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Substance Abuse and Early 
Development

Substance abuse in the form of tobacco, alcohol, drug, or chemical misuse 

affects the entire family. Besides devastating consequences on relationship 

dynamics, substance abuse by prospective parents has an invisible target - the 

progeny. While consequences of some substance use (such as alcohol) on 

early and fetal development are well known, others are less studied. This 

Special Issue aims at describing recent advances in our understanding of how 

parental substance abuse affects early development of progeny.
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Editorial on the Special Issue

Substance abuse and early development

While misuse of psychoactive substances can be traced back to pre-historic times,

their effects on invisible target—such as the developing fetus—only gained recognition

within the last century [1–4]. Initial seminal findings in humans and laboratory rodents

quickly grew from isolated observations to well-planned, multidisciplinary studies.

Despite the involvement of numerous methodologies, large teams of researchers, and

widely different experimental organisms, there has been an unusual consensus on the

meaning of findings: principally that prenatal exposure to drugs of misuse has deleterious

consequences for the developing fetus.

The mechanisms by which prenatal exposure to psychoactive substances alters

developmental trajectories are variable, from epigenetic alterations to fine-tuning of

blood supply to the brain [5, 6]. In some cases, such as during cannabis exposure, the

impact is exacerbated by the vast presence and activity of the endocannabinoid system

during early development (Fride, 2008; [7]). In others, such as with alcohol, efforts for

elucidating potential mechanisms of alcohol-driven alterations and thus, identifying

venues for novel therapeutic options are hindered by the chemical’s simple structure and

the abundant sensing sites it can bind to. Additional challenges are presented by the

growing trend of substance co-use, such as in cases of simultaneous consumption of

alcohol and marijuana [8] or opioid and stimulant products [9]. In these instances, in

addition to the effects of individual drugs, their potential interactions must be considered.

The current Special Issue aims at describing recent advances in our understanding of

how maternal and paternal substance abuse affects early development of progeny.

Contributions into this Special Issue span from methodological advancements, into

reviews of current standing in the field, original research report, and novel diagnostic

tools. Specifically, Mbolle et al. take the reader on a journey into modern technology for

high-resolution imaging of prenatal development. While this task is certainly streamlined

in obstetrics clinics, major challenges remain at the bench, as current resolution

capabilities are often below the thresholds needed for accurate visualization of fetal

structures within small rodent species such as mice which are used for mechanistic

studies. Development of deep-tissue high-resolution imaging and accompanying
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computational reconstruction technology will serve many

researchers who are trying to elucidate the underpinnings of

prenatal drug exposure effects. Before such methodology could

advance the field, a thorough analysis of existing knowledge is

needed, so that gaps could be identified and pursued with

precision targeting. To address this task, Mulligan and Hamre

offer an in-depth review of current standing on the influence of

prenatal cannabinoid exposure on early development and

beyond. The task is not trivial, as there is a clear difference of

opinion between medical professionals and societal attitudes.

The authors conclude that while there is evidence that prenatal

cannabis exposure might alter developmental trajectories, the

cause-effect relationships are not proven and, in most cases,

require additional studies.

Strong focus in this Special Issue is maintained on vascular

and cerebrovascular consequences of prenatal alcohol exposure.

Momin et al. review vascular contributors to the neurobiological

effects of prenatal alcohol exposure. This systematic review of the

literature leads to a conclusion that although the brain has been

traditionally considered as a main target of prenatal alcohol

exposure, data from human samples and bench studies

document that developing vasculature is equally sensitive to

an early alcohol hit. Saha and Mayhan concur with this

conclusion and expand upon it by presenting a review of

mechanisms that underly cerebral vascular damage by

prenatal alcohol exposure and which enable lifelong

consequences of this adverse developmental event. Both

reviews highlight the fact that our approach to treatment of

adverse developmental outcomes should involve a multi-organ

strategy.

Waite and Burd conclude the chapter of alcohol prenatal

effects with a review of literature on common developmental

trajectories and clinical identification of children with fetal

alcohol spectrum disorders. They describe current challenges

in the diagnosis of fetal alcohol spectrum disorders as opposed to

prevalent behavioral disorders. Finally, Fleming et al (in press)

offer an early, time-efficient screening tool which could assist in

efforts to diagnose fetal alcohol spectrum disorders in large

cohorts of children. Wide clinical utility of this newly offered

tool remains to be documented.

Following current trends of increased opioid use, misuse, and

opioid-related deaths, Madurai et al. describe alterations in the

peripheral inflammatory and central immune landscapes

following prenatal exposure of rats to methadone. The authors

conclude that such alterations may underly long-term

consequences of developmental brain injury including

cognitive and attention deficits. However, identification of

altered patterns may also serve as a biomarker and a

therapeutic target. Translation of these findings from bench to

bedside remains a goal for near future.
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High-resolution imaging in
studies of alcohol effect on
prenatal development

Augustine Meombe Mbolle1, Shiwani Thapa2, Anna N. Bukiya2

and Huabei Jiang1*
1Department Medical Engineering, College of Engineering andMorsani College of Medicine, University
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Fetal alcohol syndrome represents the leading known preventable cause of mental

retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that

stem from the deleterious effects of prenatal alcohol exposure. Affecting asmany as

1 to 5 out of 100 children, FASDmost often results in brain abnormalities that extend

to structure, function, and cerebral hemodynamics. The present review provides an

analysis of high-resolution imaging techniques that are used in animals and human

subjects to characterize PAE-driven changes in the developing brain. Variants of

magnetic resonance imaging such as magnetic resonance microscopy, magnetic

resonance spectroscopy, diffusion tensor imaging, along with positron emission

tomography, single-photon emission computed tomography, and photoacoustic

imaging, aremodalities that are used to study the influenceof PAEonbrain structure

and function. This review briefly describes the aforementioned imaging modalities,

the main findings that were obtained using each modality, and touches upon the

advantages/disadvantages of each imaging approach.

KEYWORDS

blood alcohol concentration, brain imaging, brainmetabolism,maternal drinking, fetal
development, alcohol in utero

Introduction

Globally, alcohol (ethanol) is the most widely used psychotropic drug (1). Depending

on gender and different countries, the drinking levels of alcohol can be considered light,

moderate, heavy, or binge drinking. Moderate drinking involves one drink for women and

two drinks for men in a day (2). Binge drinking can be typically classified as 4 or more
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drinks for women or 5 or more drinks for men consumed within

a couple of hours of each other (3) leading to a blood alcohol

concentration (BAC) level of 0.08 g/dL and higher (4). Moreover,

heavy drinking can be reported as 8 or more drinks for women

per week and 15 or more drinks for men per week (5).

According to the World Health Organization (WHO) Global

Status Report on Alcohol and Health, in 2018, it was estimated

that the total consumption of pure alcohol was 6.4 L per

individual 15 years or older worldwide (6). In the

United States, an estimated 38.5 million adults indulge in

binge drinking per month, among which adults aged

18–34 years hold the highest prevalence (26%) (7). Excessive

alcohol intake can lead to a plethora of detrimental effects

targeting multiple organs such as the brain, liver, pancreas,

and heart (8–12). Moreover, it increases the chance of

developing various pathological conditions that include

chronic diseases, cancers, and mental disorders (13–17). In

particular, women of reproductive age are reported to be

frequent users of alcohol (18, 19). Even more alarming,

estimated global alcohol consumption rate during pregnancy

is ~9.8% (20). The WHO European Region points at an average

of 25.2% alcohol consumption rate during pregnancy. This

statistic involves countries like Russia, United Kingdom,

Denmark, Belarus, Ireland, Italy, France, and Finland (20).

Whereas the WHO Eastern Mediterranean region (Oman,

United Arab Emirates, Saudi Arabia, Qatar, Kuwait) reports

the lowest average alcohol use at 0.2% among pregnant

women (20). While socio-demographic (e.g., age, ethnicity,

education level, reporting conditions, religious affiliation) and

socio-economic (e.g., employment, nutritional diet, and prenatal

care) factors play an essential role in the variability of alcohol

consumption estimates (21–24), alcohol use among pregnant

women does not decline. Between 2018 and 2020, the prevalence

of alcohol consumption among pregnant women in the

United States increased to 13.5%, and 5.2% were involved in

binge drinking (25). Considering the deleterious effect of alcohol

on health, alcohol use during pregnancy does not only affect

pregnant women themselves but also their fetuses.

Althoughmany women tend to stop or reduce drinking levels

of alcohol once diagnosed with pregnancy, a high rate of

unplanned pregnancies (45%) (26) may cause prenatal alcohol

exposure (PAE) unknowingly during the first trimester.

Collectively with the reported statistics on alcohol

consumption prevalence during pregnancy, it can be inferred

that a significant number of fetuses are exposed to the toxic

effects of alcohol with or without the knowledge of women that

they are pregnant. Such astonishing statistics inevitably leads to a

plethora of health complications associated with PAE. In this

review, we will briefly describe health concerns arising from

alcohol exposure in utero, obstacles in their therapeutic

treatment, and challenges faced by contemporary drug

discovery efforts. We will then highlight the need for high-

resolution imaging tools that would aid in the research

process for assessment of pathophysiology and identification

of promising drug targets for successful treatment of

consequences arising from PAE. Finally, we will describe

current advancements made in the field of high-resolution

imaging that can be used as stepping stones for visualization

of alcohol-related damage in small laboratory animals. We will

conclude with the prospects of using high-resolution imaging at

the cross-over of physics and biology for successful diagnostics

and treatment of PAE-related health disorders.

Health consequences of PAE

Alcohol is capable of easily and rapidly passing from the

mother’s bloodstream via the placenta into the developing fetal

circulation where it penetrates through blood-brain barrier, and

targets multiple critical fetal organs (4, 27, 28). Alcohol can

directly target several mechanisms at different stages of gestation

and enable the teratogenic effects (29). These effects include

disruption of neuronal cell survival, proliferation, and growth

pathways leading to apoptosis (30) in the early gestation period,

neonatal microglial abnormalities causing neuroinflammation

(31), interference with the cortical vascular network

development (32), alteration of cardiac progenitor cells gene

expression (33), and dysfunction of the hypothalamus-pituitary-

adrenal axis (34). Maternal alcohol consumption can result, first

of all, in apparent gestational complications such as spontaneous

miscarriage (35), premature delivery (36), low birth weight (37),

placental abruption (38), first or second trimester bleeding, intra-

amniotic infection (39), and intrauterine growth restriction (40).

Generally, higher BAC peaks of alcohol are associated with

higher risks for adverse effects targeting physical,

psychological, and behavioral development of the fetus (41,

42). Yet, based on a pregnancy cohort study from

8 metropolitan areas in the United States, it was found that

every successive week of alcohol use led to an 8% increase in the

risk of spontaneous abortion and did not correlate to the number

of drinks consumed per week or to binge drinking (35). This

underscores the significant fact that no known amount of alcohol

is safe during pregnancy.

Fetal alcohol spectrum disorders (FASD) is the umbrella

term that describes the detrimental effects of PAE and includes

four distinct categories: fetal alcohol syndrome (FAS), partial

fetal alcohol syndrome (pFAS), alcohol-related

neurodevelopmental disorders (ARND) and alcohol-related

birth defects (ARBD) (43). PAE causes lifelong consequences

and allows FASD diagnosis mainly within four domains: the level

of PAE, facial dysmorphology, growth deformities, and

neurodevelopment retardation (44–48). However, not every

neonate exposed to alcohol during gestation will develop

FASD as it is estimated that only one in every 13 pregnant

women exposed to alcohol would deliver a child with FASD (49).

This could occur due to several factors such as the quantity,
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frequency, and timing of alcohol exposure, maternal age, diet,

genetic and epigenetic factors along with the influence of other

substance abuse (50–52). Yet, FASD are highly preventable

neurodevelopmental disabilities with an estimated global

prevalence of 0.77% which would result in 630,000 children

born annually with FASDs worldwide (49). Unfortunately, the

mechanisms causing FASDs are poorly understood, and no

known cure has been developed (53).

FAS is the most severe form of FASD including craniofacial

dysmorphic features, prenatal and postnatal fetal growth

restriction, neurodevelopmental abnormalities, and cognitive

or behavioral impairment (54). The three fundamental facial

features of FAS include short palpebral fissures, smooth

philtrum, and thin vermilion border of the upper lip; the

cranial features include smaller head circumference, structural

brain anomalies, and abnormal neurophysiology and in some

cases recurrent non-febrile seizures (55). Various studies have

demonstrated that PAE decreases the bioavailability of glutamine

and glutamine-related amino acids and hence hinders fetal

development (56, 57). It is reported that 0.15% of live births

result in FAS globally and this percentage rises in countries that

are characterized by a higher consumption of alcohol during

pregnancy (e.g., Belarus, Italy, Ireland, Croatia, and South Africa)

(20). However, in the case of pFAS, only a few characteristic

features of FAS are present such as facial dysmorphology,

neurocognitive impairment, and either growth restriction or

microcephaly (44).

ARND is the most prevalent yet difficult form of FASD to be

diagnosed (58). ARND includes neurocognitive and behavioral

impairments but lacks the presence of distinct FAS cranial and

facial phenotypes, consequently remaining undiagnosed or

misdiagnosed (44, 54, 58). PAE induces neurotoxic effects

resulting in morphological or functional alterations of specific

neuronal structures and brain circuits (59, 60). In an

observational cohort study, it was found that moderate or

binge drinking during pregnancy disrupts the cortical

connectivity and impairs cognitive functions in children (61).

Compelling evidence from various brain imaging and animal

studies shows that PAE hampers cognitive function in various

areas such as learning, memory, attention, speech development,

vision, adaptive skills, and motor skills (62–67). Behavioral

deficits observed include hyperactivity, impulsivity, poor social

skills, aggressive behavior, and mood disorders (62, 67, 68). A

dose-dependent prenatal alcohol exposure study done by Lees

et al. (2020) found evidence of differences in cerebral and

regional brain volume associated with psychological and

behavioral problems among adolescents aged 9–10 years (69).

Neuroimaging studies also show youths exposed to heavy

maternal alcohol exposure with smaller cerebral surface area

and irregular cortical thickness in comparison to unexposed

youths (70–72). Attention deficit hyperactivity disorder has

high comorbidity with FASD and has been found to have a

48% prevalence among children diagnosed with FASD (73).

ARNDs are often missed due to features that can overlap with

several different neurodevelopmental disorders or can often be

credited to environmental or socioeconomic factors for

behavioral deficits.

ARBD fall under the rarer spectrum of FASD which requires

a history of PAE coupled with a major systemic malformation

(44). This malformation includes cardiac (atrial septal defects,

aberrant great vessels), auditory (neurosensory hearing loss),

skeletal (radioulnar synostosis, vertebral segmentation defects,

scoliosis), and ophthalmic (optic nerve hypoplasia, retinal

vascular anomalies) or renal defect (horseshoe kidneys) (54).

Among all the global congestive birth defects, it is estimated that

5% of the total cases are contributed by PAE (74–76). Indirect

toxicity from alcohol metabolites (e.g., acetaldehyde) and

impaired placental nutrition supply also lead to PAE-induced

organ damage (77, 78). Congestive heart defects occur from

acute, early alcohol exposure during the first gestation trimester

in humans (54, 73). In an avian model study, the early co-

administration of glutathione along with ethyl alcohol (ethanol)

increased the percentage of embryos with normal hearts from

40% to 79% via inhibiting the action of PAE on reducing global

DNA methylation (79). Studies have also shown PAE-induced

alterations in neonatal lung development such as decreased lung

mass and delayed lung maturation (80), inhibition of

alveolarization and vascular development (81), and formation

of hypoplastic lungs (82). There are experimental studies that

show PAE deteriorates renal functions involving renal

acidification, potassium excretion, and renal tubular cell use

(83–85).

Despite the economic and public health burden, there are

several obstacles to the diagnosis and treatment of health defects

arising from PAE. Although early detection and intervention of

PAE play an essential role in the prophylaxis of FASD, the lack of

valid reliable methods for noting maternal alcohol exposure is an

ongoing challenge. Although there have been several non-invasive

methods such as passive surveillance systems, clinical studies, and

meta-analyses, these observations largely depend on maternal self-

report. Such self-reports can lack accurate assessment due to recall

bias, societal stigma, and inconsistent screening. However, ethanol

biomarkers can also be used as an early PAE detection tool. The

direct metabolites of alcohol such as fatty acid ethyl esters (FAEE)

in neonatal hair and meconium (86–88) and ethyl sulfate in

maternal urine (86, 89) are present as distinct biological

biomarkers. There are also several indirect metabolites of

ethanol such as ethyl glucuronide in neonatal meconium or

maternal hair (90–92) and phosphatidyl ethanol in maternal

blood (93), although these indirect markers are less specific and

indicative of alcohol exposure (86, 94). Still, no biomarker has been

validated as a specific and sensitive diagnostic marker for PAE-

induced toxic effects (86, 95). Clearly, there is an urgent need for

bench studies that are aimed at better understanding of PAE

pathophysiology and at finding markers and cures of deleterious

consequences posed by PAE.
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Laboratory animal models to
study PAE

While studies in humans offer immediate translation into the

wide-scale clinical practice, standardization of drinking patterns,

doses, and timing within a large maternal population represent

an impractical and ethically challenging task (96, 97). Human

studies are also inconsistent due to variable factors like maternal

age, diet, genetics, social status, and multi-substance use (51, 52).

Animal models present an invaluable research tool to study the

molecular mechanisms by which alcohol exposure hampers

prenatal development. The use of various animal species such

as non-human primates, pig, sheep, and rodents allow for

manipulating the drinking pattern, dose, timing, and control

for other confounding factors. However, each species has

advantages and disadvantages for studies focusing on PAE.

For example, non-human primates closely match the

gestational period of humans in terms of neurodevelopment

and allow fetal magnetic resonance imaging (MRI) to assess

PAE effects (98). Nevertheless, non-human primates are

expensive models that are scarcely available and involve

longer gestation periods and singleton pregnancies. Ovine

species are also used for preclinical studies of FASD due to

equivalent fetal brain size and body weight to a human fetus and

comparable gestational period (147 days) (99). However, ovine

models are characterized by ruminal fermentation and differ

from the humanmetabolic pattern following alcohol ingestion (1,

100). Large animals like pigs produce large litters, express

voluntary alcohol consumption and similar rates of alcohol

intoxication and excretion as humans (101). Yet they lack the

advantage of introducing genetic manipulations which are widely

available in small rodents. The latter are the most widely used

versatile research models that allow invasive molecular

mechanism studies of fetal alcohol exposure. Rats are

commonly used for FASD studies and demonstrate the

structural, developmental, and behavioral deficits as in

humans (102–104). Rats are also preferred over mice for

behavioral studies as they are calmer, more social, and easier

to examine learning and executive function (105, 106). Mouse

models are smaller in size, easier to maintain, have a shorter

gestation period, and larger offspring production. With the use of

modern technology, mice offer genetic modeling and are

available as transgenic, knock-in, and knock-out strains.

Another advantage of mouse models is the development of

similar dysmorphic features of FASD as observed in humans.

Various studies show these observations including craniofacial

dysmorphology (107), brain abnormalities (108), growth

restriction (109), and cognitive deficits (110, 111). The

disadvantage of using rodent models is the difference in

gestation length where the third-trimester fetal development

in humans is analogous to the early postnatal period of

rodents (112). As a significant amount of brain development

occurs postnatally among rodents (113), many studies

administer ethanol to neonate pups, but the mechanisms of

absorption, metabolism and excretion are significantly varied

in prenatal and postnatal periods (114, 115). However, the major

disadvantage of mouse model is the small fetal size that makes

non-invasive imaging studies of brain development and its

alterations by PAE barely feasible. Overcoming this limitation

is paramount for further advancement of the field as current

understanding of the neurobiology and pathophysiology of PAE

and its teratogenic effects has been rooted in neuroimaging

technologies, which have allowed researchers to study

structural, metabolic, and physiological abnormalities resulting

from PAE.

High-resolution imaging techniques:
Principles and major findings relevant
to the field of PAE

High resolution imaging technologies could broadly be

classified into structural neuroimaging technologies which

identify neuroanatomical changes associated with PAE;

functional neuroimaging technologies, which measure various

neurophysiological signal changes associated with functional

activities within various organs; and metabolic imaging

modalities which detect various neurochemical changes by

measuring the concentration of neurometabolites such as

choline-containing compounds - which are markers of cell

membrane stability and myelination, N-acetyl-aspartate

(NAA)- which are markers of neuronal/axonal density and

viability, and creatine/phosphocreatine, a marker of metabolic

activities (116, 117) (Table 1). PAE mostly impacts the brain due

to alcohol-related neurobiological damage in early development

(118, 119). Thus, the brain is the most widely studied organ for

the effects of PAE.

For the purpose of this review, we conducted a search in

Google Scholar, PubMed, ScienceDirect and Web of Science for

relevant literature using a combination of the following words:

“prenatal alcohol exposure,” “neuroimaging,” “fetal alcohol

spectrum disorder,” “FASD,” “fetal alcohol syndrome,”

“magnetic resonance imaging,” “MRI,” “magnetic resonance

spectroscopy,” “MRS,” “magnetic resonance microscopy,”

“MRM,” “animal models,” “diffusion tensor imaging,” “DTI,”

“functional MRI,” “fMRI,” “positron emission tomography,”

“PET,” “single photon computed emission tomography,”

“SPECT,” “photoacoustic tomography,” “functional.” Apart

from the language, which was restricted to “English,” there

were no restrictions in the date or subject of the study, and

we examined each abstract to determine relevance of the

literature. We further identified other studies by referring to

the references of the studies obtained from the various databases.

We ended up with a total of 71 articles for this review. Below, we

describe the various neuroimaging modalities, in terms of their

principles and major findings relevant to the field of PAE. We
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divide the modalities into three groups based on their use in

studies of structural, functional, or metabolic effects of PAE.

Table 2 summarizes the main finding of the various high-

resolution imaging modalities in humans and animals.

Structural neuroimaging technologies

Magnetic resonance imaging technologies (MRI)
MRI is a safe, non-invasive imaging modality capable of

producing detailed three dimensional structural and functional

information of tissues properties (120). MRI uses a strong

magnet and radio frequency waves to measure tissue property-

dependent signals from protons (water) within the living

organisms. Tissue properties like density, local environment,

blood oxygenation, water movement as well as relaxation

properties (T1, T2) may influence the signal detectable by

MRI in various ways. When irradiated with radiofrequency

energy, protons within the tissue are forced to swing out of

equilibrium with the MRI field becoming misaligned with it

due to their spin. When the radiofrequency energy is turned

off, the protons quickly realign with the field, releasing

electromagnetic energy in the process. The electromagnetic

energy (signal) detected and the time it takes the protons to

realign with the magnetic field (T1, T2) are used to generate

images of the tissue. Advancements in technology has led to the

development of custom coils and more powerful magnets,

capable of generating magnetic fields of up to 7.0 T and

higher (107, 121). Various dyes and nanoparticles have also

been developed for use in imaging contrast enhancement,

resulting in high resolution MRI referred to as Magnetic

Resonance Microscopy (MRM) (122–124). Unlike routine

structural MRI, the resolution in MRM is in the micron

scale, typically less than 100 microns. Modern systems now

support about 21–43 microns isotropic resolution, with

scanning time in the order of 30–120 min per specimen

(107, 121). The diameter of the bore of the magnet is only

about 5 cm, thus limiting the size of the imaged specimen. As a

result, MRM is typically used in studies involving small

animals like rodent models of PAE (107, 121, 125). It allows

for imaging of embryos, as young as 10.5 days postfertilization

(123), with the ability to view images in all planes

simultaneously for morphological assessment.

Sulik et al. (107, 121, 126, 127) have characterized the

developmental stage-dependent effects of PAE in mice using

MRM-based analyses of fetal and postnatal mice. Timed C57B1/

5J pregnant dams received a vehicle (control group) or two daily

doses of intraperitoneal injection of 2.8–2.9 g/kg ethanol (ethanol

group), administered at 4 h intervals on gestational days (GD)

7 and 8. Previous studies have shown that ethanol exposure on

GD7 when early gastrulation occurs in mouse embryos, leads to a

spectrum of craniofacial dysmorphology consistent with FAS

(176, 177, 107). Similarly, GD8 lies within the early

neurulation stage, and ethanol exposure at this stage has

been shown to cause structural brain abnormalities (127).

