phase
(≈20–22 days for HBV) [13].

All cases with potential risk of HBV transmission should be
discussed with an expert [7, 14]. The most robust evidence on the
risk of potential HBV transmission and related outcomes are with
liver and kidney transplant, with very limited experience with
thoracic transplant [7–9, 15, 16]. There is a lack of standardized
antiviral prophylaxis and long term follow up.

The risk of transmission is well documented in donors with
positive HBsAg (range 0.5%–7%) [17]. Transplantation from an
HBsAg+ donor can be performed to an HBsAg+ recipient or with
reactive surface antigen (anti-HBs) antibodies (HBsAb
titer ≥10 IU/mL) as a result of immunization or natural
infection [18]. Transplantation of organs from an HBsAg+ to
naïve unvaccinated patients (HBsAg negative and anti-HBs-
negative recipient) is usually not recommended except in the
setting of emergency transplantation or in HBV hyperendemic
geographical areas. However, transplanting organs from HBsAg+
donors to naïve vaccinated or unvaccinated patients, with human
immunoglobulin against HBsAg (HBV-Ig) and antiviral
prophylaxis is currently allowed by the Italian guidelines,
based on positive preliminary experience [8, 10]. Transplant
recipients of HBsAg+ organs should receive HBV-Ig, starting
in the intraoperative phase, plus a high barrier nucleos(t)ide
analogue (NA) regardless of the immune status, whose duration
may significantly vary depending on local center protocols, the
transplanted organ (with shorter duration for non-liver
recipients), the presence of coinfections (HIV, HDV). Figure 2
summarizes expert opinion recommendations. High barrier NAs
have proven to be highly effective, with a successfully suppression
of viral replication for the long term with minimal risk for drug

TABLE 1 |Behaviors at high risk of acquiring blood-born infections if present in the
30 days before organ procurement (10-11-12).

Non-standard risk donors

• Use of parenteral or inhaled drugs for non-medical reasons
• Exposure to blood from a person suspected of being infected with HIV either by

inoculation or by contamination of skin or mucous wounds
• Incarceration (confinement in jail, prison, or juvenile correction facility)

for ≥72 consecutive hours
• Infants breastfed by an HIV-infected mother
• Children born from mothers infected with HIV, HBV or HCV
• Unknown medical or social history
• Sexual habits that can increase the risk of transmission of diseases

o sexual relations with people affected or suspected of being affected by HIV,
HCV, HBV

o habitual and repeated sexual behavior (promiscuousness, casualness, sexual
relations with the exchange of money or drugs)

o sexual relations with people with a history of mercenary sex
o sexual relations with subjects who have used parenteral or inhaled drugs
o sex in exchange for money or drugs
o people who have been diagnosed or have been treated for syphilis,
gonorrhea, chlamydia or genital ulcers

FIGURE 1 | Timeline from infection until final seroconversion, including the eclipse period and window period. (Reproduced from EDQM Guide on Quality and
Safety of Organs for Transplantation 8th edition, [11]).
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resistance, although prophylaxis does not prevent transmission of
infection universally. Treatment using tenofovir disoproxil
fumarate, tenofovir alafenamide, and entecavir is currently
preferred over lamivudine [7]. Laboratory and radiological
monitoring after transplantation is recommended to rule out
potentially acquired HBV after transplant (Figure 2).

HBsAg+ donors need to be screened to rule out the presence of
a Delta virus (HDV) coinfection. Of note that the presence of
HBV-DNA in the absence of HBsAg + does not require HDV
research. The HDV infection is documented by the positivity of
the anti-HDV IgG or IgM. In case of positive anti-HDV-IgG or
IgM the presence of an active infection should be ruled out by the
determination of plasma HDV-RNA [19].

Liver transplantation from an HBsAg+ and anti-HDV positive
donor, according to the Italian guidelines, can be perfumed only
in HBsAg+ and anti-HDV positive recipients. On the contrary
liver transplantation from an HBsAg+ and anti-HDV negative
donor is contraindicated in recipients with HBV-HDV co-
infection, because of the risk of HDV infection of the new
graft and potential subsequent graft loss [10, 20]. Grafts from
donors with isolated anti-HBcAb positivity can be safely used in
HBsAg + and anti-HDV positive recipients [7]. Currently there is
no approved treatment for HDV after transplant and most
effective method for preventing HDV infection of transplanted
liver in these patients is dependent on preventing HBV
recurrence, with an indefinite combination of NAs with anti-
HBV Ig [21]. Interferon remains an option for HDV infection,
with poor efficacy and the risk of inducing liver rejection, whereas
further studies are needed to determine the role of bulevirtide in
the context of liver transplantation (LT) [21, 22] (Figure 1).