Control and ethanol-administered mice were stage-matched

and on GD17, MRM was conducted on the fetal mice at

either 7.0 T or 9.4 T. The resulting 29 μm isotropic

resolution images were reconstructed and later processed

using ITK-SNAP, a 3D segmentation/visualization software

(128). Linear and volumetric morphological analyses was

conducted with 3D reconstructions of selected brain, head/

face and body regions obtained, and compared between the control

and ethanol-administered groups. According to the results, acute

ethanol exposure onGD7 results in a spectrumof facial and central

nervous system defects, the most severe of which includes

holoprosencephaly. As shown in Figure 1, the facial

abnormalities may range from a slightly narrowed nose (a

closely approximated nostril) and a slightly diminished central

notch to an extremely narrowed snout and complete absence of a

nostril. Furthermore, compared to the control, the lower jaw is

deformed and appears short and narrow (126).

Compared to the control group, fetuses affected by ethanol in

a mild fashion have brains looking fairly normal, but with smaller

olfactory bulbs and a narrower space between cerebral

hemispheres. As the severity of the teratogenic effect

increases, olfactory bulbs may disappear completely and the

hemispheres become indistinguishable across the midline (107,

121, 126, 127). Other GD7 ethanol exposure-induced

abnormalities include cleft palate, pituitary dysgenesis,

aglossia, aqueductal stenosis and eye abnormalities ranging

from slight microphthalmia to bilateral anophthalmia (107,

TABLE 1 Classification of high-resolution imaging modalities based on functionality. Structural neuroimaging modalities are used to study
neuroanatomical changes associated with PAE. Functional imaging modalities are used to study neurophysiological changes, specifically
hemodynamic changes associated with PAE, while metabolic imaging modalities detect various neurochemical changes associated with PAE by
measuring the concentration of neurometabolites.

Structural neuroimaging technologies Functional neuroimaging technologies Metabolic imaging technologies

• Magnetic resonance microscopy (MRM) • Functional magnetic resonance imaging (fMRI) • Magnetic resonance spectroscopy

• Diffusion tensor imaging (DTI) • Single-photon emission computed tomography (SPECT) • Single photon emission computed tomography (SPECT)

• Structural magnetic resonance imaging • Positron emission tomography (PET) • Positron emission tomography (PET)

• Structural photoacoustic tomography (sPAT) • Multispectral photoacoustic tomography (fPAT)
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TABLE 2 High-resolution neuroimaging technologies used in the study of prenatal alcohol exposure.

Imaging modality
(anatomical)

References/
subject

Subject (age) Findings

MRM (126) Mouse Linear and volumetric analysis of MRM images of GD7 showed
craniofacial dysmorphology and brain abnormalities, the most
severe being holoprosencephaly (HEP), volumetric reduction in
telencephalic structures, increased lateral ventricular volume
in HEP

(107) Mouse GD8 exposure results in optic nerve coloboma, choanal atresia,
narrowing of cerebral aqueduct and 3rd ventricle enlargement

(127) Mouse GD8 results in disproportionate reduction in olfactory bulb,
hippocampus, cerebellum, along with a disproportionate increase
in the sepal region and pituitary glands

(172) Mouse GD-9 ethanol exposed mice presented with increase septal region
width and a decreased cerebellar volume, along with enlargement
of all ventricles. Noticeable misshapen cerebral cortex,
hippocampus, and right striatum

(171) Mouse GD7-11 ethanol exposed mice presented with significant
decrease in cerebellar volume, along with increase septal volume

GD12-16 ethanol treatment resulted in reduced hippocampal
volume, along with enlarged pituitaries, and high incidence of
edema/fetal hydrops

(175) Rat GD1-20 exposed rats presented with reduced brain and
isocortical volumes as well as isocortical surface area and
thickness

DTI (143) Humans (Adult males 18 and over) Alterations in the corpus callosum, ranging from thinning,
hypoplasia, and complete agenesis. Reduced FA and elevated MD

(146, 147) Humans (children) Disproportionate reduction in volume of genu and splenium

(8–18 years old, mean age 13)

(145) Humans (Children) Dislocation in posterior corpus callosum, correlated to the extent
of facial dysmorphology(7–11 years old, mean 13.8)

(173, 174) Humans Decreased FA in posterior portion of inferior longitudinal fasciculus
and in left middle cerebellar peduncles (White matter)Children, aged 9.7–13.7)

(175) Rat High FA in cerebral cortex

sPAT (150) Mouse Maternal ethanol consumption on GD-17 induces significant
reduction in fetal brain vessel diameter (up to 31.25%) and vessel
density (up to 25.1%)

(Metabolic)

MRS (46, 48, 169, 170) Monkey Reduction in levels of NAA/creatinine and NAA/Choline in
multiple brain regions, notably parietal and frontal cortices,
thalamus, cerebellar dentate nucleus, frontal white matter, and
corpus callosum

Rat

(Functional)

fPAT (150) Mouse Maternal ethanol consumption on GD-17results in up to 39.78%
reduction in hemoglobin oxygen saturation in fetal blood vessels,
indicative of significant ethanol induced hypoxia in fetal brain
circulation

fMRI (152) Humans
(14.5 years old) Go/No-Go tasks

Similar Go/no-go task performance between groups. PAEs
showed greater BOLD response across in prefrontal and cortical
regions, but less response in caudate nucleus activation

(Continued on following page)
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121, 127). GD8 deformities noted in MRM scans include optic

nerve coloboma, choanal atresia, narrowing of the cerebral

aqueduct and third ventricle enlargement (107, 121, 126, 127).

Using MRM scans, regional brain segmentation and

subsequent characterization of region-specific alterations and

volumetric changes have equally been reported. Key amongst

these findings in GD7 exposure models include volume

reduction in telencephalic structures accompanied by increased

lateral ventricular volume, mostly in fetuses with evident

holoprosencephaly (126). GD8 exposure causes a

disproportionate reduction in the volume of the olfactory bulb,

hippocampus, as well as cerebellum, with a disproportional

increase in the septal region and pituitary volumes (127).

Diffusion tensor imaging (DTI)
DTI is an emerging non-invasive MRI technology based on

the measurement of the water molecule diffusions. The measured

quantity is the diffusivity, a constant of proportionality that

relates diffusive flux to concentration gradients (129). Due to

the presence of numerous structures within tissue, the diffusion

of water molecules is usually not isotropic. Thus, the measured

diffusivity (diffusion tensor) is anisotropic, due to microscopic

tissue heterogeneity (130). The diffusion tensor describes the

diffusion of water molecules using a Gaussian model and results

in a 3 × 3 symmetric positive-definite covariant matrix (131). The

latter is capable of revealing the microstructural integrity of the

white matter fiber tracts, enabling the quantification of subtle

tissue changes affecting the integrity of the brain’s neural

networks and interregional information transfer (132). White

matter integrity is essential for effective functioning of a host of

complex cognitive processes such as normal executive functions,

attention, and processing speed (133–135). DTI measures the

overall direction of diffusion of water molecules along white

matter fiber tracts to access the structure and organization of

different brain areas (136, 137). Two key scalar metrics are

typically obtained from DTI. Firstly, fractional anisotropy, a

scalar value between 0 and 1 which quantifies the overall

directionality of diffusion and variation in axonal integrity.

Secondly mean diffusivity, which describes the rotationally

invariant magnitude of the average diffusivity and may

primarily reflect myelin breakdown, changes in cellular

density and volume. High fractional anisotropy and low mean

diffusivity values are associate with healthier white matter

microstructure whereas low fractional anisotropy and high

mean diffusivity values are indicative of pathological white

matter (70, 138). In the absence of discernable facial

dysmorphology, such as in mild cases of PAE, high resolution

DTI has proven to be effective in detecting ethanol-induced

abnormalities in the white matter fiber tracts and has been

applied in humans and animal studies alike. Specialized data

TABLE 2 (Continued) High-resolution neuroimaging technologies used in the study of prenatal alcohol exposure.

Imaging modality
(anatomical)

References/
subject

Subject (age) Findings

(151, 155, 156, 157) Humans (Spatial working memory) PAE children and adults showed overall less brain activity, but
greater interior-middle frontal activity compared to controls
during simpler activities

Age matched Children (7–10) years old,
Adults (18–33) years old

PAE showed greater BOLD response in frontal, insular, superior,
middle, temporal, occipital, and subcortical regions

(154) Human adults (23.0 years old) PAE exhibit lower accuracy but comparable reaction times,
compared to controls(Arithmetic and number processing)

(159) Humans (10 years old) PAE showed increased activation in the left dorsal frontal, left
interior parietal and bilateral posterior temporal regions(Verbal working memory)

SPECT/PET (164) Human
(20.6 vs. 22.8 years old)

Decreases in relative regional cerebral metabolic rates were found
in 5 brain regions comprising thalamus and basal ganglia

(Resting state)

(161, 162) Human (10.5 vs. 9.8-year old) Significant brain volume reduction in PAEs

Also (8.6 vs. 16 years old) Reduced serotonin transporter binding in the medial frontal
cortex and increased striatal dopamine transporter binding in
PAEs

(Resting state) SPECT showed mild hypoperfusion of the left hemisphere
(especially in parietooccipital and frontal regions) in PAEs

(160) Human
(6–29 years old) and
(29, 35 years old)

SPECT revealed at least 25% CBF reduction in the temporal
region relative to the cerebellum

(Resting state)

MRM, magnetic resonance microscopy; DTI, diffusion tensor imaging; MRS, magnetic resonance spectroscopy; sPAT, structural photoacoustic tomography; fPAT, functional

photoacoustic tomography; fMRi, functional magnetic resonance imaging; FA, fractional anisotropy; MD, mean diffusivity.
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analysis software such as DTI studio (139) and slicer3 (140) are

used to create color-coded anisotropic maps from DTI data, to

show the differing fiber orientation represented by the color-

codes and the degree of diffusion anisotropy as represented by

the signal intensity. DTI findings in human and animals

(Figure 2) have revealed alterations in the corpus callosum, a

structurally and functionally prominent brain commissural that

actively connects the two cerebral hemispheres. These alterations

(characterized by reduced fractional anisotropy and elevated

mean diffusivity) range from complete agenesis of the corpus

collosum to less severe alterations such as thinning and

hypoplasia, with the thinning more localized in the posterior

corpus collosum (141–145). Other quantitative studies have

revealed disproportionate volume reduction in the genu and

splenium of the corpus collosum of PAE subjects (146, 147).

Sowell et al. (144, 145) identified dislocations in the posterior

corpus collosum and correlated the degree of dislocation to the

extent of facial dysmorphology.

Photoacoustic imaging for structural
neuroimaging

In photoacoustic imaging, laser light is used to generate

ultrasound waves from tissue, by irradiating the tissue with

typically nanoseconds pulsed laser light (148). The most used

wavelengths for tissue excitation are the visible and near intra-red

region, typically in the range 532–1,100 nm, with the near infrared

region from 600–900 nm offering penetration depths extending to

several centimeters. Once the tissue is irradiated with sufficient light

energy of the right wavelength to cause optical excitation, specific

tissue chromospheres namely hemoglobin, lipids, water, melanin, etc.,

absorb the light energy, which is then rapidly converted to heat energy

by vibrational and collisional relaxation, producing a small

temperature rise within the surrounding tissues (148, 149). The

rise in temperature produced by the energy deposition, typically

less than 0.1 K induces a thermoelastic expansion, accompanied by

an initial pressure rise, which launches a pressure wave within the

surrounding tissue. The pressure waves propagate to the tissue surface

where they are detected by an acoustic transducer as a sequence of

time-resolved electrical photoacoustic signals called A-lines. Jiang and

colleagues (150) used structural photoacoustic tomography (sPAT) to

study the effects ofmaternal ethanol consumption on fetal brain blood

vessel diameter and density in second-semester equivalent (GD17)

pregnant CD-1 mice models of PAE. (Figure 3).

Jiang et al. (150) used structural photoacoustic tomography

(sPAT) to study the effects of maternal ethanol consumption on

fetal brain blood vessel diameter and density in second-semester

equivalent (GD17) pregnant CD-1 mice models of PAE. PAT

images were acquired for 40 min (at 5 min intervals) following

FIGURE 1
Facial and brain abnormalities following PAE on GD7 of the mouse. Compared to the control (A), PAE-affected animals (B-E) show varying
degrees of facial dysmorphology characterized by an elongated upper lip, a diminished philtra region, closely spaced nostrils, with small mandibles.
The lower figures (F-J) show MRM-based 3D reconstructed brain anomalies from least to most severe. There is a correlation between facial
dysmorphology and brain anomalies as animals withmost subtle facial dysmorphology appear to have relatively normal brains. Animals with the
more pronounced facial dysmorphology have a more severely affected brain, with the malformation corresponding to holoprosencephaly. (E, J), is
themost severe casewith the brain completelymissingmost of its telencephalonwith a severe facial phenotype, one nostril, with no lower jaw. Brain
are color-coded as follows: olfactory bulbs (pink), cerebral cortex (red), diencephalon (lime green), midbrain (magenta), cerebellum (blue),
mesencephalic/4th ventricle (teal), hindbrain (green). [Adapted from Ref. (11)].
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maternal intoxication of 20% ethanol at a volume of 3 g/kg via

intraperitoneal injections. According to the results, maternal

ethanol consumption on GD17 induces significant reduction

in fetal brain vessel diameter (up to 31.25%) and vessel

density (up to 25.1%)

Functional neuroimaging technologies

Functional neuroimaging techniques measure the

neurophysiological signal changes in various brain regions

that result from PAE. Signal changes of interest are typically

collected from the subject when no specific task is occurring

(such as during sleep—“Resting state”), when subjects perform a

given task or when subjects switch between tasks. These results

provide information about the neuronal mechanisms underlying

brain functions associated with sensory and cognitive activities.

Functional magnetic resonance imaging (fMRI), single-photon

emission computed tomography (SPECT), and positron

emission tomography (PET) are amongst the functional

imaging modalities reportedly used to study the effects of

PAE. Emerging technologies such as functional multispectral

photoacoustic imaging have also been used in recent studies.

Magnet-based imaging modalities
Functional magnetic resonance imaging (fMRI) is a

specialized form of MRI commonly used to study brain

functions. Established in the early nineties, fMRI employs the

difference in magnetic susceptibility between oxygenated and

deoxygenated hemoglobin and the changes in concentration that

results from local neural activation; to measure blood oxygen

level dependent magnetic resonance signals. Local neural

activation results in a corresponding localized increase

consumption of energy, resulting in differential blood oxygen

FIGURE 2
Color-coded fractional anisotropy maps from control mice (A) and GD7 ethanol exposed mice (C, E), compared to a control individual (B) and
FASD humans (D, F). The ethanol exposed mice have varying degrees of brain dysmorphology compared to the control. The mouse in (C) has mild
thinning of the corpus collosum in the middle section (*), while that in (E) has a reduced sized posterior and anterior corpus collosum with a
completely absent middle part (see white arrows). The hippocampal commissure (yellow arrow) is also reduced in the more severely affected
mice in (E). The effect in mice is remarkably similar to that in humans with FASD. Compared to the control (B), ethanol exposed humans (D, F) also
have considerable dysmorphology of the corpus collosum (black arrows) [Adapted from (121)].
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levels and thus a different blood oxygen level dependent signal

for oxyhemoglobin and deoxyhemoglobin. fMRI is the most

widely used functional imaging modality for studying the

effects of prenatal ethanol exposure.

fMRI studies have examined functional changes in brain activity

relating to specific cognitive tasks in subjects of PAE, compared to

normal control subjects (Figure 4). Hemodynamic responses in

subjects exposed to ethanol prenatally have been studied during

various cognitive tasks including response inhibition (152, 153),

mathematics and number processing (46, 154) working memory

(151, 155–158) and verbal learning (159). Most of these studies

report a difference in activation in the frontal regions between FASD

subjects and controls. In go/no-go tasks, greater neural activation

has been observed in several frontal and parietal regions during

response inhibition in PAE subjects (152).

Radiation-based imaging modalities
Single photon computed emission tomography (SPECT) is a

non-invasive functional imaging modality that uses gamma

radiations to evaluate blood flow or concentration of various

neurotransmitters. A radioisotope is injected into the organ of

interest and a gamma camera is used to capture 2D projections of

the organ with the distribution of radiotracers from different

angles. A computer algorithm is then used to reconstruct the 2D

projections into a 3D image of the organ of interest. SPECT is

typically used to evaluate regional brain metabolic activities by

coupling blood flow to regional brain metabolic activities. SPECT

studies have identified differences in cerebral blood perfusion in

the temporal (161), parieto-occipital, and prefrontal lobes (161)

of prenatal ethanol exposed subjects, differences in medial-

frontal serotonin transporter binding and increased striatal

dopamine transporter binding in prenatal ethanol exposed

subjects (162).

Positron emission tomography (PET) is a non-invasive

functional imaging modality that uses radiopharmaceutical isotopes

called radiotracers to visualize and measure physiological activities.

Radiation emitted from radiopharmaceuticals injected intravenously

into a subject is registered by external detectors positioned at different

orientations. The radiopharmaceutical injected into the organ of

interest breaks down and emits positrons, which interact with free

electrons resulting in an annihilation reaction (163). The two photons

(gamma rays) emitted from the annihilation reaction travel in

opposite directions and arrive coincidentally at 180° to each other

at the external detector. This signal is transferred to a computer for

processing. PET is typically used to quantitatively evaluate glucose

metabolism and blood flow associated with brain activity.

SPECT/PET studies are somewhat limited in their use to

study the effects of prenatal ethanol exposure possibly because

they focus on the “resting brain” and thus do no provide a direct

insight into specific behavioral deficits. A PET study using PET/

fMRI (see below) has identified differences in regional cerebral

metabolic rates in the thalamus and basal ganglion between

prenatal ethanol exposed subjects and normal subjects (164).

Photoacoustic imaging for functional
neuroimaging

Multispectral photoacoustic imaging is a form of optical

absorption spectroscopy (165) which attempts to identify the

source of photoacoustic imaging contrast by exciting tissue at

multiple wavelengths and identifying various contrast sources by

means of their known optical absorption spectra. The selected

wavelengths are such that the different absorber can be

FIGURE 3
Structural photoacoustic tomography shows vascular tree of developing mouse embryoGD-17. (A) Photography of mouse embryo. (B)
Photoacoustic image of fetal vasculature. Brain region within green oval shape [Adapted from (150)].
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distinguished from each other. After multi wavelength imaging,

the resulting set of PAT images at each single wavelength are fed

into a spectral unmixing algorithm, where they are converted to

sets of images of specific absorbers.

Jiang and colleagues (150) extended their photoacoustic

imaging study of the effects of maternal ethanol consumption

on fetal brain blood vessel in second-semester equivalent (GD17)

pregnant CD-1 mice models of PAE by using multispectral

photoacoustic tomography (fPAT) to study ethanol induced

oxygen saturation on fetal brain blood vessels (Figure 5).

Multispectral PAT images were acquired for 45 min (at 5 min

intervals) following maternal intoxication of 20% ethanol at a

volume of 3 g/kg via intraperitoneal injections. The results show

that, maternal ethanol consumption on GD17 induces up to a

39.78% reduction in hemoglobin oxygen saturation in fetal brain

blood vessels, indicative of significant hypoxia in fetal brain

circulation.

Modalities for imaging neurochemical
(metabolic) effects of PAE

FASD studies in humans and animals typically use magnetic

resonance spectroscopy (MRS) to study the metabolic effects of

PAE. This involves studying changes in neurochemistry of

various brain regions in PAE subjects and comparing the

results to normal control subjects.

Magnetic resonance spectroscopy (MRS) is a non-invasive

neuroimaging modality capable of providing biochemical

information about specific brain regions (166, 167). When

magnetic nuclei like 1H, 31P, 13C or 19F are placed in a magnetic

field, they resonate at specific frequencies depending on the nuclei

and the strength of the magnetic field. Thus, different radio

frequency coils and hardware can be used to tune into these

different frequencies to identify their origin. Due to the abundance

in living tissue, and the strength of the magnetic resonant

frequency, protons (1H) are by far the most widely used nuclei

for MRS. Protons, contained in various biochemical molecules in

living tissue resonate at different frequencies depending on the

electronegativity of the chemical bond they are involved in. Based

on these frequency differences [typically measured in parts per

million (ppm) due to the small size] in biochemical molecules

(metabolites) can be distinguished (168). An MRS experiment

typically involves exciting the nuclei in a specific volume of tissue

with a radiofrequency pulse and receiving the resulting signal, in

the form of a spectrum of signal intensity versus frequency, over a

range of frequencies. These spectra can then be analyzed to identify

the chemicals present in the volume as well as their relative

concentrations if the peaks are suitably calibrated (168). Typical

brain neurochemicals quantified by MRS include N-acetyl

FIGURE 4
Functional brain activation differences (bottom frame) between the prenatal alcohol exposed (top-left frame) and control (top-right frame)
subjects in a spatial working memory task. The exposed group exhibited greater activation in extended brain regions [Adapted from (151)].
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aspartate (a neuronal integrity biomarker), choline (an essential

molecule for the synthesis of the neurotransmitter acetylcholine

and cell membrane constituent phosphatidylcholine), and creatine

(an essential component for maintaining energy-dependent

systems in cells, gamma-aminobutyric acid, glutamate and

myoinositol) (166).

O’Leary et al. (170) used an animal model of neonatal ethanol

exposure to study regional brain neurochemistry in developing rats.

They administered ethanol to offspring early during postnatal life to

mimic third trimester ethanol exposure in the human and used a

specializedMRS technique called high-resolutionmagic angle spinning

to ascertain andquantify neurochemical data from intact brain biopsies.

The results from spectral analysis showed that neonatal ethanol

exposure results in region specific alteration in a number of

neurochemicals including glutamate, N-acetyl-aspartate, gamma-

aminobutyric acids etc., with the most pronounced alterations

occurring in the cerebellum. The findings are consistent with earlier

results by Green et al. (178), who observed reduced levels of N-acetyl-

aspartate and taurine (an inhibitory neuromodulator) in the cerebellum

of bothmale and female neonatal rats following binge ethanol exposure;

with lower glutamate levels in females, compared to controls. Several

other studies employing proton (1H) MRS to study neurochemistry in

PAE in humans and animals (46, 48, 168–170), have observed similar

alterations in neurochemicals, with the most consistent results being a

reduction in levels of neurochemicals like N-acetyl aspartate/creatine

and N-acetyl aspartate/choline ratios in multiple brain regions, notably

the parietal and frontal cortices, thalamus, and cerebellar dentate

nucleus as well as the frontal white matter and corpus callosum (169).

Conclusion and prospects

While epidemiology data on prevalence of PAE and resulting

brain-targeted effects of FASD are staggering, high-resolution

visualization of morphological and functional parameters of the

brain lags behind. Variants of MRI technologies including MRM,

DTI, and MRS, as well as radiation-based PET and SPECT imaging,

are amongst themodalities consistently used to study the effects of PAE

in humans and animals. FASD studies in humans and animals using

various structural neuroimaging modalities have revealed several

distinct abnormalities in the developing fetus owing to PAE. While

some imaging modalities are specific to animals, others could be used

in both animals and human subjects. Development of easily accessible

high-resolution imaging approaches, such as photoacoustic imaging,

holds promise for early diagnosis and successful therapeutic

interventions in the field of PAE.
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FIGURE 5
Multispectral photoacoustic imaging of oxygen saturation in fetal brain blood vessels following maternal ethanol intoxication on GD17. The
multispectral data was acquired at the two wavelengths shown in (A, B): Photograph of the mouse fetus. (C) Photoacoustic Images of the fetus. (D)
Percentage change in oxygen saturation over time in selected blood vessels in (E, F), oxygen saturation images [Adapted from (150)].
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Public perception surrounding whether cannabis use is harmful during

pregnancy often diverges greatly from the recommendations of doctors and

healthcare providers. In contrast to the medical guidance of abstinence before,

during, and after pregnancy,many women of reproductive age believe cannabis

use during pregnancy is associated with little potential harm. Legalization and

social cues support public perceptions that cannabis use during pregnancy is

safe. Moreover, pregnant womenmay consider cannabis to be a safe alternative

for treating pregnancy related ailments, including morning sickness.