Isolated anti-HBc positive donors warrant specific
consideration, since HBV may persist in the liver with
covalently closed circular DNA (cccDNA), which currently

cannot be cleared by the host immune response and by
antiviral therapies [23]. The risk of transmission from donors
with isolated anti-HBc will depend on the immunologic status of
the recipient and the type of transplanted organ. Anti-HBc
positivity may be seen as 1) false-positive result, especially if
risk factors for HBV are absent 2) early hepatitis B infection 3) or
resolved infection (HBcAb+, HBsAb-). The risk of transmission
of infection from an HBcAb+, HBsAg negative, HBsAb ± donor
to a susceptible non-liver recipient is low and recipients with
HBV protective immunity do not need antiviral therapy post-
transplantation, but careful monitoring and antiviral therapy at
the earliest sign of HBV transmission is recommended for
recipient management [24]. In contrast for liver recipients, it
is recommended to start antiviral prophylaxis and to perform
consecutive laboratory testing for HBV infection after
transplantation [25] (Figure 3).

No studies have been performed to assess the optimal
frequency and type of monitoring for the development of de
novo hepatitis after transplantation. For recipients of anti-HBc+
livers, most of the studies have described initial monitoring every
1 ± 3 months for 1 year and every 3 ± 6 months after 1 year. For
non-liver recipients, optimal monitoring intervals have not been
established but we suggest monitoring of serological markers of
HBV every 3 months for the first year (Figures 2, 3).

HEPATITIS C POSITIVE DONORS

The introduction of direct-acting antiviral agents (DAA) has
produced several consequences in SOT because the number of
patients with HCV related cirrhosis and the number of anti-
HCV+ viremic recipients in the waiting lists has significantly
reduced, the number of HCV+ non viremic individuals in the

FIGURE 2 | Management of recipients of organs from HBs Ag positive donor based on expert opinion recommendations.
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general population has increased, and allowed the possibility to
successfully treat HCV after transplantation [26]. Overall it has
also open the option of the use of HCV viremic organs in HCV
negative recipients expanding the donor pool without impairing
short-term transplant outcomes [27–30].

HCV serological screening should be performed in all donors
for the detection of HCV antibodies (anti-HCV) using CLIA
techniques or third-generation enzyme immunoassay (EIA), with
a sensitivity of at least 95%. HCV RNA screening should be
performed to rule out viremia in all anti-HCV+ donors during the
donation process and in non standard-risk donors (Table 1). For
non standard-risk donors HCV-RNA detection is indicated to
reduce the window period from ≈66 to 70 days (antibody
detection) to ≈ 5–7 days (eclipse period using NAT)
(Figure 1). In the United Sates, screening by NAT for HCV
has been mandatory for all organ donors since 2017, regardless of
the risk criteria identified during donor evaluation, to reduce the
diagnostic window period [31].

The transmission of infection from an anti-HCV+ non-
viremic (HCV RNA negative) donor is exceptional (with a low
risk for heart, kidney, pancreas and lung and potentially higher
risk for liver recipients) but anti-HCV+ viremic donors (HCV
RNA positive) transmit HCV infection to almost all recipients,
regardless of the transplanted organ [32, 33]. All anti-HCV
positive liver donors (both HCV-RNA positive or negative)
must be evaluated histologically to exclude the presence
of fibrosis [34].

The organs of an anti-HCV+ non-viremic donor (after
effective treatment or spontaneous clearance) may be used in
anti-HCV positive recipients without restrictions or may be used
in anti- HCV negative recipients that accept the risk after
informed consent and with close monitoring and treatment in
case of transmission [14, 29, 35].

Donation of organs from an anti-HCV+ viremic donor can be
performed in HCV viremic recipients or in an anti-HCV negative
recipient, if allowed by the national law, who agrees to take the
risk after informed consent. In each case early treatment with
DAA is strongly recommended [27, 35–38]. Use of liver allografts
from HCV-viremic donors to previously treated HCV RNA-
negative recipients has also been done with successful DAA
retreatment after transplant [39].

It is advisable to determine the viral load and the HCV
genotype of the donor, both relevant to recipient management
after transplantation. HCV antiviral therapy may be started in the
recipient at transplant or as soon as possible early post-transplant
depending on the national rules for DAA reimbursement policies
[10, 28, 35, 40, 41]. Standard DAA duration of treatment
(12 weeks) is usually recommended but short courses
(8 weeks) and ultrashort duration of treatment (≤8 days) may
be efficacious in certain settings [35].

Drug interactions between immunosuppressive and DAA
should be monitored after transplantation. Recipients of
organs from anti-HCV positive donors (HCV-RNA positive or
negative) should be monitored by quantitative HCV-RNA
determination in peripheral blood at 1, 2, 4, 8 and 12 weeks
after transplantation [14].

HIV POSITIVE DONORS

Management of human immunodeficiency virus (HIV) has come
a long way since the harrowing days of the 1980s. Currently, life
expectancy for a person living with HIV who engages with care
shortly after diagnosis now approaches that for the general
community. Transplantation is an accepted option for
candidates who are themselves living with controlled HIV. It

FIGURE 3 | Management of recipients of organs from HBcAb positive, HBsAg negative donors based on expert opinion recommendations.
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is also expanding as an option for both living and deceased
donors [26, 42].

Organ donation from HIV+ patients is available in the
United States under the HIV Organ Policy Equity (HOPE)
Act, and is now available in multiple other countries,
depending on local laws [43]. Much of the early experience
came out of South Africa, where using HIV+ kidney donors
exclusively for HIV+ recipients has been an option for more than
a decade [44]. Almost all global experience subsequently has been
in HIVD+/R+ situations, with very rare exceptions (HIVD+/R−)
that demand careful legal, ethical and medical caution [45].

For potential deceased donors, organ quality should be
examined as per center standards. Patients dying of Acquired
Immune Deficiency Syndrome (AIDS)-defining opportunistic
infections or cancer are not eligible for organ donation. On
the basis of previous literature, in US setting, most (around
60%) of HIV D+ were AntiRetroviral Therapy (ART)
experienced which contrasts the South African cohort with the
majority (92%) of HIV D+ being ART-naïve. However, even with
an ART experienced donor pool, there were no events of HIV
breakthrough and no evidence of donor-derived superinfection
[44, 46, 47]. Otherwise, assessment should be made regarding the
risk of transmitting resistant virus to a recipient both for ART
experienced and for ART naïve donors. When a clinician
examines a potential donor and notes a clear history of
antiretroviral compliance and viral suppression, they should be
able to confirm that the antiretroviral treatment of the recipients
will also maintain viral suppression of any donor virus. Generally,
these are acceptable situations [48]. However, it is the donor with
a protracted history of non-compliance or drug resistant virus
who needs particular attention, and in some instances, good
quality organs should be declined if post-transplant viral control
cannot be ensured. Notably many people still do not know of their
HIV status, perhaps only being tested when they become a
potential organ donor. These individuals might be good
donors, not having had an opportunity to acquire more drug
resistance, however the possibility of a drug resistant virus should
be considered [41, 49].

Centers should be aware that testing for donor evaluation are
designed to be particularly sensitive, but consequently can lead to
false positives, particularly antibody, or antibody/antigen tests. In
recent US HIV transplant cohorts, up to 30% of donors testing
positive for HIV were ultimately found to be false positives [50].
HIV-NAT screening is recommended in non-standard risk
donors but HIV-NAT positive donors are much less common
(Table 1). Donor viral load does not appear to negatively impact
organ quality and graft survival, similarly donor CD4 count at
terminal illness should be interpreted with caution, as the
absolute value may fall significantly during terminal illness,
and does not reflect ultimate graft and recipient outcome [51, 52].

For HIV-positive living donors, additional assessments are
required, but the small number of outcomes so far have been
reassuringly positive for both donors and their recipients [53].
Not only are organ quality characteristics important, but long-
term donor renal health must be considered. Historic data would
suggest a more rapid decline in living donor residual renal
function, although contemporaneous data from an era where

integrase inhibitors have dominated care is lacking. A living
donor consent conversation should recognize these
unknowns [54].