Compounding the problem is a lack of medical and federal guidance on

safe, low, or high-risk levels of cannabis use. These issues mirror the

continuing debate surrounding alcohol use and health, in particular, whether

there are safe or lower risk levels of alcohol consumption during pregnancy.

Clinical studies to date suffer from several limitations. First, most human studies

are correlative in nature, meaning that causal associations cannot be made

between in utero cannabis exposure and health and behavioral outcomes later

in life. Due to obvious ethical constraints, it is not possible to randomly assign

pregnant mothers to cannabis or other drug exposure conditions—a

requirement needed to establish causality. In addition, clinical studies often

lack quantitative information on maternal exposure (i.e., dose, frequency, and

duration), include a small number of individuals, lack replication of outcome

measures across cohorts, rely on self-report to establishmaternal drug use, and

suffer from unmeasured or residual confounding factors. Causal associations

between maternal cannabis exposure and offspring outcomes are possible in

preclinical cohorts but there is a large amount of heterogeneity across study

designs and developmental differences between rodents and humans may limit

translatability. In this review, we summarize research from human and

preclinical models to provide insight into potential risks associated with

prenatal cannabinoid exposure (PCE). Finally, we highlight gaps in

knowledge likely to contribute to the growing divide between medical

guidance and public attitudes regarding cannabis use during pregnancy.
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Introduction

Cannabis is the most frequently used illicit drug during

pregnancy. Use by pregnant women has been increasing in

parallel with legalization of cannabis for medicinal and

recreational purposes and public perceptions that use of

cannabis products is not harmful. Two large studies of self-

reported cannabis use in pregnant women in the US from 2002 to

2017 [467,100 women; National Survey on Drug Use and Health,

NSDUH (1)], and in Northern California from 2006 to 2016

[279,457 women; Kaiser Permanente Northern California (2)],

reported an increase in cannabis use over time. Past-month use

reported by pregnant women in the NSDUH study was 7% in

2016–2017, an increase of 3.6%, while past-month daily/near

daily use by pregnant women was 3.4%, an increase of 2.5% (1).

Over the course of the Kaiser Permanente study the prevalence of

cannabis use by pregnant women increased by 2.9% (3). Notably,

cannabis use by pregnant women was highest during the first

trimester relative to other trimesters. In the NSDUH study, 11%

and 5.3% of pregnant women in 2016–2017 self-reported first

trimester past-month use and daily/near daily use, respectively,

and lower cannabis use during later trimesters (4).

It is possible that legalization of cannabis for recreational

purposes has contributed to increased cannabis use in both

pregnant and non-pregnant women. This relationship has not

been rigorously evaluated but numerous studies have found an

inverse relationship between cannabis use and perceived risk [for

review see (5)]. One recent study found evidence in support of an

additive interaction between cannabis use and perceptions of

cannabis as being low-risk and available (5). Pregnant woman

also reported cannabis use to manage or relieve stress,

depression, or nausea (6–8). Perceptions of cannabis as safe

and having medicinal properties are easy to reinforce through

social networks, media, and/or commercial messaging. In one

study, researchers contacted dispensaries in the guise of pregnant

women suffering from vomiting and nausea, a common first

trimester ailment. Out of the 400 Colorado cannabis dispensaries

contacted, 69% recommended the use of cannabis products to

manage symptoms of morning sickness (9). In another study,

over 30% of online media included the use of cannabis to manage

nausea and vomiting (10).

In stark contrast to public perception, cannabis use during

pregnancy and lactation is strongly discouraged by the American

College of Obstetricians and Gynecologists (11), the American

Academy of Pediatrics (12), and the Society of Obstetricians and

Gynaecologists of Canada’s (SOGC) policy (13). Another

growing concern among the medical and research community

is that the potency (THC level) of cannabis and derived products

has been steadily increasing since the 1990s (14). The impact of

maternal consumption of high potency cannabis on fetal

development is unknown, but exposure to higher levels of

THC may have adverse effects on development. The most

common route of cannabis administration reported by

pregnant woman is smoking blunts or joints (6). Relative to

oral administration, inhalation is associated with faster

adsorption and higher THC bioavailability, however, oral

administration may result in more prolonged exposure to

certain classes of THC metabolites [see (15) for review]. The

precise impact of potency and patterns of maternal cannabis use

on the developing fetus remains unclear. Regardless of the

method of consumption, it is clear from human and

preclinical studies that the major psychoactive component of

cannabis, THC, crosses the placenta into fetal tissues where it has

the potential to interfere with development [for review see (16)

and (17–25)].

In this review we provide a brief overview of the endogenous

cannabinoid system, its role in development, and possible

disruption due to cannabis use. We also summarize research

from human and preclinical models to provide insight into

potential risks associated with prenatal cannabinoid exposure

(PCE). Finally, we highlight limitations of the current research

and areas where further research is needed.

Role of endogenous cannabinoid
system in development

Exposure to cannabis during critical periods of development

can interfere with homeostatic endocannabinoid system (ECS)

function. The ECS plays a critical role in all stages of

development, from fertilization, through adolescence, and

beyond. Thus, exposure to cannabis has the potential to

disrupt ECS function at nearly all stages of life. Below we

provide a brief overview of the main components of the ECS

and the potential impact of developmental cannabis exposure

with a focus on brain development.

The main endogenous ligands of the ECS are the lipids

N-arachidonylethanolamide (AEA or anandamide) and 2-

arachidonoylglycerol (2-AG). AEA is synthesized from

membrane precursors by N-acylphosphatidylethanolamine-

specific phospholipase D (NAPE-PLD) and 2-AG is

synthesized by 1,2-diacylglycerol (DAG) lipases DAGLα and

DAGLβ. AEA is catabolized by fatty acid amide hydrolase

(FAAH) whereas 2-AG is catabolized by monoacylglycerol

lipase (MGLL). The primary effectors of the ECS are the

G-protein coupled receptors (GPCRs) cannabinoid receptor 1

(CB1) and 2 (CB2). AEA has partial agonist activity at the

CB1 and less so at the CB2. 2-AG acts as a full agonist at

both cannabinoid receptors. AEA and 2-AG can activate other

receptors, including GPCRs 55 and 119, and peroxisome

proliferator-activated receptor (PPARs). AEA can also act as

an agonist at transient receptor potential (TRP) channels (e.g.,

TRPV2, TRPV3, TRPV4, TRPA1, TRPM8). For a more detailed

review see (26).

Direct disruption of the ECS by developmental cannabis

exposure is thought to occur primarily through the binding of
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THC to CB1 and CB2. TRP channels and several orphan

G-protein coupled receptors (e.g., GPR55, GPR18) have also

been shown to respond to THC and other cannabinoids found in

cannabis (e.g., cannabidiol or CBD). However, their role in

disruption of the ECS and developmental processes is less well

understood. Indirect disruption of the ECS can also occur by

altering the levels of endogenous cannabinoids. Very early in

development, the endogenous endocannabinoids 2-AG and AEA

and their receptors, CB1 and CB2 are alternatively expressed in a

delicate spatial and temporal balance in reproductive tissue,

uterus, placenta, and in the developing embryo and fetus

where they play a collective role in fertilization, implantation,

decidualization, and placentation [reviewed in (27)]. Moreover,

use of cannabis prior to pregnancy and early in pregnancy

(i.e., first trimester) could interfere with ECS homeostasis

leading to infertility and adverse outcomes during pregnancy

including inhibition of embryonic growth and miscarriage.

The ECS also plays a critical role in fetal brain development

later in pregnancy (i.e., second and third trimesters). The binding

of THC to CB1 and CB2 is known to disrupt neuronal

development and connectivity (28–31). CB1 expression is

evident in the developing human brain by 14 weeks and adult

brain levels are reached by the end of the second trimester

(24 weeks), albeit with regional expression differences

apparent between fetal and adult brain (32). It is reasonable

to assume that exogenous cannabinoid exposure, especially THC,

during this time could interfere with cannabinoid receptor

signaling and ECS function. Indeed, modulation of CB1

function during development in preclinical models results in

disruptions in axonal pathfinding, progenitor cell expansion and

neurogenesis, and specification of neuronal and glial cell lineages

(33–35). Moreover, genetic deletion of CB1 in preclinical models

is associated with altered morphology or function in numerous

brain structures. These include cerebellum (36), cortex (37–39),

striatum (40), bed nucleus of the stria terminalis (41), and other

mesocorticolimbic areas (42).

Adolescence (12–18 years-of-age in humans and postnatal

days 25 through 58 in rodents) is yet another critical period in

brain development where the ECS plays a major role in the

maturation and plasticity of corticolimbic brain regions

[reviewed in (43)]. Adolescence is marked by neuronal

circuitry maturation, synaptic remodeling and an overall

reduction in synapse numbers, increasing white matter

volume, and increasing cognitive capability (44). Prenatal

exposure to THC may sensitize or subtly alter neuronal

circuits leading to enhanced vulnerability and impairments

that appear later in adolescence (45–47). For example,

alterations in dopamine D2 (48) and µ opioid (49) receptors

have been observed in human fetuses following prenatal cannabis

exposure, although the duration of these alterations is unknown.

In rodents, long lasting changes in dopamine (48, 50, 51) and

opioid brain circuitry (specifically µ opioid receptor levels) have

been observed along with increased seeking of heroin in

adulthood (52, 53). Changes in adolescent behavior following

prenatal THC exposure, including altered activity (54, 55),

impaired memory (51, 56, 57), and inhibited social

interactions and emotional reactivity (58, 59) have also been

reported and will be reviewed in detail in later sections. Taken

together, exposure to cannabis during pregnancy has the

potential to disrupt the delicate balance of the ECS function

and interfere with development. In the following sections we

review birth and longer-lasting outcomes associated with PCE

based on human and rodent research.

Clinical birth outcomes associated
with PCE

Numerous studies (Table 1) in human cohorts have

examined the potential relationship between PCE and birth

or perinatal outcomes (i.e., low birthweight, stillbirth,

preterm birth, neonatal distress, morphological defects,

etc.). As mentioned previously, the ECS is important for

implantation, placental development, and maintenance of

the pregnancy [reviewed in (60)] and disruption of the

ECS through exogenous cannabinoid exposure could exert

direct effects on fetal development or indirect effects on

intrauterine growth and survival.

The most frequently reported adverse birth outcome

following PCE in clinical studies (Table 1) is low birth weight

(62–66, 70–73, 76). Premature delivery (61, 63, 64, 71, 76) and

admission to neonatal intensive care (64, 65, 71, 76) are also

frequently associated with PCE. The studies reported in Table 1

often measure multiple birth outcomes, many of which are not

significantly associated with PCE. In addition, several studies

found no association between PCE and birth outcomes after

correcting for potential confounding factors (67–69, 75). Most

studies in Table 1 included a modest number (<1,000) of women

with exposure to cannabis during pregnancy. A few studies

increased this number several fold by leveraging information

available through electronic medical health records (71, 76).

Digital health information is a useful resource to evaluate the

potential impact of PCE in larger populations but generally

precludes analysis of cannabis exposure (i.e., frequency and

use patterns) during pregnancy and may even select for

individuals with heavy cannabis use.

Low birth weight, premature delivery, and admission to

neonatal intensive care are the most frequently reported

adverse birth outcomes significantly associated with PCE.

Stillbirth and gross morphological defects were rarely

associated with PCE, which suggests that the range of possible

adverse outcomes following cannabis exposure may be relatively

narrow. One important consideration affecting most of the

studies in Table 1 is the inability to quantify dose, duration,

frequency, and amount of exposure. In some studies, maternal

exposure is classified by patterns of use (see Table 1), however the
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TABLE 1 Birth outcomes.

Study Region Cohort Exposed Years Cannabis
use

Maternal use
classification

Outcomes

(61) South Australia 7,301 births 394 1975 to 1981 Self-Report Nonuser Premature birth, fetal
growth restrictionUp to once per

week (356)

> once per week (36)

(62) Boston,
United States

1,690 mother/child
pairs

~230 1977 through
1979

Self-Report Never Low birth weight

Once per month (51)

Once per month but <
once per week (51)

1-2 times per week (101)

3+ timer per week (34)

(63) Connecticut,
United States

3,857 mothers 367 1980 through
1982

Self-Report Nonuser Low birth weight, small
for gestational age,
premature birth (white
women only)

Occasional user (once
per month or less; 158)

Regular User (2-3 times
per month or more; 209)

(64) Ontario, Canada 98,512 women 5,639 2012 to 2017 Self-Report No Preterm birth, low birth
weight, placental
abruption, transfer to
neonatal intensive care,
and low Apgar scores

Yes

(65) 8 countries Meta-analysis of
24 studies

Variable 1982 and 2014 Self-Report NA Low birth weight and
transfer to neonatal
intensive care

(66) Boston,
United States

1,226 mothers and
children

331 1984 through
1987

Self-Report
and Toxicology

Negative Low birth weight,
decrease in body lengthPositive

(For both self report and
urinalysis)

(67) 7 University
prenatal clinics
across the
United States

7,470 women 822 1984 to 1989 Self-Report
and Toxicology

Negative Cannabis use during
pregnancy not related to
preterm birth or low
birth weight

Positive

(For both self report and
serum analysis)

(68) Boston,
United States

12,424 women 1,246 August
1977 and
March 1980

Self-Report None Low birth weight,
premature birth and
major malformations
more frequent for
cannabis users but these
were no longer
significant after adjusting
for confounding factors

Occasionally (880)

Weekly (229)

Daily (137)

(69) Avon,
United Kingdom

12,129 mothers 585 (use prior to
pregnancy); 311
(use in 1st
trimester), 250
(use mid
pregnancy)

1991 through
1992

Self-Report Never After adjusting for
confounding factors, no
outcomes were
significant but there was
a trend for negative
association between
frequency and duration
of cannabis use during
pregnancy and birth
weight

6 months before
pregnancy: Daily (109),
2-4 times per week (149),
Once per week
(49), <Once per
week (278)

1st Trimester: Daily (61),
2–4 times per week (84),
Once per week
(34), <Once per
week (132)

Mid-pregnancy: Daily
(53), 2–4 times per week
(59), Once per week
(39), <Once per
week (99)

(Continued on following page)
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numbers in each category are frequently small and classification

relies on self-report. Moreover, the composition of cannabis has

changed substantially over the duration of these studies. In the

US, the amount of THC in cannabis (i.e., potency) has tripled

from ~4% in 1995 to ~12% in 2014 while the CBD content has

decreased from 0.28% in 2001 to less than 0.15% in 2014 (14). In

TABLE 1 (Continued) Birth outcomes.

Study Region Cohort Exposed Years Cannabis
use

Maternal use
classification

Outcomes

(70) Norway 9,312 women
(10,373 pregnancies)

272 1999 and 2008 Self-Report None Low birth weight

Previous use before
pregnancy (10,101)

Curtailed use during
1 period in
pregnancy (209)

Prolonged use during at
least two periods of
pregnancy (63)

(71) United States 12,578,557 women
and births

66,925 1999 to 2013 Electronic
Medical Health
Records

No diagnosis Intrauterine growth
restriction, premature
birth, stillbirth

Diagnosis of cannabis
dependence or abuse

(72) New York,
United States

139 aborted fetuses 44 2000 to 2002 Self-Report
and Toxicology

Non-users Reduction in body weight
and foot lengthBefore pregnancy:

Nonuse (8), Light use
(17), Moderate use (4),
Heavy use (15)

During pregnancy:
Nonuse (8a), Light use
(13), Moderate use (7),
Heavy use (10)

(73) Rotterdam,
Netherlands

7,452 mothers 459 April 2002 to
January 2006

Self-Report Nonuse Growth restriction of the
fetus in mid- and late-
pregnancy and lower
birth weight

Continued cannabis
use (41)

Cannabis use in early
pregnancy (173)

Cannabis use before
pregnancy (245)

(74) Ohio, United States 325 mothers 111 2010 to 2015 Self-Report
and Toxicology

No exposure Increased risk of small for
gestational age (less than
10th and 5th percentiles)

Prenatal cannabis
exposure (37)

Prenatal

cannabis and tobacco
exposure (74)

Prenatal tobacco
exposure (66)

(75) Ohio, United States 363 women 119 2010 to 2015 Self-Report
and Toxicology

Negative No association with
preterm birth in this at-
risk cohort

Any positive (based on
questionnaire, obstetrical
record, or urine
toxicology)

(76) California,
United States

3,067,069 29,112 2011 through
2017

Electronic
Medical Health
Records

No cannabis-related
diagnosis

Premature birth, small for
gestational age,
admission to neonatal
intensive care unit, major
structural malformations
(brain and
gastrointestinal)

Any cannabis-related
diagnosis

Italicized text indicates significant associations with PCE. Exposed = Number of individuals within each cohort with cannabis use based on self-report or other measures. Maternal use

classification defined in each study with the estimated number of individuals based on available summary tables. Light use = 0 > average joints per day <0.4; moderate use = 0.4 average joints

per day <0.89, heavy use = average joints per day ≥0.89.
aself-reported non-use but positive toxicology test.
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the Netherlands, potency is likely to be even higher with THC

levels of 17.7% reported for Dutch cannabis products (77).

Differences in cannabis composition and potency complicate

comparisons of outcomes between studies. It is unclear whether

the steep increase in cannabis potency is associated with any

increases in birth outcome severity (Table 1). This issue has not

been extensively explored, partly due to the inability to accurately

quantify fetal exposure over the duration of the pregnancy and it

remains unclear how potency and level of maternal cannabis

exposure contribute to the risk of adverse birth outcomes. It is

also important to acknowledge that associations found between

cannabis exposure in pregnancy and birth outcomes in Table 1

do not imply causality. Other limitations include a reliance on

self-report to assess fetal exposure, different comparison groups

and control of possible confounding variables among studies,

generally small sample sizes and possible selection bias (i.e., study

individuals are not representative of the general population), and

potential confounding by unmeasured or residual variables (e.g.,

socioeconomic status, maternal and fetal genetic factors,

maternal behavior and nutrition, polydrug exposure, etc.).

Long-lasting impact of PCE on
behavior and human brain
development and function

Given the ubiquitous role of the ECS in development, from

fertilization through adolescence, a reasonable hypothesis is that

prenatal exposure to cannabis will have a long-lasting impact on

child development. Below we summarize the research addressing

this assertion. Most of the research into the potential long-term

behavioral consequences associated with maternal cannabis use

is based on population-based longitudinal cohorts where healthy

mothers are recruited from the population and both mothers and

offspring followed up at regular intervals.

Human longitudinal cohorts

The Maternal Health Practices and Child Development

Study (MHPCD) and Ottawa Prenatal Prospective Study

(OPPS) are the most comprehensive longitudinal studies yet

completed. The OPPS (78) cohort primarily consisted of low-

risk, middle-class white Canadians and included a total of

49 offspring tracked annually between birth and the age of 6,

followed by less frequent follow ups through 22 years-of-age. The

high-risk MHPCD (79, 80) cohort consisted of 763 mother-

infant pairs at inception and included high-school-educated

mothers of lower socioeconomic status and mixed ethnicity

(52% African Americans and 48% European Americans) with

light-to-moderate use of cannabis, alcohol, and nicotine living in

the Pittsburgh, PA area. Cannabis and other drug use was

assessed by self-report before pregnancy, at each trimester,

and during subsequent follow-up interviews at 8 and

18 months and 3, 6, 10, 14, 16, and 22 years postpartum.

The largest international longitudinal cohort, with

~100,000 pregnant women recruited between 1998 and 2008,

is the Norwegian Mother and Child Cohort Study (MoBa).

Biological samples and questionnaire data were collected

starting at 17 weeks of gestation. This low-risk and healthy

lifestyle cohort has resulted in ~270 published studies to date.

However, as of 2022, only a single study on birth outcomes

related to PCE (70) (Table 1) has been published. Additional

longitudinal cohorts are in progress.

Other ongoing studies include the Adolescent Brain

Cognitive Development (ABCD) study, the Generation R

study (GenR), and the Lifestyle and Early Achievement in

Families study (LEAF). The largest US cohort is the ABCD

study, which consists of ~12,000 US children enrolled between

the ages of 9 and 10 at 21 different sites. The ABCD participants

will be tracked for 10 years. The GenR study (81) enrolled

9,778 pregnant women with delivery dates from April 2002 to

January 2006. These women were of higher socio-economic

status and primarily from Dutch, Surinamese, Turkish and

Moroccan ethnic groups in Rotterdam in the Netherlands.

Outcomes were measured in early pregnancy (73; Table 1)

with some offspring assessed through young adulthood.

Behavioral outcomes at birth through age 6 are currently

available. The LEAF study population consists of a high-risk

cohort of pregnant women (63%African American) enrolled into

the Ohio Perinatal Research Repository and includes

362 offspring (116 with prenatal cannabis exposure) eligible

for continued follow-up from 3.5 to 7 years beginning in

September of 2016 and continuing through August of 2020

(82). Unlike the other cohorts, LEAF study participants

provided clinical samples (blood and urine) at enrollment and

at each trimester. Thus, cannabis exposure based on THC

metabolites can be assessed prospectively for this cohort.

Findings from these longitudinal studies are discussed below.

Cognitive deficits

Cognitive ability and executive function span many

dimensions including intelligence, achievement,

comprehension, memory, attention, and impulse control.

Cognitive outcomes associated with PCE in the various

longitudinal cohorts are summarized below and in Table 2.

OPPS
Major deficits in cognitive function are not consistently

detected across developmental stages in the OPPS cohort. A

significant association with PCE was not detected until age 4, at

which point maternal cannabis use was associated with lower

verbal and memory domains assessed as part of the McCarthy

Scales of Childrens’ Abilities (MSCA) (83). These associations
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TABLE 2 Alterations in cognitive function related to PCE in human longitudinal cohorts.