Early data from HIV D+/R+ is promising, however a few
caveats are notable. Firstly, rejection rates in the recipients
appeared higher when compared against HIV-positive
recipients receiving HIV-negative organs. The reasons for this
remain unknown. Additionally, in liver recipients, cancer-free
survival appeared statistically worse, although numbers were
small. These potential detrimental factors should be balanced
against an expanded donor pool and shorter transplant waitlist
when reviewing potential donor-recipient matches [46, 55].

COVID-19 POSITIVE DONORS

Since the emergence of the Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV-2), there has been a significant impact
on organ transplant numbers throughout the world. Especially
during 2020, transplant rates fell, as centers tried to prevent
spread not only to recipients, but also to healthcare workers. Well
documented cases of donor-derived SARS-CoV-2 transmission
exist, including transmission to transplant team members [56].
Concern regarding organ quality also led to many potential
organs offers being turned down, given the inflammatory
nature of Coronavirus Disease-2019 (COVID-19) [57].

Over the course of the pandemic, reassuringly a number of
things have changed that allow for the preservation of the donor
pool despite ongoing community transmission. Firstly,
diagnostics that were so lacking in early 2020 are now widely
available, including both point of care testing and molecular
testing. Organ procurement policy in many jurisdictions has
required testing of potential donors, including the lower
respiratory tract if lung donation is considered. Most centers
also test transplant candidates, especially those who are
symptomatic at the time of organ offer.

Secondly, fear of inflammatory damage to a donated organ has
fallen as community levels of immunity have risen. Good quality
vaccines are now available across the globe, such that all
recipients, and ideally all healthcare workers should be
vaccinated. With so many potential donors also vaccinated
and/or naturally infected, immunity is such that widespread
tissue coagulation and now hyperinflammation are rarely seen.
Consequently, even if a donor tests positive for SARS-CoV-2 at
the time of donation, clinicians can proceed with confidence that
graft organ function is unlikely impaired [58].

Third, treatment options are now widely available and well-
studied in the immunosuppressed patient population.
Intravenous remdesivir remains a first line treatment agent for
acute COVID-19 in any transplant recipient who develops
symptomatic disease. Treatment of recipients of non-lung
organs is likely unnecessary as now good data suggests these
are unlikely to be infectious.

Fourth transplantation of non-lung organs from donors with
active SARS-CoV-2 infection is considered possible and well
tolerated, without SARS-CoV-2 transmission. There are no
documented donor-derived transmission events to liver,
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kidney or heart recipients [59]. Lung donation from SARSCoV-
2 NAT + donors is generally not recommended, outside two
potential approaches [60]. The first is to recover lungs from
SARS- CoV-2 NAT positive donors only when symptom onset or
test positivity occurred >20 days prior. The second is to recover
all organs from asymptomatic SARS-CoV-2 NAT positive
donors, stratifying the risk of disease transmission using the
Ct value. The former emphasizes safety while the latter
maximizes organ utilization at the expense of a higher risk of
disease transmission given limitation of Ct values to determine
infectivity [59, 61, 62]. Finally the use of subgenomic RNA, a
proposed surrogate marker of active virus replication, might help
to guide organ utilization although this technique is not widely
available [63]. There are no reports of using intestinal organ from
COVID-19 donors. Given the intestinal tract can be a reservoir
for SARS-CoV-2, and intestinal transplant is rarely if ever urgent,
this is not routinely advised.

Healthcare worker protection should still be paramount for
transplant teams. Generally speaking, any donor who tests
positive for SARS-Cov-2 should be managed as potentially
infectious. However, once the organ has been procured, this is
likely no longer the case, and centers who use positive donors
manage infection control at their hospital as per routine. Lung
donors with positive SARS-CoV-2 tests should, however, be
managed as if they are potentially infectious, as should their
recipients after transplant, until suitable tests confirm no
transmission [59].

On the basis of the current experience, transplantation of non-
lung organs from donors with active SARS-CoV-2 infection has
been associated with good short-term outcomes, in terms of 30-
day graft loss and mortality. However, studies with longer follow
up (6–12-month) found significantly higher rates of hepatic
artery thrombosis among recipients of liver and kidney grafts
and higher mortality among recipients of hearts obtained from
donors with active SARS-CoV-2 [60, 64, 65]. Further studies are
needed to assess the long-term outcomes of recipients of organs
from donors with active SARS-CoV-2 infection.