Cohort Infancy (0 to
12 months)

Early childhood
(1 to 4 years)

Middle
childhood (5 to
8 years)

Preadolescence (9 to
12 years)

Adolescence (13 to
17 years)

Young adult (18 to
22 years)

OPPS (95, 96) Poor
habituation to visual
stimuli, increased
tremors and startles
(BNAS) at 4 days old
(97). Increased fine
tremors, Moro reflex
tremors, startles,
heightened motor
reflexes (PNE, 9 and
30 days old) and
increased hand to
mouth behavior
(9 days old)

(98) No adverse effect
on mental, motor,
visual, or language
outcomes (ages 1 and 2,
BSID and RDLS) (83).
No difference in verbal,
quantitative, general
cognitive, memory, and
motor ability or
language
comprehension
(MSCA/RDLS (age3)
(83). Lower verbal
ability and memory
subscale associated with
heavy prenatal use
(MSCA and PPVT-FL,
age 4)

(88) No difference in
global intelligence, or
cognitive and
language ability or
memory (aged 5 and
6 years, MSCA and
PPVT-FL) (93). No
difference on impulse
control, deficit in
sustained attention
(age 6)
(93) Higher parental
ratings of impulsivity/
hyperactivity (age 6)

(87) No difference in reading
and language measures on
comprehensive test battery
including WISC-III and
WRAT (aged 9–12) (86). No
difference in global
intelligence or verbal ability
but decreased visual analysis
and hypothesis testing and
decreased impulse control
(WISC-III, Category Test,
GDT age 9–12) (90). No
difference in visuoperceptual
function (TVPS). Decreased
performance in visual
problem solving associated
with heavy prenatal use
(WISC-III, age 9–12)

(85) No difference in
most tests related to
general intelligence,
achievement, memory,
and executive function.
Deficit in visual memory,
analysis, and integration
tasks (age 13 to 16,
WRAT, PIAT, MN, AD,
SMT, KCT, WCST,
Stroop, WISC-III) (89).
Less consistency in
reaction times and more
omissions indicative of a
deficit in attentional
stability (age 13 to 16,
CPT, WCST, ST, WISC)

(94) Higher impulsivity
and increased activity in
bilateral PFC and right
PMC and attenuation of
activity in left CB during
response inhibition (age
18 to 22, Go/NoGo,
fMRI) (91). No
differences in visuospatial
working memory (V2B).
More activity in left
inferior and middle
frontal gyri, left
parahippocampal gyrus,
left middle occipital gyrus,
and left cerebellum. Less
activity in the right
inferior and middle
frontal gyri (fMRI, age
18–22) (92). No
difference in task
performance (V2B, Go/
NoGo, L2B, CST) but
changes in blood flow
during tasks were altered,
specifically, increased
activity in posterior brain
regions (fMRI, ages
18–22)

MHPCD (99) Lower SBIS
composite score, lower
verbal reasoning and
short-term memory
deficits (age 3)

(79) Lower SBIS
composite score, lower
quantitative and
verbal reasoning and
deficits in short-term
memory (age 6) (100).
Higher impulsivity on
CPT (age 6)

(101) Poor performance
WRAT-R reading and
spelling scores and PIAT-R
reading comprehension score.
Higher rate of educational
underachievement (age 10)
(102). SNAP attention
deficits, hyperactivity,
impulsivity (age 10) (110).
Deficits in design memory
and screen score (age 10,
WRAML)

(103) Decreased WIAT
composite and reading
scores (age 14) (104).
BCT decreased
performance on one
measure of processing
speed and two measures
of interhemispheric
coordination and better
performance on one
measure of visual-motor
coordination (age 16)

(105) Indirect effect on
adult memory (WMS-III)
mediated through
intelligence (age 6),
memory (age 10), and
early-onset cannabis use
(age 22)

GenR (106) Attention
problems in females
(CBCL, age 18 months)

(107) Thicker frontal
cortex with no change
in gray or white matter
volumes (MRI,
ages 6–8)

LEAF (108) No difference in
executive functioning
(age 3.5)

ABCD (109) No cognitive deficits or
changes in brain activity
(fMRI) during tasks
measuring response
inhibition (SST), reward
processing (MID), and
working memory (EN-
Back). Higher attention
problem score (CBCL,
ages 9–10)

Italicized text indicates significant associations with PCE. PNE, Prechtl neurological examination; BNAS, Brazelton Neonatal Assessment Scale; BSID, Bayley Scales of Infant Development;

RDLS, Reynell Developmental Language Scales; MSCA, McCarthy Scales of Childrens’ Abilities; PPVT-FL, Peabody Picture Vocabulary Test-Form L; SBIS, Stanford-Binet Intelligence

Scale; CPT, Continuous Performance Task; MRI, Magnetic Resonance Imaging; WISC-III, Wechsler Intelligence Scale for Children; WRAT, Wide Range Achievement Test-Revised;

Category Test, test of abstraction or concept formation ability; GDT, Gordon Diagnostic Delay and Vigilance Task; TVPS, Test of Visual-Perceptual Skills; PIAT-R, Peabody Individual

Achievement Test-Revised; SNAP, Swanson, Noland, and Pelham attention subscale; fMRI, functional MRI; SST, Stop Signal task; MID,Monetary Incentive Delay task; EN-Back, EN-Back

task of workingmemory; CBCL, Child Behavioral Checklist; PIAT, Peabody Individual Achievement Test; MN,Missing Numbers test of auditory and visual memory; AD, Abstract Designs

test of auditory and visual memory; SMT, Sentence Memory Test of auditory and visual memory; KCT, Knox Cube Test of auditory and visual memory; WCST, Wisconsin Card Sorting

Test; Stroop, Stroop Color/Word Interference Test; WIAT, Weschler Individual Achievement Test; BCT, computerized Bimanual Coordination Test; PFC, Prefrontal Cortex; PMC,

Premotor Cortex; CB, Cerebellum; V2B, Visuospatial 2-Back task; Go/NoGo, Go/NoGo task; L2B, Letter 2-Back task; WMS-III, Weschler Memory Scale-3rd Edition.
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were no longer significant at later developmental periods

following adjustment for potential covariates (84–88). During

preadolescence (i.e., ages 9–12), some aspects of visual-motor

integration, non-verbal concept formation, and visual problem

solving were significantly associated with PCE (86, 89, 90). Some

of these PCE associated deficits (e.g., alterations in visual

memory, analysis, and integration) persisted through

adolescence (85). However, in young adults (i.e., ages 18–22),

PCE was no longer found to predict deficits in visuospatial

working memory (e.g., Visuospatial 2-Back or V2B) (91).

Long lasting alterations in brain function may still be

associated with PCE in the absence of profound deficits in

cognitive function. Young adults with PCE showed significant

and differential activation of brain regions during task

performance (e.g., V2B, Go/NoGo, Letter 2-Back or L2B,

Counting Stroop Test or CST) as measured by functional

magnetic imaging (fMRI) even though task performance was

similar between individuals with and without PCE (91, 92).

In contrast, deficits in attention and impulsivity associated

with PCE were identified at multiple developmental stages in the

OPPS cohort. Sustained attention deficits were significantly

associated with PCE at age 6 (93) as were higher parental

ratings of impulsivity and hyperactivity (93). During

preadolescence, PCE was associated with decreased impulse

control (86). During adolescence (i.e., ages 13–17), mild

attentional deficits were significantly associated with PCE (89).

In young adults, higher levels of impulsivity and alterations in

cortical and cerebellar brain activity during response inhibition

were significantly associated with PCE (94).

MHPCD
Potential cognitive issues related to PCE exposure appeared

earlier in development and were more consistently detected for

the higher risk MHPCD cohort. At the 3-year follow up during

early childhood, maternal cannabis use in the second trimester

was significantly and negatively correlated with short term

memory subscale scores on the Stanford-Binet Intelligence

Scale (SBIS) (99). In African Americans, first trimester use

predicted a lower score on the verbal reasoning subscale and

second trimester use predicted a lower score on the short-term

memory subscale. In European Americans only, preschool

attendance counteracted the negative impact of PCE on short-

term memory and verbal reasoning. Cognitive deficits persisted

at the 6-year follow up during middle childhood and problems of

attention and impulsivity emerged. At this age, lower intelligence

test composite scores were associated with heavy use

(i.e., maternal use of one or more marijuana cigarettes per

day) (79). Heavy first trimester cannabis use predicted lower

verbal reasoning scores while heavy second trimester use

predicted lower composite, short-term memory, and

quantitative reasoning scores. Heavy use in the third trimester

also predicted lower quantitative reasoning scores. Second

trimester cannabis use also predicted higher impulsivity scores

(i.e., greater errors of commission on the CPT-3) and,

counterintuitively, higher attention scores (i.e., fewer errors of

omission on the CPT-3) (100).

However, at the 10-year follow up during preadolescence

there appeared to be little impact of PCE on most neurocognitive

domains tested [e.g., problem solving and abstract reasoning

(computerized Wisconsin Card Sorting test or WCST); learning

and memory (WRAML); attention, visuomotor tracking and

problem solving (Trail Making, Parts A and B), mental

flexibility (Stroop Color/Word Interference Test),

psychomotor speed and eye-hand coordination (Grooved

Pegboard), attention and mental efficiency (Continuous

Performance Test), attention, impulsivity, information

processing efficiency and motor control (The Pediatric

Assessment of Cognitive Performance Test] (110). Notable

exceptions included impulsivity, reading comprehension and

educational achievement. Second trimester maternal cannabis

use predicted higher impulsivity (albeit near the end of the CPT

task in the 3rd trial) (110) and was also a significant predictor of

reading comprehension scores, teacher evaluations, and under-

achievement (a mismatch between ability and teacher-rated

academic achievement) (101).

Access to individual longitudinal data across many

behavioral outcomes in the MHPCD enabled advanced

statistical approaches to evaluate causal interactions and

potential mediation between PCE, study outcomes, and both

measured and unmeasured variables. Structural equation

modeling (SEM) found that first trimester PCE and school

achievement at age 10 were both mediated by child

psychological status, which was independent of PCE (101).

The indirect impact of PCE on adult memory was also

assessed by SEM at the 22-year follow up in young adulthood

(105). Although the authors found no evidence of a direct effect

of PCE on adult working memory, they reported an indirect

effect on adult memory mediated through intelligence (assessed

at age 6), adolescent memory (assessed at 10 years), and early-

onset (initiation at < 15 years of age) cannabis use.

Other cohorts
The GenR, LEAF, and ABCD studies also reported

attentional deficits associated with PCE, but few cognitive

problems following PCE. In the GenR cohort, PCE was

associated with attention problems in 18-month-old females

as measured using the Child Behavior Checklist (CBCL) for

toddlers (106). The LEAF study was specifically designed to test

the influence of PCE on executive function (i.e., inhibitory

control, attention, planning ability, cognitive flexibility,

episodic memory, processing speed, working memory, visual-

spatial ability, and emotional regulation) and aggressive behavior

in early to middle childhood (82). However, at age 3.5 there was

no difference in executive functioning between children with

PCE and unexposed children (108). Likewise, during

preadolescence (i.e., ages 9 and 10) in the ABCD cohort,
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cognitive deficits and changes in brain activity (fMRI) during

tasks measuring response inhibition (i.e., the Stop Signal Task or

SST), reward processing (i.e., the Monetary Incentive Delay task

or MID), and working memory (i.e., the En-Back test) were not

associated with PCE (109). However, PCE was significantly

associated with higher attention problems (CBCL, ages

9–10) (109).

Brain morphological changes

Imaging studies in these human longitudinal cohorts are

beginning to address whether changes in brain function and

morphology during development are associated with PCE.

Global brain regional volume was assessed by magnetic

resonance imaging scans (MRI) in a subset (i.e., 96 children

with prenatal tobacco exposure, 54 children with PCE, and

113 unexposed children) of the GenR cohort during middle

childhood (i.e., 6–8 years) (107). In this imaging study, PCE

was significantly associated with thicker frontal cortices relative

to unexposed controls, while changes in gray or white matter

volume were not associated with PCE. These findings suggest

that children with PCE may undergo delayed cortical maturation

and cortical synaptic pruning, a tantalizing result given that

cognitive deficits appeared more prominent at earlier

developmental stages in several cohorts (e.g., OPPS, MHPCD).

However, the association between PCE and cortical morphology

is correlative in nature and needs to be examined more rigorously

to establish causality, developmental timing, underlying

mechanisms, relationship to behavioral outcomes, and

reproducibility.

Psychopathology and externalizing/
internalizing behavioral problems

Aggressive behavior, externalizing behavior, and increased

psychopathology have been significantly associated with PCE in

several cohorts and are summarized below. However, family

environment or genetic factors also appear to contribute to

these traits.

Externalizing problems
Aggressive behavior (as measured using the CBCL for

toddlers) in 18-month-old females was significantly associated

with PCE in the GenR cohort (106). Aggressive behavior was also

significantly higher in 3.5-year-old children with PCE relative to

non-exposed children in the LEAF cohort (108). Numerous

behavioral problems (i.e., higher withdrawal symptoms,

externalizing behavior problems, and oppositional defiant

behaviors) reported by a mother or caregiver were also

significantly associated with PCE at age 3.5 in the LEAF

cohort (108). Later, in middle childhood (i.e., age 6), PCE was

associated with a higher level of hair cortisol concentrations

relative to non-exposed children, suggestive of alterations in child

HPA-axis function following in utero cannabis exposure (111).

In the ABCD study, PCE was significantly associated with higher

externalizing problems and higher total problem scores (CBCL)

(109) during middle childhood (i.e., ages 9 and 10). In the GenR

cohort, during both middle childhood and preadolescence

(i.e., ages 7 through 10), PCE was associated with offspring

externalizing problems (112). However, maternal cannabis use

prior to pregnancy and paternal cannabis use were also

associated with child externalizing problems suggesting that

these associations are not due solely to in utero cannabis

exposure. Shared familial and/or genetic confounding factors

or additional residual or unmeasured confounding factors may

have contributed to the observed associations in the GenR

cohort (112).

Internalizing problems
For the MHPCD cohort, at the 10-year follow up, first and

second trimester cannabis exposure was significantly associated

with higher levels of depressive symptoms based on child self-

report (113). However, a subsequent analysis of combined

depression and anxiety symptoms at the 10-year follow up

found only a marginal association between PCE and levels of

self-reported depression/anxiety symptoms (114).

Psychopathology
At the 10-year follow up in the GenR cohort, increased

psychotic-like experiences were significantly associated with

PCE, maternal cannabis use prior to pregnancy, and paternal

cannabis use (115). These associations are highly suggestive of

multiple shared etiologies for psychopathology. Psychosis

proneness (total score on Prodromol Questionaire-Brief Child

Version) was also measured in preadolescents (i.e., age

8.9 through 11) in the ABCD study. Continued use of

cannabis after knowledge of pregnancy was significantly

associated with increased child psychosis proneness (116) and

increased psychotic-like experiences (117) and greater

psychopathology (i.e., higher CBCL scores for psychotic-like

experiences and internalizing, externalizing, attention, thought,

and social problems) (117). In the ABCD cohort, longitudinal

analysis of children aged 8.9–13.8 years found that maternal use

of cannabis after knowledge of pregnancy was associated with

persistent vulnerability to psychopathology during the period of

preadolescence (118). PCE was also associated with an increased

frequency of psychotic symptoms in young adults from the

MHCP cohort (119).

Sleep alterations

Alterations in sleep following PCE have been reported for

different ages in several cohorts. A small sleep pattern sub-study
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(20 controls and 18 cannabis exposed children) of 3-year olds

from the MHPCD cohort found that PCE was associated with

frequent nocturnal arousals after sleep onset, more awake time

following onset of sleep, and lower sleep efficiency without any

change in overall sleep duration or time spent in each sleep stage

(120). Analysis of sleep patterns at 3.5 years of age in the LEAF

cohort found that PCE was significantly associated with more

sleep-related problems based on maternal or caregiver reports

(108). A recent analysis of over 11,000 children aged 9–10 years

enrolled in the ABCD study (242 with likely continuous cannabis

exposure during pregnancy) found a trend between sleep

problems (assessed using the Sleep Disturbance Scale for

Children) and continued use of cannabis during pregnancy

relative to no exposure and cannabis use before knowledge of

pregnancy (117). Other studies analyzing ABCD data also found

significant associations between PCE and several sleep problem

scales (121) and that, relative to unexposed offspring, exposed

offspring did not benefit from increased sleep in terms of

decreased internalizing (mood) problems (122). It should be

noted that mothers with cannabis use before and after knowledge

of pregnancy were pooled in the Winiger and Hewitt, and

Spechler et al., ABCD studies, and thus the amount, duration,

and frequency of cannabis exposure over the duration of the

pregnancy was not meaningfully assessed, and there is a strong

possibility of unmeasured or residual confounding.

Substance use

Risk of cannabis use later in life appears to be elevated

following PCE. In adolescent and young adults from the

OPPS cohort, PCE was associated with both an increased risk

of using cannabis and cigarettes, and an increased risk of daily

cigarette smoking (123). Moreover, the risk of subsequent

cannabis use following PCE was much higher for male

offspring relative to females. In the MHPCD cohort, PCE was

predictive of early onset cannabis use (EOCU, before the age of

15) and frequency of use at the 14-year follow up (124). Although

PCE was not directly associated with cannabis use disorder

(CUD) during young adulthood (i.e., 22-years-of-age) in the

MHPCD population, path analysis incorporating longitudinal

cohort data was used to examine potential pathways between

PCE and CUD (125). Two indirect paths were found; one path

led from PCE to CUD through EOCU while another led from

PCE to CUD through depression symptoms at age 10 and EOCU.

Summary

Cognitive deficits associated with PCE do not appear to be

pervasive across human longitudinal cohorts and seem to appear

during specific developmental periods. Relative to other cohorts,

the higher risk MHPCD cohort with light to moderate use of

cannabis and other substances during pregnancy had more

cognitive issues related to PCE exposure. These deficits

appeared early in development (prior to age 10) and were

more consistently detected during this time. However, it is not

possible to assess whether the higher burden of early cognitive

deficits associated with PCE in the MHPCD cohort was

associated with higher in utero cannabinoid exposure or other

socioeconomic or environmental factors. Patterns of maternal

cannabis use before and during pregnancy were quantified based

on self-report in the MHPCD, however associations between use

patterns and cognitive outcomes were not always linear. It is not

clear whether these results reflect statistical issues or

developmentally sensitive periods.

In contrast, attention/impulsivity deficits were more

consistently associated with PCE across cohorts and

developmental stages. Deficits in attention and impulsivity

were often detected during development in the OPPS and

MHPCD cohorts and were reported at 18-month-of-age in

the GenR study, and during preadolescence (i.e., ages 9–12)

in the ABCD cohort. Although associations here are correlative,

the combined results across cohorts suggest that PCE may

impact brain structures and functions governing attentional

processes and impulsivity. Another shared finding across the

two most comprehensive longitudinal studies yet completed

(e.g., OPPS, MHCDP) was the association between PCE and

increased risk of substance use later in life. It will be useful to

evaluate offspring substance use patterns in ongoing

longitudinal cohorts to see if these associations hold across

different study populations, covariates, risk levels, and maternal

exposures.

Other findings from human longitudinal cohorts are less

clear and point to the need for additional insight and research.

For example, it is unclear how PCE influences brain structural

changes and sleep during development, largely owing to a lack

of data across study populations. Evidence for a role of fetal

exposure to cannabis and alterations in aggression, depression,

and psychosis appear mixed. Associations between PCE and

psychosis and/or externalizing/internalizing traits were

detected at different developmental stages across cohorts.

However, interpretation of these findings is often

complicated because environment, family, and genetic

predisposition appear to influence these outcomes as much,

or even greater than PCE. Future mechanistic studies in

preclinical models and advanced statistical modeling in

longitudinal cohorts may be able to dissect complex

interactions between PCE, environment, genetics, and their

combined influence on behavior.

Support from preclinical studies

Unlike clinical cohorts, preclinical studies have tight

control over cannabinoid composition, dose, duration, and
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TABLE 3 Litter outcomes following cannabis or THC exposure in preclinical models.

Citation Model Maternal
exposure period

Dose Vehicle Controls Birth outcome

(128) CR CD1M G6 through G15, daily THC (5,15, 50, or 150 mg/kg),
oral (gavage)

Sesame oil No effect on maternal weight
gain. No effect on prenatal
mortality, fetal weight, or gross
morphology.

(129) C3H/HeJM Exp1: G0 through birth
Exp2: PND21 (mother)
through birth

CE (40% THC, 45% CBD) at a
dose of 20 mg/kg THC, oral

Olive oil Exp1: Acute CE resulted in
sedation and a suppression of
sexual activity but mating still
occurred. Mean gestational
length increased by 1 day. No
difference in birth weight. Some
loss of pups after birth from
unknown causes or
cannibalization. Exp2: Decrease
in social and sexual behavior but
mating still occurred. Mean
gestational length increased by
1 day. No difference in birth
weight. Some loss of pups after
birth from unknown causes or
cannibalization.

(126) Swiss-
WebsterM

G6 through birth, daily THC (25 or 50 mg/kg), s.c Sesame oil Pair-feeding and
pair-watering;
statistical unit is litter

Reduced litter size and weight at
birth. Dose effect on birth weight.
No group differences in
maternal weight gain.

(127) Balb/CM G5.5 through G17.5,
daily

Cannabis cigarette (0.3% THC),
inhalation

NA Urine metabolite
analysis

No difference in maternal
weight gain. No difference in
implantation, litter size, fetal
growth, or fetal mortality.
Reduction in fetal weight and
higher number of males relative
to females associated with
cannabis treatment. Decrease in
fetal-to-placental weight ratio for
males. Reduction in fetal lung,
brain, thymus, and liver
associated with cannabis
treatment.

(140) CR
AlbinoR

Exp1: E14 through
PND21 Exp2:
E15 through
PND21 Exp3:
E6 through E15

Exp1: THC or CME (0.5, 1.5,
5.0 mg/kg), oral Exp2: THC or
CME (0.5, 1.5, 5.0 mg/kg), oral
Exp3: THC and CE (5, 15,
50 mg/kg), oral

Sesame oil Cross-fostering
(Exp2)

Exp1: Tolerance observed after
3–5 days for all treatment
groups along with initial and
transient reduction in maternal
weight gain at the 5 mg/kg dose.
No impact on gestational length,
fetal mortality, fertility, litter
size. No difference in pup body
weight or sex ratio at weaning.
Exp2: Higher mortality at
5 mg/kg THC. Differences in
weight and sex ratios at weaning
that were not dose dependent.
Exp3: THC and CME treatment
groups showed reduced maternal
weight gain. No fetal
abnormalities associated with
THC or CME.

(139) H WistarR G15 through PND9,
daily

THC (2.5–5 mg/kg), oral
(buccopharyngeal cannula)

Sesame oil No change in maternal weight
gain. No difference in
gestational length, litter size,
pup weight gain, or postnatal
mortality.

(130) BSF Long
EvansR

G3 through birth, daily CE (10 or 150 mg/kg), oral Olive oil Pair feeding CE reduced maternal food and
water consumption and weight
gain. Lower birth weight for
150 mg/kg CE dose. No change
(Continued on following page)
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TABLE 3 (Continued) Litter outcomes following cannabis or THC exposure in preclinical models.

Citation Model Maternal
exposure period

Dose Vehicle Controls Birth outcome

in litter size or pup mortality at
birth. Postnatal mortality and
neonatal weight both increases
in the CE group at weaning
(21 days) and females had still
not caught up with controls by
11 weeks of age.

(131) HLA
WistarR

G2 through G22, daily THC (15 or 30 mg/kg), oral Sesame oil Pair fed (food and
water); statistical unit
is litter

Lower initial (i.e., first two doses
of 30 mg/kg THC) food and
water intake. Less weight gain in
THC and pair fed groups relative
to ad libitum and naïve controls.
No difference in implantation
sites, resorptions, perinatal
mortality, litter size, or sex ratio.
Positive linear relationship
between higher total mortality
(i.e., resorptions + perinatal
mortality) and pair fed and THC
treatment. Lower male birth
weight in pair fed and THC
treatment groups relative to
controls. Lower female birth
weight in THC treatment group
relative to controls.

(141) H Long
EvansR

G1 through G22,
x2 daily + PND
2 through 10, x2 daily

THC (2 mg/kg), s.c Ethanol, Tween80,
and 0.9% saline (1:
1:18)

Food intake recorded No difference in maternal
weight gain. No difference in
gestational length. No difference
in weight on PND2.

(132) CR
Sprague-
DawleyR

G6 though G15, daily THC (25, 50, or 100 mg/kg), s.c Propylene glycol NA Lower maternal weight gain (not
dose dependent). Decrease in
E20 fetal weight at the 50 mg/kg
dose.

(135) CR
WistarR

G6.5 through G22,
daily

THC (3 mg/kg), i.p 1:18 cremophor:
saline

Statistical unit is
litter; food intake
recorded

No difference in maternal
weight gain or food intake. No
change in litter outcomes (i.e.,
gestational length, litter size).
Fetal growth restriction:
Decreased liver to body weight
ratio at birth.

(133, 134) CR
WistarR

G6 through G22, daily THC (3 mg/kg), i.p 1:18 cremophor:
saline

Statistical unit is litter No change in maternal food
intake or weight gain. No
difference in litter size or
gestational length. Fetal growth
restriction: Symmetrical fetal
growth restriction (i.e., reduction
in weight and length); THC
exposure associated with
decreased birth weight and
heart-to-body weight ratio, liver-
to-body-weight, and brain-to-
body-weight ratio. Altered
phenotype in E19.5 placenta (i.e.,
reduced fetal to placental weight
ratio, increased labyrinth layer
area and reduced expression of
labyrinth progenitors, vascular
defects).

(136, 137) WistarR G1 through G19 CE (THC ~3.3 mg), smoke
inhalation (filter-tipped cigarette)

NA Cross-fostering;
statistical unit is litter

Lower birth weight. No
difference in litter size,
gestational length, sex ratio, live
births, and morphology at birth

(Continued on following page)
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frequency of prenatal exposure and can leverage randomized

experimental designs to determine causal associations

between exposure and experimental outcomes. As

summarized below (Tables 3–5), there is some evidence

(based on rodent models) that in utero exposure to

cannabis or its major psychoactive constituent, THC, is

associated with adverse birth outcomes and long lasting

developmental and behavioral deficits.

Animal models complement clinical studies and provide

insight into the range of aberrant offspring outcomes and

potential underlying molecular mechanisms following

different levels of PCE. For animal models to provide

valuable information, one of the important considerations is

the comparison between the timing of exposure in the model

organism and determining the comparable time in human brain

development. Many studies have undertaken these

comparisons and identified when specific developmental

events, such as the beginning of cortical neogenesis, happen

across species. It is now well-established that the first trimester,

in terms of brain development, extends until embryonic day (E)

11–13 in mice and E12-15 in rats while the third trimester

equivalent happens entirely postnatally in both species. Thus, a

host of exposure paradigms have been used that encompass

varying epochs in brain development.

To maximize translational relevance in the following review

of preclinical studies, this review only reports findings where

cannabis/cannabinoid exposure approximates the level of

exposure that could reasonably be expected in pregnant

women (e.g., smoking cannabis three times per day or less).

In addition, only studies that used THC or cannabis extracts

(CEs) were included. Similar to the situation in humans, there are

several important considerations when interpreting the

preclinical findings reported below. First, maternal cannabis

exposure has the potential to influence both maternal

nutrition (i.e., involuntary exposure may cause decreased food

and water intake) and maternal care. Second, the route of

administration used to deliver cannabinoids may influence the

rate of THC absorption and fetal exposure. Third, the vehicle

used to deliver THC, CEs, or cannabis may contain components

that produce maternal or offspring developmental effects.

Finally, as mentioned above, the duration of exposure and

developmental stage is not uniform across preclinical studies.

To address some of these caveats we have included information

in the tables regarding inclusion of any experimental controls to

address maternal cannabis exposure, vehicle composition,

duration of exposure, dose, and route of administration. Note

that some controls, such as cross fostering, may have complicated

consequences on maternal care and pup development.

Birth outcomes associated with PCE in
rodents

There is abundant heterogeneity in the experimental design

of preclinical PCE studies (Table 3). Despite this variability, a

reduction in birth weight associated with PCE is consistently

reported across both mouse and rat studies and this result is also

commonly replicated in human studies (Table 1).

In mice there was a marginal relationship between THC

dose and litter outcomes. In Swiss Webster and Balb/C mice,

daily administration of 25–50 mg/kg THC (s.c.) or daily

exposure to cannabis cigarettes (5 min exposure to 200 mg

cannabis cigarette with 0.3% THC content, inhalation)

resulted in a reduction of fetal/birth weight (126, 127).

However, daily oral administration of THC or cannabis

extracts from 5 to 150 mg/kg had no effect on birth weight

in CD1 and C3H/HeJ mice (128, 129). Moreover, litter size,

sex ratio, fetal mortality, gestational length, and gross

morphology were generally unaffected by PCE at the range

of doses reported (Table 3). The exceptions being that a daily

oral dose of 20 mg/kg THC slightly increased gestational

length in C3H/HeJ mice (129) and exposure to cannabis

TABLE 3 (Continued) Litter outcomes following cannabis or THC exposure in preclinical models.

Citation Model Maternal
exposure period

Dose Vehicle Controls Birth outcome

(142, 143) CR
Sprague-
DawleyR

G5 through G20, daily THC (100 mg/mL at 2 L/min
airflow) inhalation (e-cigarette)

Propylene glycol THC metabolites
measured during
pregnancy; food and
water intake recorded

No difference in maternal
weight gain or food and water
intake. No change in litter
outcomes (i.e., gestational
length, litter size, sex ratio, or
birth weight).

(138) S Long
EvansR

G1 through PND2,
x2 daily

CE (400 mg/mL) inhalation
(e-cigarette)

80% propylene
glycol/20%
vegetable glycerol

Cross-fostering (most
litters contained pups
from all conditions)

No difference in litter size. On
PND 6, 10 and 13 air exposed
offspring weighed more than CE
and vehicle exposed offspring
and CE exposed pups weighed
more than vehicle exposed pups.

M, mice; R, rats; BLO, Biobreeding Laboratories Ottawa; BSF, Blue Spruce Farms; CR, Charles River; H, Harlan; HLA, Hilltop Lab Animals; J, The Jackson Laboratory; S, Simonsen

Laboratories; s.c., subcutaneous; i.p., intraperitoneal; Exp, experiment; italicized text indicates significant maternal effects; italicized text indicates significant litter outcomes.

Advances in Drug and Alcohol Research Published by Frontiers13

Mulligan and Hamre 10.3389/adar.2023.10981

35

https://doi.org/10.3389/adar.2023.10981


TABLE 4 Behavioral changes following developmental THC exposure measured in rodents.

Citation Species/Strain THC dose & route Time of admin Behavior paradigm Age examined Outcomes Sex effects

(164) Mice: CB1
Conditional KO

3 mg/kg IP inj. E10–E17 Spatial Memory P60 Males Impaired Memory Males

Object Recognition P60 No Diff. No Diff.

(152) Rat: Wistar 5 mg/kg SC inj. E5–E20 Social interaction Adult Males Decreased Interaction Males

Anxiety-like Behavior Adult No Diff. Not Tested

Cognition Adult No Diff. Not Tested

(33) Mice: Serotonin
Reporter

5 mg/kg IP inj. E10–E18 Social Interaction Adult Decreased Interaction Not Tested

(172) Mice: CB1R KO 3 mg/kg IP inj. E12–E16 Fine Motor Tests 10 weeks Decreased Fine Motor Not Tested

(173) Rats: Sprague Dawley 20 ng/ml Vape E5–E20 Motor Development P12–P20 Delayed Capability No Diff.

Motor Coordination P30–32 Poorer No Diff.

Activity Level P31–34 More Activity Males

Anxiety-Like Behavior (Center vs.
Edge)

P31–34 No Diff. Males

(174) Rats: Sprague Dawley 100 mg/ml Vape E5–E20 Sensori-Motor Development P12–P20 No Diff. No Diff.

Motor Coordination P30–32 No Diff. No Diff.

(154) Rats: Long Evans 0.15 mg/kg IV inj. E5–P2 Rewarding Behavior P62 Increased Motivation Study Includes Males Only

Depression-like Behavior P62 Enhanced Depression-like Phenotypes Study Includes Males Only

(153) Rats: Sprague Dawley 2 mg/kg SC inj. E5–20 Locomotor Activity P28–40 No Diff. Study Includes Females Only

Risk Taking P28–40 No Diff. Study Includes Females Only

Anxiety-like Behavior P28–40 No Diff. Study Includes Females Only

Social Behavior P28–40 No Diff. Study Includes Females Only

Anhedonia P28–40 No Diff. Study Includes Females Only

Emotional Memory P28–40 No Diff. Study Includes Females Only

(160) Rats: Sprague Dawley 5 mg/kg Oral E15–P9 Neonatal Reflexes P1–P11 Delay in Reflex Development Not Tested

Locomotor Activity P100 No Diff. Not Tested

Social Behavior P100 Decreased Interactions Not Tested

Cognitive Behavior P100 Altered Not Tested

(156) Rats: Sprague Dawley 2 mg/kg SC inj. E5-E20 Depression-like Behavior Prepuberty Altered Study Includes Males Only

Sensorimotor Gating Prepuberty Altered Study Includes Males Only

(138) Rats: Long-Evans 2 doses: 400 mg/ml 50 mg/ml
Vape

Prior to mating up
to P10

Ultrasonic Vocalization P6, P10, P13 Increased at P6 No Diff.

Social Play Behavior P26 Decreased Males (Some Measures)

Anxiety-like Behavior P27 No Diff. No Diff.

Adult Anxiety-like Behavior P73 Increased Anxiety-like Behavior No Diff.

Behavioral Flexibility Adult Increased Errors (High Dose Only) No Diff.

(145) Rats: Wistar 2 mg/kg SC inj. E5–E20 Locomotor Activity P25 and beyond Increased Not Tested

Learning & Memory P25 & Beyond No Effect Not Tested

(Continued on following page)
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TABLE 4 (Continued) Behavioral changes following developmental THC exposure measured in rodents.

Citation Species/Strain THC dose & route Time of admin Behavior paradigm Age examined Outcomes Sex effects

Aversive Limbic Memory P25 & Beyond Impaired Performance Not Tested

Motivation For Alcohol (Operant) P25 & Beyond Increased Motivation Not Tested

Nociception P25 & Beyond No Diff. Not Tested

(151) Rats: RjHan: Wistar 2 mg/kg SC inj. P1–P10 Ultrasonic Vocalization P9, P15 Altered (Both Ages) Not Tested

Homing Behavior P10, P13 No Diff. Not Tested

(162) Rats: RjHan: Wistar 2 mg/kg SC inj. P1–P10 Locomotor Activity Adult No Diff. No diff.

Social Interaction Adult Enhanced Interaction, Diminished Social
Memory

No Diff.

Memory Adult No Diff. No Diff.

(161) Rats: Sprague Dawley 5 mg/kg Oral E15–P9 Social Interaction P180 Decreased interaction Study Includes Males Only

Memory P180 Impaired (Decreased Retention) Study Includes Males Only

(56) Rats: Sprague Dawley 0.15 mg/kg IV inj. E1–E21 Passive Avoidance P22 Impaired retention No Diff.

Active Avoidance P45 Impaired Reversal Males

Attention P60 Impaired No Diff.

Amphetamine Challenge P60 Dampened Response No Diff.

(139) Rats: Wistar 2.5 or 5 mg/kg Orally through
Cannula

E15–P9 Ultrasonic Vocalization P12 Increased (High Dose) Not tested

Social Interaction P35 Decreased Interactions Not Tested

Anxiety-like Behavior P80 Increased Anxiety-like Behavior Not Tested

(141) Rats: Long Evans 2 mg/kg SC inj. E1–E22, P2-10 Activity level P90 No Diff. Study Includes Males Only

Anxiety-like Behavior P90 Increased Anxiety-like Behavior Study Includes Males Only

Social Interaction P90 Increased Interaction Study Includes Males Only

Depression-like Behavrior P90 No Diff. Study Includes Males Only

(169) Rats: Wistar 5 mg/kg Orally through
cannula

E15–P9 Inhibitory avoidance P80 Increased Avoidance Study Includes Males Only

Social Discrimination P80 Impaired Discrimination Study Includes Males Only

(53) Rats: Long Evans 0.15 mg/kg IV inj. E5–P2 Heroin Self-administration P62 Increased Self-Administration Not Tested

Stress-Induced Heroin
Administration

P62 Enhanced Administration Not Tested

Heroin-Induced Locomotor
Activation

P62 Decreased Activity Not Tested

(148) Rats: Wistar 5 mg/kg IP inj. P4–P14 Heroin-induced place conditioning P56 Increased Preference Not tested

Heroin-Induced Locomotor
Activation

P56 Effects Observed at Low Dose of Heroin Not Tested

(175) Rats: Wistar 5 mg/kg SC inj. P4–P14 Spatial Discrimination P56 No Diff. Study Includes Males Only

Delayed Alternation P56 Delayed Acquisition Study Includes Males Only

(150) Rats: Wistar 5 mg/kg Oral E5–P24 Morphine self-administration P70 No Diff. No THC -induced diff.

(146) Rats: Wistar 1 or 5 mg/kg E5–P24 Morphine conditioned place
preference

P70 Enhanced Preference Males (Both Doses) Females
(Low Dose)

(Continued on following page)
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cigarette smoke altered litter sex ratios in favor of males and

contributed to fetal growth restrictions in male treated Balb/C

mice (127).

In rats, perhaps owing to a greater number of studies,

there was an apparent linear relationship between THC dose

and litter outcomes. In Long Evans, Wistar, and Sprague

Dawley rats, lower birth weight was associated with daily in

utero exposure to 15, 30, or 150 mg/kg (oral) cannabis

extracts (130, 131), 50 mg/kg (s.c.) THC (132), 3 mg/kg

(i.p.) THC (133–135), or smoke from cannabis extracts

(400 mg/mL) (130, 136–140). In contrast, no effect of PCE

on birth weight was observed following daily in utero

exposure to 0.5–10 mg/kg (oral) THC or CE (130, 139,

140), 2 mg/kg (s.c.) THC (141), or smoke from CEs

(100 mg/mL) (142, 143). In addition, placental alterations

were associated with daily i.p. injections of THC (3 mg/kg)

(134). Litter outcomes did not appear to be strongly

influenced by differences in maternal food and water

intake or weight gain following cannabinoid exposure

(Table 3).

Taken together, preclinical studies in both mice and rats

support the major clinical finding of reduced birth weight and

fetal growth restriction associated with PCE (Table 1).

Because cannabinoid composition and dose can be well

controlled in preclinical studies, an additional finding with

relevance to human studies is that there is a strong negative

effect of THC dose on adverse outcomes. In preclinical rat

studies this holds true regardless of the route of

administration. For example, exposure to THC above

10 mg/kg (oral), 2 mg/kg (s.c.), or 100 mg/mL (inhalation)

in rats resulted in adverse birth outcomes. There are a smaller

number of studies in mice and the impact of route of

administration and THC dose is less clear, perhaps due to

genetic differences among strains or experimental paradigms.

More work is needed in mice to evaluate the impact of THC

dose and route of administration on litter outcomes. Taken

together, preclinical studies in rodents suggest that exposure

to higher levels of THC increases the risk of adverse birth

outcomes.

Exogenous cannabinoid exposure has the potential to

disrupt reproductive processes and alter mating behavior. For

this reason, many preclinical studies delay cannabinoid

treatment until G5 or G6 in the hopes of increasing the odds

of pregnancy. Several studies varied maternal cannabinoid

exposure to quantify changes in fertility, productive mating,

and implantation (129, 131). However, there appeared to be little

effect of low to moderate cannabinoid exposure (15–30 mg/kg,

oral) on these outcomes. This is an important consideration as

most human mothers consume cannabis prior to pregnancy and

during the first trimester with use tapering off in later trimesters

(4). Use throughout pregnancy is less common and may be

associated with higher risk pregnancies and other maternal

characteristics that could influence birth outcomes and laterT
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child development. In rodents, the third trimester equivalent

occurs outside of the mother’s body. Many of the studies in

Table 3 included daily exposure to cannabinoids from

G6 through G22, which corresponds to the first and second

trimesters in humans. In the rodent studies, daily first and

second trimester PCE was often sufficient to cause adverse

litter outcomes (i.e., low birth weight).

Long-lasting impact of PCE on behavioral
and molecular outcomes in rodents

Preclinical studies in rodents have provided additional

insight into the effects of PCE on a wide range of traits.

Examination of the effects of cannabis on brain

development began in the 1970s and 1980s [e.g., (144)].

These studies gave the first clues on the types of effects that

cannabis had on the developing brain and some studies

showed that similar types of behavioral effects were

observed in animal models and human populations. With

the legalization of cannabis for recreational and/or medical

use in many parts of the US, there has been a resurgence in

research on its effects on brain development. Similar to what is

observed in human populations, the results are not always

consistent across preclinical studies. This is likely due to

variations in a range of experimental parameters including

differences in doses, time of exposure, time of evaluation of the

behavioral phenotype, and testing parameters. However, even

with these differences, it is clear that a number of different

effects have been observed in animals following PCE and the

findings are summarized below.

Substance use
One of the most consistent findings is that prenatal exposure

to THC alters the behavioral response to other drugs of abuse,

notably opioids, taken later in life. In these experiments, animals

are exposed to THC during prenatal or early postnatal periods

followed by exposure to a different drug of abuse during

adolescence or adulthood [e.g., (52, 53, 56, 145–149)]. These

studies have demonstrated that PCE can influence the rewarding/

reinforcing properties and behavioral or physiological responses

to other drugs later in life (Table 4). Only a single study failed to

show differences between animals with PCE and unexposed

controls (150). These results suggest long lasting effects of

PCE that may enhance the propensity for substance use

disorders later in life.

Externalizing/internalizing behavioral problems
Emotional reactivity has been examined in a host of

behavioral paradigms and over varying ages. Several studies

have examined ultrasonic vocalizations in pre-weanling pups,

which are defined as cries from the pup to the dam and

interpreted as a sign of distress. The results have shown that

THC-exposed pups show altered vocalizations, at least at certain

ages, supporting the hypothesis that developmental THC

exposure can alter early emotional responding (138, 139, 151).

Numerous studies have examined other responses later in life

with mixed results. For example, anxiety-like phenotypes have

TABLE 5 Behavioral outcomes following prenatal polysubstance exposure.

Author Co-
exposure

Exposure parameters Behavior
tested

Thc only
effect

Interaction Sex effect

(173) THC +
Ethanol

GD 5–20 (rats) THC (100 mg/ml; 30
min vapor Inhalation at airflow rate of
2L/min in e-cigarette tank); Ethanol
(BAC = 150 mg/dl; vapor inhalation)

Motor
Development

Delayed
Capability

Enhanced No

Motor
Coordination

Poorer No No

Activity Level More Activity Increased Males

Anxiety-like
Behavior
(Center)

No Increased Time in
Center

Males

(174) THC +
Nicotine

GD 5–20 (rats); THC: 100 mg/ml;
Nicotine: 36 mg/ml; 40 min vapor

inhalation at airflow rate of 2L/min in
e-cigarette tank

Sensori-Motor
Development

No Delayed Success No

Motor
Coordination

No Lower Success Rate Females

(176) THC +
Nicotine

Through Gestation (rats); THC (Oral,
Edible); Nicotine (Vapor Inhalation)

Sensori-Motor
Gating

No Deficits Males

Memory Yes Males (short-term
memory deficit with
THC + Nicotine)

Males (short-term memory deficit
with THC or THC + Nicotine)
Females (short-term memory

deficit with THC alone)

Anxiety-Like
Behaviors

Increased
Anxiety-Like
Behaviors

No Males
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been examined and results have shown increased anxiety-like

behavior (138, 139, 141), decreased anxiety-like behavior (146),

and no difference from controls (152, 153). Stress reactivity and

depression-like phenotypes are not as well-studied. Prenatal

THC exposure has been shown to alter both phenotypes in

some studies (144, 154–156), while others have shown no

significant effects (141, 153).

Psychosis
In recent years, it has been proposed that PCE may be a risk

factor for psychosis later in life as part of a “two-hit” model [see

(157) for review]. The proposed mechanisms behind this model

state that prenatal exposure to THC alters the cannabinoid

system during development. The second hit happens when an

additional environmental exposure occurs, such as stress or THC

exposure later in life, that further disrupts the endocannabinoid

system ultimately leading to psychosis. Psychosis and

Schizophrenia are uniquely human disorders but some aspects

of the disease (i.e., endophenotypes) can be studied in rodents.

One such endophenotype is altered sensory gating evaluated

using the pre-pulse inhibition paradigm or PPI [see (158) for

review]. In one of the first studies to evaluate this (159), rats were

exposed to THC in utero and later during adolescence. The

results showed altered sensorimotor gating effects in animals

exposed to THC both in utero and during adolescence compared

to those exposed only in utero, only at adolescence, or unexposed

controls. Interestingly, the results were observed in males but not

in females suggesting some sex-specificity of the effects. These

types of sensorimotor gating effects have been replicated in

further experiments [e.g., (156)] suggesting the importance of

further evaluating this relationship.

Social interactions
Mice and rats are highly social animals and have often been

evaluated for the frequency and type of social interactions. Social

behavior has been evaluated across multiple paradigms. For many

of these studies, prenatal THC exposure has been shown to alter

social interactions (33, 138,141,152,160,161,162). In contrast, a

study by Traccis and colleagues (153) failed to show an effect of

prenatal THC on social behaviors.

Brain regions and signaling pathways
One advantage of preclinical studies is the ability to dissect

the underlying mechanisms associated with changes in

behavior following PCE. Although a detailed analysis of

current studies is beyond the scope of this review, we touch

on a few findings that highlight the utility of rodent models in

dissecting the functional implications of changes in brain

signaling systems following PCE. Long-lasting alterations in

brain reward regions (i.e., the mesolimbic dopamine system

including the ventral tegmental area and nucleus accumbens)

have been reported following PCE. Changes to this system may

mediate enhanced propensity for drug seeking/reinforcing

behavior in rodents and risk of substance use and abuse in

humans. In rats, PCE is associated with altered dopaminergic

function in the ventral tegmental area (159, 163) and decreased

expression of dopamine receptor genes (i.e., dopamine

receptor D2) in the nucleus accumbens (48). Decreased

levels of dopamine receptor D2 mRNA in nucleus

accumbens following PCE have also been observed in

human fetal tissue (48).

Alterations in cortical and hippocampal regions following

PCE could mediate changes in cognition, memory, attention, and

impulsivity. Changes in the number or function of hippocampal

inhibitory neurons (33, 164, 165) and alterations in both

inhibitory hippocampal GABAergic transmission (166) and

excitatory hippocampal glutamatergic neurotransmission (167)

have been reported following PCE in rats. Prenatal or perinatal

exposure to THC or cannabinoid agonists have also been

associated with changes in cortical synaptic plasticity and

excitatory glutamatergic signaling (51, 168, 169). These are

just a few of the many rodent studies that are beginning to

quantifying precise molecular and functional perturbations to

brain signaling pathways following PCE [for review see

(170, 171)].

Sex, genetic background, and other
variables

In addition to confirming results seen in human populations,

animal models have also extended these findings particularly by

evaluating other variables. One of the most notable examples is

the effects of sex. As seen in Table 4, several studies have shown

sex-specific effects, although there are a number of studies in

which only one sex was evaluated leaving open the question of

sex-specific effects. This is clearly an issue that warrants further

study in human populations which will likely be facilitated by

characterization of additional populations. Surprisingly, the role

of genetics in modulating the potential teratogenic effects of THC

have been minimally explored, at least as it relates to behavioral

effects. Most of the experiments have focused on examination of

specific components of the THC pathway, such as the

CB1 receptor, using knock out mice [e.g., (164, 172)]. This is

also an issue that warrants additional study. Moreover, the role of

other variables, such as nutrition or exposure to stress, need

additional investigation.

Prenatal polysubstance exposure

Preclinical models are also invaluable for separating the

effects of THC from that of other drugs. The rate of maternal

polydrug use during pregnancy is high making it difficult to

assess whether effects are due to THC exposure or to exposure to

other substances of abuse. As discussed previously, data from
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preclinical studies demonstrates the potential teratogenic effects

of THC on a range of outcomes. However, there can also be

interactions among drugs, either in positive or negative

directions, and the nature of these interactions can be

evaluated in preclinical models.

One of the most commonly co-abused substances is ethanol.

Ethanol has been shown to be highly teratogenic with wide-

spread effects in many CNS regions and on many developmental

processes. Behaviorally, the effects of ethanol exposure have been

shown to have some similarities with those of THC including

effects on anxiety- and depression-like phenotypes. As shown in

Table 5, studies are beginning to evaluate co-exposure to both

ethanol and THC (173). While the results demonstrate that each

substance alone can cause behavioral alterations, there is also

evidence for an interaction of the two drugs suggesting that the

co-exposure can worsen the teratogenic effects of each alone.

A second drug with high rates of co-exposure is nicotine either

through traditional cigarettes or through e-cigarettes. While limited

in nature, studies are beginning to evaluate this co-exposure as well

(Table 5). Similar to what was observed for ethanol, different effects

of either substance alone or after combined exposure have been

found (174, 176). Pronounced sex effects were also observed,

suggesting that sex may be a variable in the response to the co-

exposure of these two drugs of abuse. Additional work is needed to

further expand this interaction.