BACTEREMIC AND CANDIDEMIC DONORS

Blood donor cultures should be obtained routinely at the time of
organ donation and prompt transmission of information on
blood culture positivity to the recipients’ centers should be
done in the shortest time possible and with the highest quality
[66, 67]. It has been estimated that 5%–7% of organ donors have
bacteremia at the time of organ procurement, but the
transmission of the infection to the recipient is low and it has
been mainly described in donors with bacteremia due to
microorganisms resistant to perioperative antibiotic
prophylaxis used in transplantation [68, 69]. In general, liver
recipients may be at higher risk of donor transmitted bacteremia
compared with recipients of non-hepatic organs and Gram-
negative bacilli (GNB) appear to pose a greater risk for
transmission and are associated with poorer outcomes
compared with Gram-positive bacteria (GPB), except for S.
aureus, which is a potentially more virulent GPB [70–72].

Transmission of bacterial infections from a donor with
bacteremia has been associated with serious consequences for
the recipient including overwhelming infection, vascular
anastomosis dehiscence in the graft resulting in
transplantectomy and death. Additionally, there is
controversial information on the relationship between
bacteremia in the donor and worsening of graft function [73].
In the same way, there is evidence that demonstrates that the
administration of effective antimicrobial therapy in both donor
and recipient at the time of the donation process, decreases
dramatically (but not eliminates) the risk of transmission,
making this practice reasonably safe.

In general organs from donors with positive blood cultures
may be safely used if they have received an appropriate
antimicrobial for at least 24–48 h, ideally with some degree of
clinical response (improved white blood cell count, improved
hemodynamics, defervescence of fever), since in clinical practice
documented clearance of donor bacteremia is often not
achievable before transplantation.

In addition, a complete course of therapy (range 7–14 days)
depending on the presence of virulent microorganism (such as S.
aureus and P. aeruginosa in particular) should be given to the
recipient post-transplant with targeted antimicrobial treatment.
Donors with documented bacteremia should be used with
informed consent, after evaluation of the transplant infectious
diseases team, and recipients should undergo systematic
surveillance cultures after transplantation.

Endocarditis does not constitute a contraindication for
transplantation, except for heart. The use of organs from
donors with infective endocarditis remains controversial for
the risk of metastatic infections but can still be used based on
individual decision [74]. Ideally patients with endocarditis can be
accepted as donors of non-heart organs if they have received
proper antibiotic treatment prior to donation (preferably a
minimum of 24–48 h), if they have cleared blood cultures and
there is no evidence of peripheric emboli that have damaged the
organs to be transplanted. The recipient must continue treatment
for at least 10–14 days with active drugs, whose choice and
duration must be modulated according to the results of the
blood cultures of the donor at the time of organs procurement.

Non-bacteremic localized infections from other sites only
require antibiotic treatment if transmission in the transplanted
organ is plausible (positive urine cultures for kidney recipients;
respiratory cultures for lung recipients) but it is not
recommended for the other organs recipients. The donor with
localized bacterial infection must have received adequate
treatment prior to donation (preferably a minimum of
24–48 h). Targeted antibiotic treatment should be continued
in the recipient of the infected organ.

Most cases of donor-derived candidiasis have occurred in
kidney transplant recipients and rarely in liver transplant
recipients in whom contaminated preservation fluid is a
commonly proposed source, but also donor candidemia
without effective antifungal therapy can be infection source
[75, 76]. In this setting DDI fungal infection can result in life-
threatening complications like arteritis and vascular aneurysms.
On the basis of our national protocol, transplant of donors with
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untreated candidemia is not recommended and donors with
positive blood cultures for Candida spp. can be accepted only
after 24–48 h of effective antifungal therapy prior to organ
procurement and recipients should receive at least a 14-day
course of antifungals (echinocandins are the preferred
antifungal therapy) targeting the donor Candida spp. isolate [10].