Summary

Preclinical rodent models are beginning to quantify the

teratogenic profile of cannabis and THC on offspring

outcomes following PCE. In these studies, outcomes are

specifically associated with in utero cannabinoid exposure

rather than exposure to other substances of abuse or

uncontrolled environmental factors. However, there are

limitations to these studies. These include heterogeneity in

experimental design (e.g., variation in methods of exposure,

dose, cannabinoid, timing of exposure) and phenotypic

outcomes measured. Further, because the level of brain

development in a newborn rodent differs from that in a

newborn human, translating across species can be difficult.

Even with these limitations, there are consistent findings

across studies on a range of phenotypes including lower

weight at birth, altered emotionality, and altered responses to

and enhanced propensity to consume other drugs of abuse later

in life. Significant associations between PCE and other behavioral

deficits have been reported, although the results are not always

consistent across studies. Further work is needed to resolve these

differences. Moreover, there are numerous issues that are difficult

to address in clinical studies that still can be explored further

using rodent PCE models. First, it is still unclear whether there

are levels of maternal cannabis use that might be associated with

less risk to child development. It is also unclear how cannabis

composition, especially potency, might influence the risk of

adverse birth outcomes or child developmental problems later

in life. Second, the contribution of genetic background and/or

environmental variables to the susceptibility of teratogenic effects

following PCE remain understudied and unclear. Finally, we still

know relatively little about the underlying molecular

mechanisms and changes to brain structure and function

impacted by PCE. Preclinical models are beginning to address

the underlying molecular changes associated with PCE and have

implicated several neurotransmitter systems, brain regions, and

cell types of interest but more work is needed to evaluate

structural and functional changes following PCE. This

knowledge will be needed to design and evaluate interventions

that ameliorate the teratogenic effects of cannabis, particularly as

they relate to psychosis risk.

Discussion

Maternal cannabis use and cannabis potency are both

increasing despite the possible adverse and long-term

consequences of PCE on child development. However,

research to date has yet to establish clear links between

adverse offspring outcomes and the frequency, duration,

and types of maternal cannabis exposure. Longitudinal

studies in humans are important for tracking potential

long-lasting outcomes associated with prenatal cannabis

exposure. However, all studies to date suffer from small

sample sizes, potential confounding factors, outcome

measures that differ between studies, and the inability to

quantify cannabinoid exposure during pregnancy.

Moreover, the prospective design and a lack of

randomized conditions in human study cohorts precludes

causal inference between in utero cannabis exposure and

later health and behavioral outcome measures.

Despite these limitations, clinical cohorts and longitudinal

studies are beginning to illuminate some of the potential

consequences of PCE on offspring outcomes. These include

adverse birth outcomes (e.g., low birth weight, premature

delivery, admission to neonatal intensive care) and longer

lasting behavioral alterations in offspring with PCE (e.g.,

attention and impulse control deficits, elevated risk of

substance use disorders, and a possible increase in

psychopathology, aggression, anxiety, and depression). In

preclinical models, cannabinoid exposure and environmental

conditions can be tightly controlled, and randomized study

designs can be applied to infer causality. Moreover,

intervening molecular pathways from PCE to phenotypic

outcome can be identified as can variables (e.g., exposure

level, sex, genotype, environment) that influence outcome

severity. Studies leveraging rodents lend support to the

hypothesis that human PCE causes a reduction in birth

weight and fetal growth restriction, with a longer-term impact
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on offspring behavior across multiple domains related to

substance use, emotional reactivity, and psychopathology.

Much work is still needed to characterize the full spectrum

of teratogenic effects associated with different levels of in utero

exposure to cannabis and cannabinoids. Moving forward, study

designs in rodents will need to better model human patterns of

cannabinoid exposures, especially variation in cannabis

potency and composition, routes of administration,

polysubstance interactions, and maternal pre- and post-

conception exposures. Clarification of the range and types of

offspring phenotypes impacted by PCE, enhanced translational

relevance of phenotypes, and better replication of comparable

outcomes across studies will be required for clinical and

preclinical studies. Rodent studies may be especially useful to

disentangle the role of confounding factors (e.g., sex, genetics,

multi-drug interactions, and other environmental variables)

that have been difficult to model in human studies where

sample sizes can be small relative to the number of potential

covariates. Finally, the addition of developmental brain

molecular, functional, and structural data has the potential

to bridge the gap between PCE and behavioral outcomes

across species. Rodent studies are beginning to resolve the

role of discrete signaling pathways and brain regions in

modulating behavioral outcomes following PCE. However,

functional and structural imaging studies of brain

development following PCE are lacking in humans and

rodents. Ultimately, an important goal of future research is

to clearly define developmental processes vulnerable to PCE

and provide clinicians and patients with more detailed

information about specific risks to the child posed by

different levels of maternal cannabis exposure.
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Vascular contributions to the
neurobiological effects of
prenatal alcohol exposure

Sarah Z. Momin, Jacqueline T. Le and Rajesh C. Miranda*

School of Medicine, Texas A&M University, Bryan, TX, United States

Background: Fetal alcohol spectrum disorders (FASD) are often characterized

as a cluster of brain-based disabilities. Though cardiovascular effects of prenatal

alcohol exposure (PAE) have been documented, the vascular deficits due to PAE

are less understood, but may contribute substantially to the severity of

neurobehavioral presentation and health outcomes in persons with FASD.

Methods: We conducted a systematic review of research articles curated in

PubMed to assess the strength of the research on vascular effects of PAE.

40 pertinent papers were selected, covering studies in both human populations

and animal models.

Results: Studies in human populations identified cardiac defects, and defects in

vasculature, including increased tortuosity, defects in basement membranes,

capillary basal hyperplasia, endarteritis, and disorganized and diminished

cerebral vasculature due to PAE. Preclinical studies showed that PAE rapidly

and persistently results in vasodilation of large afferent cerebral arteries, but to

vasoconstriction of smaller cerebral arteries and microvasculature. Moreover,

PAE continues to affect cerebral blood flow intomiddle-age. Human and animal

studies also indicate that ocular vascular parameters may have diagnostic and

predictive value. A number of intervening mechanisms were identified,

including increased autophagy, inflammation and deficits in mitochondria.

Studies in animals identified persistent changes in blood flow and vascular

density associated with endocannabinoid, prostacyclin and nitric oxide

signaling, as well as calcium mobilization.

Conclusion: Although the brain has been a particular focus of studies on PAE,

the cardiovascular system is equally affected. Studies in human populations,

though constrained by small sample sizes, did link pathology in major blood

vessels and tissue vasculature, including brain vasculature, to PAE. Animal

studies highlighted molecular mechanisms that may be useful therapeutic

targets. Collectively, these studies suggest that vascular pathology is a

possible contributing factor to neurobehavioral and health problems across

a lifespan in persons with a diagnosis of FASD. Furthermore, ocular vasculature

may serve as a biomarker for neurovascular health in FASD.
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Introduction

Prenatal alcohol exposure (PAE) is well documented to result

in a range of adverse physical and neurobehavioral outcomes that

are collectively subsumed under the term Fetal alcohol spectrum

disorders (FASD). Though not by itself an accepted diagnostic

term, FASD is a comprehensive umbrella term that includes

several diagnostic classifications (1, 2). At the severe end of the

FASD continuum, affected individuals may exhibit

musculoskeletal and growth deficits, and experience profound

craniofacial anomalies, including ocular defects, mid-face

hypoplasia and/or cleft palate, profound brain anomalies such

as agenesis of the corpus callosum, microencephaly, and

intellectual disability (3-8). Evidence for a cluster of

presenting symptoms, including mid-face anomalies, growth

deficiencies including brain growth deficits and

neirobehavioral impairment allows for the diagnosis of Fetal

Alcohol Syndrome [FAS, for a comprehensive description of

diagnostic criteria, see (2)]. However, a majority of persons

along the FASD continuum do not exhibit obvious physical

anomalies, but rather neurobehavioral deficits including

deficits in memory, attention, mathematical and language

skills, and decision making processes (9–11). These deficits

can have an equally adverse impact on quality of life. These

latter, and more prevalent outcomes, are defined by the term

Neurobehavioral Disorder Associated with Prenatal Alcohol

Exposure (ND-PAE) (12, 13), which was incorporated for the

first time into the 5th edition of the Diagnostic and Statistical

Manual of American Psychiatric Association as an acceptable

diagnosis, absent obvious physical anomalies.

PAE is unfortunately very common. Recent studies have

investigated levels of phosphatidyl ethanol in blood samples

obtained from newborn infants, a unique molecular adduct

formed on erythrocyte phospholipid membranes following

ethanol exposure. These studies in Texas (14) and West

Virginia (15) in the US, and Ontario in Canada (16)

documented positivity for this marker in 8%–15% of newborn

samples, indicative of substantial rates of third-trimester

exposure in these populations. Even higher rates of positivity

have been documented in newborns from selected high-risk

populations elsewhere (17). Unsurprisingly, estimates of FASD

prevalence are also high. For instance, a recent and large

prospective case-ascertainment study in four school systems

across the US estimated rates of FASD in school-aged

children of 1.1%–5%, with a weighted prevalence estimate of

3.1%–9.8% (18). Worldwide, previous estimates have placed the

prevalence of FASD at as high as 11.3% in some regions like

South Africa, with rates equivalent to North America in many

European nations (19). These data collectively point to the likely

outsized contribution of PAE to the burden of developmental

disability in North America and world-wide, and emphasize the

need to understand the etiology of FASD with the goal of early

interventions to mitigate the effects of PAE.

The centrality of brain-based disability to the diagnosis of

FASD, and particularly ND/PAE, mean that most research has

focused on developmental perturbations to neural cells and on the

neurobiology of this disability. However, in this review, we focus on

the literature implicating the cardiovascular system, and

specifically the contribution of the cerebrovascular system in the

etiology of FASD. The cerebrovascular system develops during the

peak period of neurogenesis (20), and one recent study suggests

that cerebral neurogenesis and angiogenesis is molecularly linked,

for example, by a microRNA, miR-9 (21). We previously found

miR-9 to be inhibited by ethanol in mouse neural stem cells (22),

with inhibition in zebrafish resulting in the loss of brain tissue (23).

These data suggest that the effects of ethanol on neurogenesis and

angiogenesis are mechanistically linked. Conversely, the loss of the

endothelial receptor for endothelin-B (ETB) has been documented

to result in microencephaly, i.e., reduced brain size (24), a key

feature of severe FASD, emphasizing the interdependency of neural

and vascular systems in the growth of the fetal brain. Interestingly,

a few studies using functional magnetic resonance imaging to

document changes in functional network connectivity in the

resting state (25) and following functional activation (26, 27), in

children and adult persons with a diagnosis of FASD, have assessed

changes in the BOLD (Blood Oxygenation Level Dependent)

signal. These are an important collection of papers for the

purposes of this review, because changes in the BOLD signal

equally implicate vascular adaptation and neuronal circuit

activation (28), and dysregulation in the BOLD signal may

indicate vascular dysfunction. Here we conducted a systematic

PubMed review of papers on FASD and the vascular system,

selecting papers that documented vascular deficits in both

human populations and animal models, as well as papers that

tested underlying mechanisms, to identify the current knowledge

state and potential knowledge gaps in the field of vascular effects

of PAE.

Methods

We conducted an initial systematic review search in June of

2021 of research articles curated in PubMed to assess the strength

of the research on vascular effects of PAE. PubMed was screened

for several terms, as listed in Figure 1. After removing all review

papers, a total of 191 papers were present using those terms. Of

the 191 papers, 24 paper were unavailable to access fully and

99 were unrelated to blood vessels or the cardiovascular system.

With 68 papers remaining, non-alcohol related studies were

removed, and the remaining 38 studies were then separated

by human versus animal models. Subsequent searches

conducted until June of 2022 yielded an additional 3 pertinent

papers. A total of 40 pertinent papers were selected to be included

in this systematic review on the effects of ethanol exposure in

utero to cardiovascular and neuropsychiatric systems exhibited

in both human populations and animal models.
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FIGURE 1
Search terms and schematic for analysis.

FIGURE 2
Classification of Human and Pre-clinical animal studies. The category, “Pre-clinical, Other Mammal” includes sheep, rats and mice.
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Results and discussion

Studies in human populations

A key, but perhaps unsurprising finding from our analyses is

that there are very few studies in human populations, particularly

on brain vascular effects of PAE (Figure 2). Many of these studies

were case reports, based on very small sample sizes. However, a

few studies did include both larger samples of persons with a

diagnosis of FAS or pFAS, and importantly, well-described

reference or comparison group samples. The earliest

description of anatomical anomalies associated with FAS

specifically included reference to cardiovascular anomalies,

including ventricular septal defects (6, 29), and stenosis of

major cardiac efferent arteries like the pulmonary artery (30).

Another 1979 case report on two infants with a diagnosis of FAS

who were surgically treated for cardiac septal defects (31) also

noted that the infants exhibited dysplastic pulmonary arteries,

and one infant also exhibited aortic insufficiency. A later case

report found evidence for stenosis of the descending aorta and

the renal arteries in a child diagnosed with FAS (32). These case

reports, despite containing very small patient samples, showed

that the heart and large arteries could be affected and perhaps,

contribute to the pathology of FAS. Furthermore, vascular

deficits within the interstitial vasculature of tissues have also

been documented in humans diagnosed with FAS. For instance,

in an early report in Lancet by Habbick et al (33), analysis of liver

biopsies from three children with FAS uncovered sclerosis and

other damage associated with central veins in hepatic lobules and

other hepatic vasculature. Additional early supporting data on

the vulnerability of interstitial vessels comes from a study in

placenta samples obtained from control and alcohol-exposed

pregnancies (34). Electron microscopy analysis of placental

ultrastructure (five cases from both control and alcohol-

exposed pregnancies) found evidence for vascular endarteritis

and thickened basal lamina of placental blood vessels, suggestive

of a potential inflammatory occlusion of blood vessels and

restriction of blood flow. The collective assessment from each

of these small-scale studies is that vascular damage may not be

limited to the large vessels, but instead may be a general feature of

tissues and organs as well. Moreover, such damage may limit

blood flow to a variety of organs and contribute to impaired

organ function. The question is whether such impaired vascular

function also occurs in brain.

Cerebral micro-vessel structure in FASD

Our literature review identified two primary studies of brain

microvessels, both of which examined postmortem fetal tissues

from control cases and cases that met the diagnostic features of

FAS or partial FAS (pFAS). The first study, which included

11 FAS/pFAS cases and eight control cases from gestational ages

of 19–38 weeks (35), reported that the effects of PAE on brain

vasculature were more prominent during later developmental

periods. While control fetal brains exhibited a predominantly

radial pattern of microvessels that traversed the marginal zone

through the cortical plate and intermediate zones of the cerebral

cortex, this radial pattern was significantly diminished in older

fetuses with features of FAS/pFAS. The lack of observed effects in

fetuses at earlier gestational ages suggests that vascular deficits

may either result from cumulative PAE, or that the deficits from

earlier episodes emerge later in development. More recently, the

same research group published a second post-mortem study in

four control fetuses and four fetuses with features of FAS/pFAS,

ranging from gestational ages of 29–34 weeks (36). Using

immunohistochemical staining for the microtubule-associated

light chain protein, LC3 (Map1lc3a), the authors found a

significant increase in LC3-positive puncta in endothelial cells

lining cerebral microvasculature, an outcome that the authors

interpreted as increased autophagy. Interestingly, in contrast to

the previous study, increased LC3-positive puncta were observed

early on, at gestational week 29, in fetuses with characteristics of

FAS/pFAS, suggesting that autophagy may precede the loss of

radial microvessels. A rigorous component of both studies was

that the authors also replicated their findings in murine and cell

culture models, suggesting that ethanol is a causal agent in the

loss of brain microvessels, and that autophagy, a common stress

response to nutrient deprivation, is one mediating factor.

An important caveat in interpreting these studies is their

small sample sizes. Furthermore, fetuses affected by high levels of

alcohol exposure (characterized as chronic daily alcohol exposure

to binge levels) may have also resulted in spontaneous pregnancy

termination. Other researchers have documented a link between

heavy alcohol exposure during pregnancy and spontaneous

pregnancy termination (37, 38). It is therefore possible that

the heaviest alcohol exposures, which place pregnancy

viability at risk, also compromise fetal vascular development.

It remains to be determined if lower levels of prenatal alcohol

exposure also compromise fetal brain vascular development in

human populations. Another limitation of these studies is that

they documented the acute effects of alcohol exposure in the

fetus. For assessments in later life, a number of researchers turned

to the retina, as a proxy tissue for assessing brain.

Retinal circulation as a marker for
cerebrovascular effects of FASD

Like brain, the retina is a central nervous system structure,

protected by a structure equivalent to the blood-brain barrier,

i.e., the blood-retinal barrier (39). As with the brain, the health of

retinal neurons is dependent on an extensive microvascular

network. A substantial advantage is that the structure and

function of retinal arteries is readily accessible at any stage of

postnatal life by standard ophthalmological visualization
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techniques. Not surprisingly, a number of studies on the vascular

effects of PAE in human populations have focused on assessing

retinal blood vessels. A majority of these studies, including some

of the early case reports (40–42), reported increased tortuosity of

retinal vessels (see Table 1).

In a larger study evaluating ophthalmologic findings in

children with FASD, Gyllencreutz et al (47) assessed a cohort

of 30–32 eastern European and Swedish children with FASD,

who were longitudinally observed from childhood into

adulthood for persisting ophthalmologic effects following

PAE. The children had a median age of 7.9 years at the time

that a multidisciplinary team diagnosed them with FASD, and

evaluated visual acuity, stereoacuity, ocular media, strabismus,

refraction, and fundus. At 13–18 years later (with the median age

of study participants at 22 years old), the study cohort was

reexamined and many of the earlier documented

ophthalmologic findings - including astigmatism, defective

stereoacuity, heterotropia, and optic nerve hypoplasia - were

found to persist into adulthood. In addition, an increased

tortuosity of retinal vessels was noted to persist into

adulthood. Although none of the children enrolled in this

study were born extremely premature, this study did include

12 children with a premature birth history (31–36 weeks of

gestation), 16 children with a birth weight of less than 2,500 g,

and 12 children who were born small for gestational age (SGA).

These are important considerations, because, as we discuss later,

prematurity is linked to increased tortuosity of retinal vessels,

and other ophthalmological anomalies. A weakness of this study

is that from the original cohort, children who did not receive a

FASD diagnosis were not subsequently followed up. This means

that it is difficult to ascertain whether the incidence of

ophthalmological anomalies is higher in FASD populations

compared to matched controls.

In contrast to the study presented above, another relatively

large-scale study (48) compared 43 PAE children with 55 control

children between the ages of 4 and 9, and found that both

TABLE 1 Summary of vascular studies in FASD in human populations.

FASD sample size (comparison
group sample size)

Study
type

Vascular
region

Major findings References

3 (0) Case Study Hepatic Two cases of children with FAS presented with sclerosis of the central
vein and distention, while 1 case displayed hepatic fibrosis and cystic
kidney disease

(33)

2 (0) Case Study Heart and Lungs Two infants with FAS presented with hypoplastic pulmonary arteries,
congestive heart failure, and ventricular septal defects

(31)

17 (0) Case Study Eye Children with FAS displayed retinal arterial and venous tortuosity, optic
nerve hypoplasia, and decreased visual acuity

(40)

5 (0) Case Study Placental There is significant endarteritis, trophoblastic basement membrane
thickening, and basal lining hyperplasia in villous capillaries in placenta,
in pregnancies that were prenatal alcohol-exposed

(34)

10 (0) Case Study Eye Ten children with FAS or fetal alcohol effects (FAE) presented with
ophthalmic defects including vessel tortuosity, optic nerve hypoplasia,
cataracts, and visual impairment

(42)

16 (162) Cohort
Study

Eye FASD associated with increased tortuosity of retinal vessels and
decreased vessel branching

(43)

25 (92) Cohort
Study

Eye 117 children diagnosed with optic nerve hypoplasia were further
assessed. 25 were also diagnosed with FAS, with some presenting with
arterial and venous tortuosity

(44)

1 (0) Case Study Abdominal aorta 10-year-old boy with FAS and hypoplastic abdominal aorta presented
with severe hypertension and was successfully treated with renal
angioplasty

(32)

32 (25) Cohort
Study

Eye In the sample, 30% showed retinal vessel tortuosity and 25% showed
optic disc hypoplasia

(41)

31 (30) Cohort
Study

Brain fMRI used to measure brain blood flow and blood oxygen levels. Persons
with FASD exhibited significantly lower average activation for working
memory tasks

(45)

4 (4) Cohort
Study

Brain PAE increases the number of autophagic vacuoles in brain cortical
microvessels

(36)

125 (500) Cohort
Study

Cardiovascular Children with a diagnosis of FAS or partial FAS were at increased risk for
hypertension compared to children in the general population (sampled
from the National Health and Nutrition Examination Survey, NHANES)

(46)

37 (35) Cohort
Study

Eye Observed association between prematurity and increased tortuosity of
retinal vessels, strabismus, myopia, and optic nerve anomalies. Non-
FASD cases were not further evaluated

(47)
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sampling groups exhibited an approximately equal incidence of

arterial tortuosity (~15–16%). This is an important and contrary

finding, because it points to a limitation in case-report-type

studies; specifically, that there was limited-to-no assessment of

the frequency of vessel tortuosity in ‘control’ populations.

However, this negative finding does not by itself disprove the

linkage between PAE and vessel tortuosity. Control populations

may well represent the heterogeneity of outcomes following

prenatal experience, and a number of other factors that were

not controlled for, including, for example, hypoxia, plasma

hyperviscosity and hypercoagulability, [for review, see (49)],

may result in an identical outcome. Importantly, prematurity,

a condition with multiple etiologies including PAE, is also

associated with retinal vessel tortuosity (50).

It is probable that ocular blood vessel pathology may not be a

unique feature of FASD, as documented in an earlier 1999 study

of Swedish children with different developmental complications.

In that study by Hellstrom (43), children with a diagnosis of FAS

(n = 16) were compared to those with other developmental

complications, including preterm birth (n = 39),

periventricular leukomalacia that is typically associated with

perinatal hypoxia/ischemia (PVL, n = 17), and with septo-

optic dysplasia with optic nerve hypoplasia and pituitary

hormone insufficiency (n = 6). Children in these groups were

compared to a cohort of “healthy white Swedish children” (n =

100). Digital image and fundoscopic analyses were used to

examine optic nerve and retinal vessel morphology. In all

groups, the study documented significantly increased

tortuosity of retinal vessels (above the median for the

reference cohort) and a lower number of branching points

(below the median for the reference cohort). While this study

showed that ocular vessel pathology was associated with a

number of developmental pathologies, ~43% of children with

a diagnosis of FASD scored above the 95th percentile for the

reference group. This outcome indicates that children with FASD

are more likely to have retinal vessel pathology that the general

population. This proportion was also larger than that for children

with preterm birth. Contrary to the studies by Gyllencreutz et al.

and Flanigan et al., discussed above, one of the strengths of this

study was that FAS participants (median gestation age of

38 weeks at birth) and premature-birth participants (median

gestational age of 29 weeks at birth) were separated for

analysis. A weakness of this study was that the FAS sample in

this study was poorly defined, except to refer to the then-current

diagnostic guidelines as outlined by Sokol and Clarren (51).

However, the Hellstrom study did support the specific linkage

between a diagnosis of FAS and retinal vessel tortuosity, but also

documented the linkage between other developmental anomalies

and the same outcome.

In general, the findings from human studies support strong

associations between prenatal alcohol exposure and vascular

deficits, but cannot definitively advance a causal relationship

between exposure and outcome. Studies of PAE in animal

models, therefore, have a vital role in providing evidence for

causality.

Animal models of PAE

Early studies in animal models convincingly show that PAE

is a causal factor in the cardiovascular defects that were described

in human populations. For instance, in a 1986 study, Daft et al.