MULTIDRUG RESISTANT BACTERIA
AND FUNGI

Transmission of most bacterial infections may be prevented by
the use of surgical prophylaxis at time of transplant surgery, but
due to the emergence of multidrug resistant (MDR) bacteria,
routine prophylaxis might fail to prevent transmission of bacteria
from the donor organ at the time of procurement [77, 78]. Gram-
positive MDR bacteria (vancomycin-resistant Enterococcus
species, methicillin-resistant Staphylococcus aureus) do not
appear to have a significant impact on organ utilization [79].
On the contrary MDR Gram-negative bacteria (MDR GNB),
which include, carbapenem-resistant Pseudomonas aeruginosa,
carbapenem-resistant Acinetobacter baumannii, Klebsiella
pneumoniae and other carbapenem-resistant Enterobacterales,
has been observed to reduce organ procurement and
transplantation [79, 80]. There is no evidence to suggest that
organs from donors infected or colonized with Extended-
spectrum β- lactamase—producing Enterobacterales (ESBL) be
excluded from transplantation [81, 82].

Transmission with organ transplantation of MDR-GNB
organisms has been associated with serious consequences for
the recipients in terms of morbidity and mortality [71, 83, 84].
There is limited experience on risk mitigation strategies related to
MDR-GNB bacteria that have been successfully implemented to
minimize the impact of MDR-GNB donor-transmitted bacteria
following organ transplantation. Indeed, limited reports showed
that recipients of organs from donors with MDR-GNB infection
may have a favorable outcome with early microbiological
diagnosis, peri-transplant targeted antibiotic therapy due to
successful intra- and inter-institutional communication and
prolonged treatment after transplantation [67, 85–87]. These
results underline that active surveillance system should be
implemented to avoid communication gaps that might be
associated with infection transmission and could allow the
policies on the use of organs from MDR-GNB positive donors
to be reconsidered [87]. Rapid and effective interagency and
interinstitutional communication regarding donor cultures are
imperative to optimize recipient management [81].

In addition, the current availability of new drugs with activity
against some MDR-GNB pathogens and new possible
decontamination techniques performed after organ procurement
might allow in the future a more liberal use of these organs [85, 88].
However further work is needed to understand how to prospectively
identify donors thatmay harborMDR subclinical infection, and how
to best manage recipients at risk for MDR-GNB donor-derived
infections following transplantation [89].

In general, the confirmed presence of MDR-GNB bacteremia
constitute an exclusion criterion from the donation, because

outcomes in such circumstances are still unknown, but
individual donor evaluation is required with careful discussion
with the transplant infectious diseases team. The efficacy of
appropriate antimicrobial treatment of the donor before organ
procurement on the basis of in vitro susceptibility data, in
preventing recipient infection, is not known. Risk-benefit
assessment is needed to drive decisions to accept the organ
but a clear plan for effective peri- and post-transplant
antibiotics for the recipient should be outlined prior to the use
of such organs [78, 89]. As regards as localized infections
(pneumonia, infections of the urinary tract), in the absence of
associated bacteremia, the exclusion applies only to the
infected organ [90].

There is insufficient data to determine the risk of transmission
of infection from a donor colonized by MDR-GNB to a recipient.
The isolated positivity of the rectal swab for MDR-GNB should
not be considered a criterion of exclusion from donation, except
for bowel and pancreas donation and requests the highest respect
for surgical aseptic procedures in order to avoid contamination of
the procured organs [78, 90].

It seems prudent to exclude organs colonized or infected by
MDR GNB (lungs, kidney) although in specific situations the
organs colonized with MDR bacteria may be safely used when the
recipients receive prompt tailored antibiotic treatment [91]. It is
not currently recommended administration of modified
antibiotic prophylaxis to recipients of organs from donors that
are colonized but it is important to have the microbiological
donor history recorded in order to adjust the empirical antibiotic
treatment in case of suspected infection immediately after the
transplantation [78, 90].

Candida auris is an emerging pathogen capable of drug
resistance and persistence in the environment with important
public health implications and has several implications for
organ transplantation. The possibility of donor-derived
transmission of C. auris has been described [92]. Isolation
from an organ donor warrants careful consideration before
transplantation. At present, there are few data to guide
such decisions.

CONCLUSION

Donor-derived infections continue to be a challenge. Awareness
of epidemiological changes and emerging pathogens alongside
the improvement of rapid and reliable microbiological screening
are basic tools to improve organ safety and quality of organs
allocation. It is vital to develop prospective and high-quality
research to improve a more tailored approach and knowledge
on short- and long-term outcomes of DDIs. Moreveor new
frontiers need to be explored to expand the donor pool
demanding careful legal, ethical and medical caution.
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