(52) reported that two doses of ethanol on gestational day 8 in a

pregnant mouse resulted in cardiac septal defects and defects in

the cardiac outflow vessels, including the aorta. Moreover, these

defects persisted and could be observed 10 days later, suggesting

that the effects of an episode of PAE were permanent. A second

publication from 2002 reported that PAE throughout gestation in

a rat model, albeit at much lower levels than those reported in the

previous study (~24 mg/dL), resulted in a diminished

vasoconstriction response of aortic rings following acute

treatment with norepinephrine (53). The observed effects of

PAE on the vasoconstrictive response were particularly strong

when the arterial endothelium was intact, suggesting that the

endothelium itself was a direct target of PAE. Interestingly, the

study authors observed that PAE also resulted in diminished

vasodilative response to the cholinergic mimetic carbamylcholine

chloride, suggesting a broader impact of PAE on the adaptability

of large arteries to physiological demand. Collectively, these data

identify PAE, over a range of doses and exposure times, as a

causal factor in the development of persistent structural and

functional cardiovascular defects.

Other studies in primate (54), ovine (55), and rodent models

(56) also point to placental and uterine blood flow as targets of

prenatal ethanol, relating vascular deficiencies in these tissues to

decreased fetal growth (see Table 2). However, cardiac defects

due to developmental ethanol exposure have also been

documented in non-placental vertebrate models, like zebrafish

(66), suggesting that ethanol’s effects on cardiovascular

development are not exclusively mediated by potential utero-

placental insufficiency. Again, these studies support a causal link

between PAE, decreased peripheral blood flow, and subsequent

deficits and brain growth. However, the first studies that

specifically investigate PAE effects on brain vasculature were

not published until approximately 30 years after FAS was first

described in human populations (7) and ~25 years after it was

first described in the United States (6). This delay in research

modeling alcohol’s effects on brain vasculature speaks to the

neural cell-centric focus of the research field at that stage.

Early assessments of cerebral circulation
in animal models of PAE

In 1997, Gleason et al. at Johns Hopkins University, School of

Medicine used a sheep model of PAE (57), in which pregnant
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TABLE 2 Studies on the vascular effects of PAE in animal models.

Species Study type Vascular
region

Major findings References

Sheep In vivo and
in vitro

Brain PAE in early gestation resulted in decreased postnatal cerebral blood flow in labs, in response to
both hypo- and hypercapnia, compared to controls

(57)

Rat In vivo and
in vitro

Aorta PAE alters aortic vascular contractile function, decreased vasoconstrictive response to
norepinephrine and potassium chloride

(53)

Sheep In vivo Brain In the presence of acidemia and hypercapnia, without hypoxia, there was increased blood flow
to brain in sheep that were exposed to moderate alcohol levels during late gestation

(58)

Sheep In vivo Brain PAE in mid gestation significantly attenuated dilatory cerebral blood flow response to hypoxia (59)

Sheep In vivo Brain PAE resulted in increased maximum vasodilation of fetal cerebral arterioles and vessel response
to selective A2A adenosine receptor agonist and to acidosis

(60)

Sheep In vivo Brain PAE in mid-gestation increased the dilatory response of the adult intracerebral arteries due to
VIP but had no difference in response to pH or myogenic tone

(61)

Sheep In vivo Brain PAE in the mid-gestation resulted in lower brain weight, but no significant differences in
cerebral microvessel density

(62)

Sheep In vitro Uterine Isolated uterine endothelial cells from pregnant ewes, exposed to binge-like ethanol levels.
Observed decreased eNOS expression, phosphorylation and expression of eNOS related
proteins

(55)

Mice In vivo Placental, cardiac Binge-like PAE in pregnant mice at gastrulation persistently increases vascular resistance in
umbilical artery, cardiac valvular regurgitation and isovolemic relaxation time

(63)

Mice In vivo Brain Single and repeated binge-like PAE in mid- to late-pregnancy, during the peak period of cortical
neurogenesis results in persistent decrease in cardiac output through umbilical and cerebral
arteries

(64)

Mice In vivo and ex
vivo

Brain PAE in the late gestation resulted in disorganized cerebral microvascular networks, including
reduced density of cortical vasculature, decreased VEGF and VEGF receptor mRNA and
increased VEGF receptor (R1) expression and ex vivo, decreased in microvessel plasticity

(35)

Rat In vivo Uterine An episode of PAE in both early and late pregnancy decreased acetylcholine-induced uterine
artery vasodilation

(65)

Zebrafish In vivo Cardiac Exposure during embryogenesis resulted in a dose-related increase in irreversible damage to
dorsal aorta, segmental artery coarctation, and motor function deficits

(66)

Primate In vivo Placental PAE in early pregnancy in Rhesus monkeys significantly decreased placental perfusion and
oxygenation in fetal vasculature in later stages of pregnancy

(54)

Primate In vivo and ex
vivo

Brain Exposure of fetal MCAs to alcohol in mid pregnancy induces increased dilation of cerebral
arteries and peak systolic velocity, mediated by vascular endocannabinoid receptors

(67)

Mouse In vivo Carotid artery The carotid arteries of adult mice with PAE exhibited significantly decreased blood acceleration
with loss of blood flow to the brain in the long term, and was associated with decreased recovery
from cerebrovascular stroke

(68)

Mouse and
Human

In vivo Placenta, Brain Deficiency in placental angiogenic factor implicated in VEGF (vascular endothelial growth
factor)-receptor mediated deficiencies in brain angiogenesis

(69)

Primate In vivo and ex
vivo

Eye PAE resulted in increased intraocular pressure (IOP) in juvenile and adult offspring, increased
fundal tessellation indicative of abnormal choroidal vascularization, and astrocytosis

(70)

Primate In vivo Brain Peak systolic velocity and pulsatility index of anterior and middle cerebral arteries decreased
during episodes of alcohol intoxication, with decreased fetal cerebral artery Doppler indices

(71)

Rats In vivo Uterine Uterine arteries from alcohol exposed rats had reduced acetylcholine-dependent relaxation and
impaired endothelial nitric oxide signaling

(72)

Mouse In vivo Brain In utero speckle variance optical coherence angiography showed that binge-like PAE caused
rapid and significant cerebral microvessel constriction compared to controls

(73)

Primate In vivo Brain PAE in mid pregnancy resulted in significant increases in transferase and oxidoreductase class
proteins and increased ALDH activity in fetal cerebral basilar arteries

(74)

Primate In vivo and ex
vivo

Brain PAE induced fetal artery dilation mediated by cannabinoid signaling is transient and does not
persist to the end of pregnancy

(75)

Rat In vivo Brain PAE throughout pregnancy resulted in decreased nitric oxide dependent dilation of cerebral
arterioles, higher superoxide levels, increased brain infarct volume following cerebrovascular
ischemia, and increased levels of superoxide

(76)

Rat In vivo Brain PAE throughout gestation resulted in decreased stimulus-dependent vasodilation response in
cerebral arteries in young adult offspring

(76)

(Continued on following page)
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ewes received either an alcohol or saline infusion daily for

3 weeks during early gestation (~Gestational Day 31). This

exposure resulted in mean blood ethanol concentrations of

~167 mg/dL after 1 hour. Physiological characteristics of

cerebral blood were ascertained by sampling from the superior

sagittal sinus of instrumented PAE and control newborn lambs,

and blood flow was quantified using infusions of radionuclide-

labeled microspheres. The authors reported that both the hypo-

and hypercapnic cerebral blood flow response was decreased in

PAE lambs compared to controls.

Subsequently, Parnell et al. at Texas A&M University (58)

andMayock et al. at the University ofWashington (59) published

the next preclinical studies on the effects of PAE on blood flow in

the fetal brain, also using an ovine model. Notably, in both

studies, assessments of PAE effects were conducted in the fetus,

i.e., more proximate to the exposure period, rather than

postnatally, as reported above by Gleason et al. In the study

by Parnell et al., pregnant ewes were exposed to ethanol between

gestational days (GD) 109–132, resulting in maternal blood

ethanol concentrations between 85–185 mg/dL. The authors

also used radionuclide-labeled microspheres to assess cerebral

blood flow, and found increased retention of radionuclides in the

fetal cerebellum, indicative of increased blood flow, but only at

the highest levels of exposure.

Studies by Mayock et al. at the University of Washington,

Seattle, also used an ovine model to assess the effects of PAE on

brain vasculature (59, 60). In their studies, Mayock et al. exposed

pregnant ewes to alcohol at an earlier time frame than the

previously cited paper by Parnell et al. PAE occurred via daily

intravenous infusion between GD 60–90, equivalent to the 2nd

trimester period in human pregnancy. Post-infusion maternal

alcohol levels peaked at ~200–214 mg/dL, which although high,

are within the range of levels attained by individuals with alcohol

use disorders [e.g., see (78)]. In their 2007 study, Mayock et al.

utilized a similar radioisotope retention paradigm to assess

cerebral blood flow as used by Parnell et al. However, this

study found decreased cerebral blood flow due to PAE,

opposite of what was previously reported.

In their subsequent 2008 report (60), Mayock et al. isolated

penetrating fetal cerebral arterioles arising from the pial surface

of fetal lambs between GD 125–128, investigating the persistent

effects of on PAE offspring compared to control, saline infusion-

exposed fetuses. The authors reported two key findings: more

than 5 weeks after the final exposure, cerebral arterioles from

PAE fetuses exhibited 1) a significant dilatory response to

decreased pH, and 2) an increased maximal dilatory response

to an Adenosine A2 agonist, CGS-21680. A follow-up study by

the same team (61), also in isolated fetal sheep cerebral arteries,

reported on a similar PAE-induced increase in vasodilatory

response, this time to vasoactive intestinal peptide, suggesting

that PAE may result in a general enhancement of stimulus-

dependent cerebral arterial vasodilation.

A more recent study in a non-human primate model of PAE

used an ex vivo model of pressurized fetal cerebral arteries (67),

demonstrating that acute ethanol exposure also results in rapid

vessel dilation. In this primate study, the authors were not able to

document additional effect of prior intragastric PAE directly on

the dilation response, though they did document increased

sensitivity to cannabinoid signaling due to PAE. However, this

last study also used a more limited exposure—just three episodes

of intragastric gavage during the 2nd trimester-equivalent period

of human pregnancy—and the peak maternal blood alcohol

levels attained were ~80 mg/dL, substantially lower than levels

attained in the first two studies.

Collectively, the aforementioned studies demonstrate that

PAE can influence cerebral blood flow regardless of whether

exposure occurred in early, mid- or late pregnancy. Moreover,

vascular effects can persist beyond the period of ethanol

exposure, into the neonatal period. Importantly, they also

showed that vasodilation, via ethanol or other dilatory stimuli,

was a long term response to PAE in cerebral blood vessels.

However, the outcome of PAE for brain circulation itself is

still unclear, since the radionuclide retention studies by

Parnell et al. (58) were interpreted by the authors to suggest

increased flow (at least in the posterior, cerebellar circulation),

whereas Mayock et al. (59) and earlier, Gleason et al. (57),

interpreted their data to indicate decreased blood flow, and

under conditions of increased demand, reduced oxygen

delivery within the brain. Some of the differences in study

outcomes reported above, may well be due to inter-study

TABLE 2 (Continued) Studies on the vascular effects of PAE in animal models.

Species Study type Vascular
region

Major findings References

Mouse In vivo Brain In utero ethanol-exposure resulted in an acute-onset dose-dependent decrease in cerebral
microvessel diameter and decreased blood flow measured by correlation mapping optical
coherence angiography. Concurrently the maternal femoral artery exhibited vasodilation

(77)

Mouse In vivo Umbilical PAE in the latter half of gestation resulted in intrauterine growth retardation, and diminished
umbilical arterial blood flow, assessed by pulse-wave Doppler ultrasound. RNA-seq analysis of
the placenta, this study found diminished expression of placental genes for hematopoiesis and
chemosensory pathways

(56)
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differences in the developmental timing of alcohol exposure and

outcome assessment, as well as brain regional differences. It

should also be noted that, radionuclide-labeled microsphere

retention methodology which was historically, the gold

standard for assessing end-organ vascular perfusion, was

nevertheless subject to interpretive limitations. Based on the

empirical association between afferent arterial tone and end-

organ perfusion, increased brain retention of radio-label is

causally linked to peripheral arterial vasodilation (57, 58).

However, this interpretation requires some caution, since it

does not account for potential dilation of efferent vessels,

microcirculatory arterial-venous anastomotic shunts which are

present in brain parenchyma [e.g., see (79)], that may result in

increased clearance and decreased tissue retention of radiolabel

(80), accounting for some discrepancies in study outcomes

outlined above. Recent studies have used more direct, in vivo

imaging modalities such as ultrasound imaging and optical

coherence tomography to assess brain blood flow in response

to PAE.

Ultrasound studies of major cerebral
arteries in animal models

Studies using ultrasound imaging in primate (67, 71) and

rodent models (64, 68) have been successful in visualizing flow

parameters in large cerebral arteries like the anterior (ACA),

middle (MCA) and posterior (PCA) cerebral arteries. Both

primate and rodent models indicate that the immediate and

persistent effect of PAE is decreased cerebral blood flow as

measured by peak systolic velocity, or velocity time integral

[VTI, a composite index that is a measure of the cardiac

output through the assessed cerebral vessel (81)]. However,

studies in primate models generally indicate that the effects of

PAE do not persist past the exposure period, and specifically, not

to pregnancy term. For example, Tobiasz et al. (71) found that

fetal baboons exposed to PAE experienced decreased systolic

velocity in anterior and middle cerebral arteries during the acute

period of intoxication, but that these vascular effects did not

persist through gestation. However, in rodent (mouse) models,

Bake et al. showed that the PAE effect of decreased velocity, and

decreased VTI could persist through gestation (64). In contrast to

the acute fetal effects of PAE, Bake et al., in a follow-up study

(68), showed that young adult PAE offspring (3 months of age)

exhibited significantly increased carotid artery VTI, indicative of

a vasoconstrictive response. It is certainly possible that species

differences may have contributed to differences in the persistence

of the vascular effects of PAE, though the observation of a

peripheral hypertensive phenotype in human populations of

children and teenagers with FASD (46), is consistent with

increased carotid VTI in young adult PAE offspring in the

above mouse study, and argues against a role for species

differences. A second and plausible explanation is that the

persistence of PAE effects had more to do with the dose and

frequency of ethanol exposure. Blood alcohol levels of ~80 mg/dL

were attained in the primate studies, for example, with exposures

spaced 10 days apart (71), whereas BACs of 117–150 mg/dL were

reached in the mouse, with up to two exposures per day for a 4-

day exposure window (68). It is possible therefore that the

cumulative exposure in the mouse model was significantly

higher than that attained in the primate model. Nevertheless,

both models show that, at least immediately, there is a net decline

in fetal cerebral circulation due to PAE, consistent with the

hypothesis that, in the short term, alcohol induces

vasodilation (71). It is important to note that Bake et al. also

followed PAE and control offspring into mature adulthood

(12 months of age), where PAE had a diametrically opposite

effect compared to that observed in young adults, i.e., resulting in

decreased VTI compared to control offspring (68). This outcome

suggests that in the long term, PAE may result in cranial vascular

hypoperfusion in middle-aged adults, though at this time, there is

no comparable data on vascular health in middle-aged persons

with FASD.

Analysis of cerebral microcirculation in
animal models

More recently, optical coherence angiography has been used to

document the effects of PAE on blood flow through even smaller

cerebral arteries and arterioles, including those that serve as tributaries

from theACAandMCA(73, 77). These studies report that PAE results

in a rapid and dose-dependent decrease in the diameter of fetal cerebral

micro-vessels, whereas the maternal femoral artery experienced

vasodilation in the same time frame, as expected. It is likely that

the vasoconstrictive response of cerebral microvessels is a

compensatory adaptation to the dilation of larger and afferent

vessels, as a means to maintain pressure in the microvascular

network. This compensatory effort may be at least partly successful,

as suggested by the increased radionuclide retention in the cerebellum

that observed by Parnell et al. previously [as outlined above (58)].

Anatomical studies in mouse models also provide supporting

evidence that PAE results in persistent damage to the intracerebral

microvasculature. For instance, Jegou et al. (35) used a PAEmodel,

albeit with heavy ethanol exposure, daily through the second half

ofmurine gestation, and observed thatmice with PAE had reduced

density of cortical vasculature and disordered micro-vessel

orientation, which were normally radially-oriented in control

mice progeny. These data cumulatively suggest that even if the

intracerebral microvasculature adapt and compensate for PAE, the

immediate and long-term outcomes are likely to be vascular

insufficiency within the brain. It will be important to ascertain

whether this insufficiency extends to the availability of collateral

circulation between terminal branches of cerebral arteries like the

MCA, ACA and PCA. The evidence suggests that collateral

circulation may also be impaired, and that vascular
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insufficiency may also result in long-term adverse consequences to

adult-onset brain diseases. For instance, two studies have

documented the PAE results in decreased neurological recovery

from an episode of cerebrovascular ischemic stroke (68, 76). While

the study by Bake et al. (68) did not document companion damage

to brain tissue despite neurological deficits, the study by Canzi and

Mayhan (76) showed that ischemia did result in increased stroke

volume in PAE offspring. Therefore, it is likely that compensatory

collateral circulation is also impaired following PAE. Importantly,

collateral circulation can emerge rapidly, during the period of

cerebral arterial occlusion itself (82), suggesting the presence of

latent collateral tributaries within leptomeningeal tissues. It is

likely, though there is a need for further investigation, that

latent collateral circulation is also impaired in PAE, leading to

worse stroke outcomes.

Retinal imaging in animal models

As with human studies, recent studies in animal (primate)

models, have also focused an imaging retinal vasculature to assess

the effects of PAE on brain blood flow in adult offspring. One study

in a large cohort of vervet monkeys (29 PAE and 20 controls),

maintained as a community (70), investigated the effect of

exposure of ethanol in utero on retinal abnormalities and

premature aging of the retina using in vivo examination of the

fundus and intraocular pressure (IOP), as well as a number of

physiologic and anatomic measures. This study had well-defined

and extensive data on maternal alcohol consumption for each

pregnancy, with a range of exposure from 1.2 to 5.51 g of

alcohol/kg body weight/day from mid-pregnancy to term. The

authors found that PAE resulted in increased IOP, increased

fundal vascularization, and the retina showed increased

evidence for astrocytosis, particularly in the retinal ganglion cell

layer and optic nerve, suggesting retinal damage. This is potentially

an important finding, since increased IOP may be indicative of

ocular hypertension, a condition linked to decreased ocular blood

flow and thinning of the choroid plexus in human populations

(83), and to increased risk for glaucoma (84). Collectively, the

studies cited earlier in human populations, as well as the above

study by Bouskila et al., make a case for monitoring ocular health

in FASD populations, not only to decrease the risk for diseases like

glaucoma, but potentially as a biomarker for neurovascular health.

Mechanisms that mediate effects of PAE
on the vascular system

Several studies, including many cited above, have taken the

first important steps to uncover mechanisms of ethanol toxicity.

One consensus finding is that PAE alters the vasodilation response

to G-protein receptor coupled signaling mechanisms and nitric

oxide signaling [e.g., (53, 59, 60, 67, 72, 85)], as well as other

environmental stressors (76). Furthermore, studies do support the

theory that PAE also interferes with the trajectory and

development of brain microvessels. This implicates the potential

role of angiogenic factors, such as signaling through the vascular

endothelial growth factor (VEGF) system. Lecuyer et al. (69) found

evidence for decreased VEGF signaling and decreased brain

angiogenesis due to diminished levels of placental-derived

VEGF family member, PLGF (Placenta Growth Factor).

Interestingly, PLGF supplementation was able to ameliorate the

effects of PAE in their mouse model. Autophagy has also been

implicated as a molecular mechanism in the potential remodeling

of cerebro-vasculature following PAE (36) in both human studies

and mouse models. Autophagy is an important stress response to

vascular injury (reviewed in (86), and a potential target for

therapeutic intervention. However, much more research is

needed to identify and track mechanistic linkages between PAE

and brain vascular outcomes.

Conclusion and limitations

Although the research on PAE effects on developing

vasculature, and in particular brain vasculature, are somewhat

sparse, both human studies and studies in animal models

document the deleterious and persistent effects of PAE on

cerebrovascular structure and function. The current research

studies are based on relatively small sample sizes, but collectively

provide a preponderance of evidence pointing towards several

important pathways related to vasodilation, oxidative stress, and

flow dynamics. It is also clear that vascular deficits are likely to

persist through the lifetime and contribute to risks for adverse

outcomes following adult-onset disease, like cerebrovascular stroke.

In this context, one study which documented significantly increased

risk for hypertension in children and adolescents with a diagnosis of

FAS or pFAS (46) is particularly important, since it suggests that the

risk for adult-like cardiovascular disease may appear earlier in

persons with FASD compared to the general population, and

further implicates pituitary and renal dysfunction in the

pathogenesis of FASD. For instance, studies in human

populations have linked prenatal alcohol exposure to

hypermethylation of the proopiomelanocortin (POMC) locus

(87), and in animal studies, PAE has been shown to result in

deficits in feed-back inhibition and hyperresponsivity of the

hypothalamic-pituitary-adrenal (HPA) axis in affected offspring

[e.g., see (88)]. Animal studies have also shown that PAE results

in loss of renal nephrons and increased blood pressure in exposed

offspring (89). Collectively these data suggest that

hyperresponsiveness of the HPA axis and renal deficiency may

contribute to vascular pathology in FASD, and support the need for

further studies on the intersection between endocrine, renal and

vascular function.

Human studies document disruption to mammalian target of

rapamycin (mTOR) pathways, with increased autophagic
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vacuoles in brain microvessels, deficits in mitochondrial

pathways, and basement membrane adaptations, including

capillary basal hyperplasia and endarteritis. All of these

outcomes are compatible with a stress-related remodeling of

tissue microvasculature following PAE that likely results in

compromised vascular function. Animal models further

provided evidence that PAE is a causal factor in vascular

deficits, including those of the cerebral vasculature.

Additionally, preclinical research has identified PAE-affected

mechanisms of signaling pathways that target vasodilation,

such as the endocannabinoid receptor system, prostacyclin

and nitric oxide pathways, and calcium mobilization. Other

factors, such as impaired VEGF receptor signaling and

changes in protein expression related to mitochondria and

oxidative stress, may contribute further to structural pathologies.

Our analysis of the literature also identified studies in both

human and animal populations that assessed ocular vascular

function following PAE. Studies in FASD populations

documented other ophthalmological findings, such as

increased retinal vessel tortuosity, which should be readily

assessable in primary healthcare settings. These studies make

a case that routine, easy to accomplish, clinical assessments of

ocular blood flow and vascular structure may be useful as a proxy

marker for neurovascular competency in persons with diagnoses

along the FASD continuum. Additional studies are needed to

determine whether such routine ocular assessments have

predictive value for the management of adult-onset

cerebrovascular disease in FASD populations. However,

attention to cardiovascular and cerebrovascular health in

FASD populations is likely to be helpful in managing both

early cognitive and neurobehavioral deficits as well the

delayed, adult consequences of PAE.
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mechanisms of cerebral vascular
damage and lifelong
consequences
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Alcohol is a well-known teratogen, and prenatal alcohol exposure (PAE) leads to

a greater incidence of many cardiovascular-related pathologies. Alcohol

negatively impacts vasculogenesis and angiogenesis in the developing fetal

brain, resulting in fetal alcohol spectrum disorders (FASD). Ample preclinical

evidence indicates that the normal reactivity of cerebral resistance arterioles,

which regulate blood flow distribution in response to metabolic demand

(neurovascular coupling), is impaired by PAE. This impairment of dilation of

cerebral arteries may carry implications for the susceptibility of the brain to

cerebral ischemic damage well into adulthood. The focus of this review is to

consolidate findings from studies examining the influence of PAE on vascular

development, give insights into relevant pathological mechanisms at the

vascular level, evaluate the risks of ethanol-driven alterations of

cerebrovascular reactivity, and revisit different preventive interventions that

may have promise in reversing vascular changes in preclinical FASD models.

KEYWORDS

brain, cerebral resistance arterioles, prenatal alcohol exposure, FASD, cerebral
blood flow

Introduction

One of the most often used psychotropic substances, ethanol, permeates the placental

barrier, and hence exerts potential teratogenic effects. A 2011 survey found that 45 percent

of pregnancies in the United States were unintentional, with one in ten pregnant women

between the ages of 18 and 44 reporting intake of alcohol in the previous 30 days and one

in thirty-three reporting binge drinking [1, 2]. The pattern and intensity of the

detrimental effects of prenatal alcohol exposure are dependent on alcohol dose,

timing, sequence, and persistence of alcohol intake. All current research indicates that

alcohol has a detrimental effect on fetal development. However, the fetal brain is the most

substantially afflicted organ, displaying structural and functional abnormalities as a result

of maternal alcohol consumption [3, 4]. Exposure to alcohol may result in fetal alcohol

spectrum disorders (FASDs) in humans. FASD is a collective name for the harmful effects

of prenatal alcohol exposure (PAE), including impairments in physiologic, neurologic,

and behavioral development [5]. It should also be noted that FASD is an umbrella term
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that incorporates a variety of alcohol-related disorders with a

range of severity. The most severe type of FASD, fetal alcohol

syndrome (FAS) is characterized by specific physical traits in

neonates. Partial FAS (pFAS), on the other hand, is

diagnosed when there is validated prenatal alcohol

exposure but not enough signs and symptoms to confirm

a diagnosis of FAS [6]. Recent investigations, however, have

seen the effects of alcohol on fetal cerebrovascular function

emerge as a key mediator since brain energy needs are

usually fulfilled by a continually adjusting blood supply

[7]. Such an adaptation begins at the level of cerebral

arteries and extends to microvessels that enter the brain

parenchyma and form the neurovascular unit [8,9]. PAE may

have acute and chronic teratogenic and toxic impacts on

cerebrovascular physiology. This review’s objective is to

outline the pathological pathways in different

developmental phases, as well as their morphological and

functional consequences on the cerebral circulation. It is

held that alterations of cerebral blood flow (CBF) owing to

dysregulation of cerebral blood vessels in PAE may be a

significant contributor to the etiology of several

cerebrovascular events, such as stroke.

Cerebrovascular effects of PAE
during fetal development

During the early-gestation period, the neural tube is

surrounded by a perineural vascular plexus (PNPV) developed

by vasculogenesis, the process of blood vessel development in the

embryo, which involves the de novo generation of endothelial

cells (ECs). Beginning in the mid-gestation period, endothelial

cells from the PNPV penetrate the neural parenchyma, utilizing

fibers from multipotent stem cells, like radial glia cells from

the developing forebrain, to direct their migration toward

the ventricular surface, thereby initiating the first vessels of

the CNS. The second trimester is crucial for neuronal and

blood vessel growth in the fetal brain [10, 11]. During this

phase, a network of arteries inside the sub-arachnoid space

gives birth to microvessels that enter the fetal brain [11].

This emerging vasculature supports nutritional

requirements and endocrine regulation of fetal brain

development [12]. In the early-mid gestation period,

vascular development in the CNS is mediated by

angiogenesis, which is defined as a series of cellular and

molecular processes including the production of new vessels

and culminates in the formation of the blood-brain barrier

(BBB) [13,14,15]. At the mid-late gestation period,

interactions among neural cells and ECs are initiated and

continue through late-gestation and until birth.

Communication between glial cells and the vasculature is

crucial for the optimal development of the nervous system

[16]. Pericytes increase vascular stability by releasing a

variety of stabilization factors, such as angiopoietin-1

(ANG1) and platelet-derived growth factor (PDGF-β),
tissue inhibitor of metalloproteinase 3 (TIMP3) [17]. In

response to neural impulses at the perivascular terminal,

astrocytes produce chemicals capable of regulating vascular

tone. From the late-gestation period until birth, the BBB

continues to mature via the expression of various molecules

by the BBB’s cellular components, culminating in the

development of a basal membrane rich in laminin,

collagen IV, and fibronectin that fully surrounds the brain

vasculature [18].

It has been established that maternal ethanol exposure causes

rapid and persistent loss of blood flow from the umbilical

artery to the fetal brain, potentially distressing nutrition and

the maternal/fetal endocrine environment during a critical

stage for neurogenesis and angiogenesis in the developing

brain [19]. Because alcohol exposure during pregnancy is

known to alter brain development, the majority of

investigations have centered on neural cells. At the

molecular and subcellular levels, however, cerebrovascular

development is a more complicated, multi-step process

involving a large number of molecular participants.

Angiogenesis is a complex process that is delicately

controlled by a balance between pro-and anti-angiogenic

factors [20]. They consist of, but are not limited to, vascular

endothelial growth factor (VEGF), integrins, fibronectin,

angiopoietins, vascular cell adhesion molecules (VCAM),

fibroblast growth factors (FGF), tyrosine kinases (TK),

extracellular matrix (ECM) proteins and proteinases,

transforming growth factor (TGF), and Wnt signaling factors

as growth-stimulatory signals. On the other hand, tumor necrosis

factor (TNF) signaling and pro-apoptosis factors are stop signals

[21, 22, 23]. Recent research conducted on adult nonhuman

primates [24] and mice [25, 26] conclusively demonstrates that

alcohol has a deleterious effect on vasculogenesis and

angiogenesis pathways. According to microarray

investigations, genes (e.g., VEGF gene family) implicated in

angiogenesis are molecular targets of ethanol toxicity [27].

In addition to disrupting the signaling components that

regulate vascularization and brain development, PAE may

affect molecular targets that are particular to cerebrovascular

development. Ethanol may affect the molecular and cellular

elements of the BBB directly as soon as they are present

during CNS development. Other research indicated that the

embryonic brain is more susceptible to ethanol due to the

high prevalence of proapoptotic proteins and low expression

of proteins associated with stress response systems, namely

autophagy or unfolded protein response [28]. Also, a

proteomics investigation revealed that alcohol-exposed baboon

fetuses mainly had changes in mitochondrial and structural

proteins in their cerebral arteries. Unlike mitochondrial

proteins, structural proteins were downregulated in the brain

of fetal arteries exposed to alcohol [29].
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Morphological damage in cerebral
blood vessels due to PAE

Considering ethical limits of human-based research, the PAE

of laboratory animals has been extensively used as an alternative.

Results from these animal models showed a significant influence

on the generation and expression of microvessels in the rodent

model. Besides dose, the timing of ethanol exposure has a

significant impact on the outcome of fetal brain development.

Since the gestational period of rodents (i.e., 18–23 days) is much

shorter than that of humans, the morphological and functional

effects of alcohol on these animals may need to be extrapolated to

equivalent pregnancy terms in humans. In both rats and mice,

gestational day (GD) 1–10, GD 10–20, and postnatal days (P)

1–10 can be considered as the equivalents of first, second, and

third trimester human pregnancy, respectively [30]. Prior

research on rat models exposed to moderate prenatal alcohol

dosages revealed ultrastructural changes in brain capillaries at

P20–30 [31]. In a study using rat models, the oral administration

of 6.6 g/kg of ethanol from P4 to P10 was evaluated at P10 for any

alterations in brain microvasculature [32]. There was no change

in capillary density, while capillary diameters were increased in

the cerebellum and hippocampus regions, unlike the dentate

gyrus region [32]. Later, in a mouse model (at P2) of the third

trimester equivalent of human pregnancy demonstrated the

loss of radial orientation of the microvessels and a reduction

in cerebral vascular density when maternal injection of

3 g/kg ethanol occurred during GD 13–19, which was a

time-line equal to the second trimester of human

pregnancy [33]. Overall, these rodent studies suggest that

alcohol exposure during the human mid and late trimesters

might affect the microvasculature differentially in the brain

regions.

Human embryos are susceptible to ethanol. Evidence

suggests that exposure to high amounts of ethanol during

human development causes craniofacial, cardiovascular, and

neurological abnormalities, which are often accompanied by

cognitive and behavioral deficiencies. Autopsy and magnetic

resonance imaging (MRI) investigations found that individuals

who were exposed to alcohol in utero had structural brain

damage, including lower brain sizes and reduced amounts of

white and gray matter inside the brain [reviewed in 4]. However,

the animal research mentioned earlier suggests that exposure to

PAE during late gestation might be perilous. In a postmortem

examination of human brain tissues from fetuses that deceased

spontaneously in utero, stage-dependent alterations in the

cortical vascular network were detected in the cortex of

fetuses with FAS. The radial arrangement of cortical

microvessels was markedly disrupted in FAS patients after

30 weeks of gestation, whereas no changes were seen in

alcohol-exposed human embryonic brain tissues between

20 and 22 weeks of gestation. In addition, dynamic

microscopy techniques indicated that alcohol altered

endothelial cell activity and survival as well as the plasticity of

the microvessel [33].

In conclusion, investigations conducted on rodents and

humans suggest that prenatal alcohol consumption, especially

during the late stages of gestation, may affect the macroscopical

or microscopical structure of the cerebral microvascular network.

These age-dependent abnormalities can be theorized because of a

disturbance in cortical angiogenesis.

Functional changes in
cerebrovascular circulation due to
PAE and their possible implications

Critical to brain function is a coherence among the metabolic

needs, the supply of oxygen and nutrients, and the elimination of

cellular waste. This matching requires continual modulation of

CBF, which may be divided into four basic categories:

autoregulation, vascular reactivity, neurovascular coupling

(NVC), and endothelium-dependent responses. Due to the

limited scope of this paper, this part of the review will discuss

how PAE affects the functional parts of cerebrovascular

circulation, with focuses on how it changes CBF and vascular

reactivity and the clinical effects of these changes.

Changes in CBF

The effects of maternal alcohol intake during pregnancy on

outcome depends on the quantity and patterns of alcohol

consumption. In animal trials, binge-like drinking patterns, in

which the unborn is exposed to elevated blood alcohol

concentrations (BACs) during relatively brief intervals, were

shown to be more detrimental, even when the overall quantity

of alcohol taken was lower than that of more continual drinking

patterns [34, 35, 36]. Because binge drinking produces high

BACs, may occur at important phases of brain development,

and can be coupled with recurrent withdrawal episodes, it may be

extremely detrimental [35]. In addition to a single binge pattern,

recurrent binge-like events of maternal ethanol consumption are

harmful to the fetus likewise [35] and may cause transitory and

chronic abnormalities in cerebrovascular functioning. Abrupt

CBF alterations in embryos may be associated with craniofacial

deformity, fetal growth limitation, neuronal death, impaired

delivery of nutrients to and elimination of metabolites from

neurons, and a reduction in cerebral arterial tone. Here, we will

examine how varied patterns of maternal alcohol use affect the

blood flow to the cerebral arteries.

Temporary effects of maternal alcohol
consumption on CBF

Following acute ethanol consumption, previous research on

pregnant murine [19], ovine [41, 40, 39, 38, 37], and baboon [46,
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45, 44, 43, 42] have showed aberrant uterine and cerebral blood

flow. During acute maternal alcohol intake in vivo, the majority

of investigations observed an increase in fetal cerebral perfusion

and, perhaps, a decrease in fetal cerebral artery blood flow

doppler velocity indices [46, 38, 42, 19]. In contrast, maternal

infusions of 1 g/kg ethanol were associated with a reduction in

CBF in preterm sheep [39] and baboons [45]. There was no

decline in fetal CBF in mid-gestation sheep [40]. In this trial,

1 g/kg of ethanol was infused into the maternal blood at

gestational day 92 (human equivalent term at 145–150 days),

resulting in a maternal BAC of 150 mg/dl [40]. In contrast, in a

separate experiment using the same animal model and a

comparable experimental technique, Parnell et al. (2007)

found that a greater dosage of ethanol (1.75 g/kg) substantially

enhanced CBF by over 30 percent. Specifically, in the cerebellum,

the rise in CBF 1 h after ethanol infusion was up to 50 percent

greater than in the control group. These two experiments

together demonstrated that, in vivo, the effects of alcohol on

cerebral blood flow were concentration-dependent and brain

region-specific.

In addition, the alterations in fetal CBF were detected along

with the changes in systemic hemodynamics: a considerable

increase in fetal cardiac output and heart rate, as well as a

decrease in mean arterial pressure and systemic peripheral

resistance [41]. An ultrasonography investigation

demonstrates that acute single and recurrent binge-like

episodes of maternal ethanol intake may promptly and

chronically alter cranially-directed fetal blood flow throughout

the second trimester [19]. PAE not only induces alterations in

CBF but also impairs autoregulation. Additionally, PAE also

modulates CBF responses to environmental variables. It was

shown that fetal cerebral vasodilator responses to hypoxia [47]

and acidosis [48] are altered by exposure to ethanol during the

second trimester. Earlier work in an ovine model of pregnancy

showed that PAE (1 g/kg ethanol maternal infusion i.v. for

3 weeks during the equivalent of the first trimester) reduced

the adaptive rise in CBF in response to hypoxia in 1–4-day-old

term lambs. As a consequence, neonatal brain oxygen supply

could not be sustained [49]. Thus, it demonstrates that PAE as

early as the first trimester might increase cerebral vascular

susceptibility to environmental damage. Changes in the

blood’s metabolic profile, such as acidemia and hypercapnia,

often follow acute alcohol-induced disruption of CBF and may

contribute to its clinical effects [41, 40, 39].

Persistent effect of maternal alcohol
consumption on CBF: Impairment of vascular
reactivity

Multiple groups have explored the influence of PAE on fetal

cerebrovascular function. A study, utilizing doppler

ultrasonography revealed that in a baboon model of

pregnancy, diminution of PAE alcohol impact occurred earlier

to delivery. That study particularly indicated that acute fetal

alcohol intake, with a maternal BAC of 80 mg/dl in the equivalent

of the second trimester of human pregnancy, decreased cerebral

blood flow in fetal cerebral arteries. However, this influence on

fetal vascular function did not persist throughout the duration of

pregnancy [45]. This indicates that alcohol-induced changes in

the physiological characteristics of the fetal cerebral arteries

disappear with development. In another example of an ovine

PAE model, the alcohol impact of PAE diminished after delivery.

Adult cerebral artery dilatory effects to adenosine A2A receptor

agonist, CGS21680, were investigated in vitro using arterioles

extracted from third trimester comparable ovine fetuses exposed

to ethanol in utero. The dilatory reaction to micromolar doses of

CGS21680 was substantially greater when compared to control

group [48]. However, when arterioles were collected from adult

sheep using a similar ethanol administration approach [50], same

dilator responses were comparable to the control counterpart.

Therefore, experiments using diverse animal models suggested

that PAE-induced abnormalities in the pharmacological nature

of cerebral arteries were slowly reversed with aging.

Turcotte et al. found that prenatal exposure to ethanol (6.4%)

lowered the relaxation of the aorta to carbamylcholine in rats

25 weeks after birth, indicating a change in the reactivity of

peripheral arteries [51]. Similarly, in peripheral arteries, some of

the alcohol-induced modifications in fetal cerebral artery

characteristics may persist and be detectable long after birth.

Multiple studies on rats reveal the long-lasting effects of PAE. In

vivo responses of cerebral arterioles to eNOS- and nNOS-

dependent agonists were reduced in young rats (4–6 weeks

old) [52] and in adult rats (12–15 weeks old) [53,54] exposed

to alcohol during fetal development. While it is known that

prenatal alcohol exposure impairs the dilatation of cerebral

arterioles in rats, no research has explored the effect of

prenatal alcohol on the constrictor response of cerebral

arterioles until recently. The response of cerebral arterioles to

U-46619 (a thromboxane-mimetic analog) and arginine

vasopressin (AVP), which are physiologically important

constrictors, was comparable in male and female rats

independent of prenatal alcohol exposure and age. Similarly,

there was no difference between male and female adolescent rats’

responses to angiotensin II after prenatal alcohol consumption.

At adulthood, however, alcohol-exposed females demonstrated

an unanticipated dilatation in response to a high concentration of

angiotensin II, but males did not. Except in adult female rats, the

majority of the vasoconstriction responses to prolonged prenatal

alcohol exposure were retained [55]. Besides inducing the loss of

vascular reactivity, PAE is capable of inducing arterial stiffness to

the cerebral vasculatures [56].

Implications

Long-term research on humans have previously proven

that offspring of binge-drinking mothers demonstrate
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particularly significant cognitive and behavioral

abnormalities. The ability of the brain to maintain adequate

cerebral blood flow in the face of changes in metabolic demand

may influence the pathogenesis of symptoms associated with

FASD in adults, i.e., cognitive decline, psychiatric symptoms,

dementia, and seizures, all of which may be directly impacted

by the ability of the brain to maintain adequate cerebral blood

flow (neurovascular coupling) [57–60].

In addition, the loss of cerebrovascular autoregulation, such

as during severe hypertensive encephalopathy, may result in

catastrophic occurrences, such as subarachnoid hemorrhage

and hemorrhagic stroke [61]. Evidently, our lab has also

TABLE 1 Multiple cellular and molecular mechanisms of cerebrovascular impairment due to prenatal alcohol exposure.

Summary Table: Molecular and cellular mechanisms of cerebrovascular impairment due to prenatal alcohol exposure

❖ Mechanism of transient effects of prenatal alcohol exposure:

A. Cerebrovascular layer involved: Cerebrovascular myocyte (mainly)

• Through eCB system: CB receptor types 1 and 2 [46].

− Preclinical agent used for improvement: Rimonabant, a CB receptor inverse agonist [46]

❖ Mechanism of persistent effects of prenatal alcohol exposure:

A. Cerebrovascular layer involved: Cerebrovascular myocyte

1. Through increasing anandamide (AEA)-induced dilatation [46].

B. Cerebrovascular layer involved: Cerebrovascular endothelial cells

2. Through increased expression of collagen and tropoelastin, leading to increased stiffness of the vessel [56]

3. Through eNOS and nNOS-dependent impairment, leading to decreased reactivity of the vessel [52, 53]

4. Through increased generation of ROS [52, 53]

−Preclinical agent used for improvement:

• Apocynin (non-specific action) [52, 53].

• Rosiglitazone (specific action) [54].

5. Through decreased 5-hydroxytriptamine mediated vasodilation [56].

C. Extravascular

6. Through neurohormonal alteration

− E.g. reduces VIP levels [92, 50].

❖ Mechanism of morphological modifications of NVC:

a. Angiogenesis:

1. Through VEGF-mediated modification:

Preclinical agent used for improvement: Exogenous VEGF [33].

2. Through inhibition of autophagy in brain endothelial cells:

1. Enhanced expression of microtubule-associated protein (LC3) and ubiquitin-binding protein (p62) in endothelial cells [94].

2. Downregulation of the mTOR pathway.

− Preclinical agent for improvement: mTOR inhibitor, rapamycin [94].

b. Endothelial cell survival:

1. Through generation of ROS > mitophagy > cell death [96].

2. Through releasing of AIF > impaired mitochondrial integrity

> cell death.

− Preclinical agent used for improvement: Activation of autophagy by rapamycin [94].

3. Through Mitochondria-linked cellular apoptosis [97]

− Preclinical agent used for improvement: ROS scavengers and antioxidants.

❖ Mechanism of loss of integrity of NVC:

1. Through enhanced permeability of BBB: anticipated (no published evidence yet).

2. Through MMP-induced proteolysis of the neurovascular matrix [99,100,101].

Expansion of abbreviations used: AEA, N-arachidonoylethanolamine; AIF, apoptosis-inducing factor; BBB, blood brain barrier; CB, cannabinoid; eCB, endocannabinoid; eNOS,

endothelial nitric oxide synthase; LC3, 1A/1B-light chain 3; MMP, matrix metalloproteinases; mTOR, mammalian target of rapamycin; NVC, neurovascular coupling; nNOS, neuronal

nitric oxide synthase; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; VIP, vasoactive intestinal peptide.
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shown that in prenatal exposure to alcohol exacerbated brain

damage in adult rats after ischemia/reperfusion and that

treatment of dams with apocynin reduced this increase in

brain injury following ischemia/reperfusion [53]. Thus, it may

be inferred that PAE-induced alterations in cerebral blood flow

not only contribute to the pathophysiology of fetal alcohol

syndrome, but also have the potential to cause serious brain

injury.

Molecular and cellular mechanisms
of impairment and recent preclinical
interventions

Because alcohol is a simple ligand that may concurrently

target several chemical entities, its effects on the developing brain

are very complicated. Alcohol may cause cell death in some types

of brain cells while interfering with the cellular and molecular

activities of other types. These effects may be caused by alcohol

both directly and indirectly.

Alcohol may have direct effects on embryonic brain

development by interfering with neuronal proliferation and

migration [62] or by inducing cell death [63,64,65]. In

addition, alcohol may raise fetal glutamate levels [66, 67] and

decrease glutamate N-methyl-D-aspartate receptors [68, 69],

which may result in aberrant neuronal and glial migration.

Alcohol-induced hypoxia in the fetus is a significant indirect

cause of alcohol. Alcohol reduces blood flow to the umbilical

artery [70, 71], which might result in growth retardation [72, 73].

In addition to inhibiting protein synthesis and altering hormone

levels, alcohol may further impede development [74, 75].

Increased oxidative stress on the embryo [76, 77] and

disruption of growth factor signaling [78, 79] are additional

pathways.

These effects can be toxic (short-term) and teratogenic (long-

term). This section will examine as well as summarize (Table 1)

the toxic and teratogenic processes that generate short-term or

long-term effects on the cerebral arteries and microvessel

network.

Mechanism of transient and persistent
effects of prenatal alcohol exposure

Alcohol’s short-term effects on CBF are highlighted by

ethanol’s targeting of molecular players inside the fetal

cerebral blood vessel. In particular, PAE is characterized by

fetal cerebral artery dilatation in the presence of alcohol,

which is mediated by cannabinoid (CB) receptors 1 and 2. A

study showed that the endocannabinoid (eCB) system is a target

of maternal alcohol intake inside the fetal cerebral arteries, and

that rimonabant, a CB receptor inverse agonist, might be a

potential rescue treatment, as suggested by Seleverstov et al.

[46]. Furthermore, fetal CB2 receptor-mediated cerebral artery

dilation by anandamide was up-regulated in alcohol-exposed

fetuses, showing that these receptors are the primary

determinants of the persistent vasodilatory impact of alcohol

on fetal cerebral arteries [46]. In addition to the increase of

anandamide (AEA)-induced dilatation, other mechanisms of

PAE’s lasting effects are described in subsections below.

Endothelial nitric oxide synthase
Endothelial nitric oxide synthase (eNOS) is extremely

susceptible to prenatal ethanol exposure in fetal cerebral

arteries. In fetal cerebral arteries of an ovine model of

pregnancy - where fetal plasma alcohol concentration reached

108 mg/dl during the late gestational period of day 95–133

(human equivalent term pregnancy) - a decreased

endothelium-dependent vasodilation was observed in response

to the dilator 5-hydroxytriptamine in alcohol-exposed donors.

Authors also discovered a substantial reduction in endothelial

nitric oxide synthase (eNOS) mRNA [56]. In contrast, in

adolescent rats (4–6 weeks old) and adult rats (12–15 weeks

old), in utero alcohol exposure decreased cerebral arteriole

responses to eNOS (ADP) and neuronal nitric oxide synthase

(nNOS)-dependent (NMDA) agonists [52, 53]. However, in

microvessels and tissue from the parietal cortex of adolescent

rats, the expression of eNOS and nNOS levels was not

altered [52].

Stiffness of the arterioles
In the ovine model mentioned above, Parkington et al. also

discovered that PAE significantly increased the fetal cerebral

artery’s total functional stiffness. Evidently, the elastic modulus

of arteries in alcohol-exposed groups was approximately double

that of control groups. In comparison to the control group, the

alcohol-exposed group showed considerably higher mRNA levels

for collagen Ia1 and tropoelastin, revealing the mechanism

behind the enhanced functional stiffness of the vessel [56].

Increasing production of Reactive Oxygen
Species (ROS)

EtOH and its catabolite acetaldehyde are itself harmful,

although oxidative stress is the predominant damaging

mechanism, according to current understanding. Oxidative

stress is characterized by high intracellular levels of reactive

oxygen species (ROS) that cause lipid, protein, and DNA

damage. ROS are molecules or ions generated by the

incomplete reduction of oxygen by one electron. The principal

ROS species are superoxide (O2•), hydrogen peroxide (H2O2),

and the hydroxyl radical (•OH). Cananzi and Mayhan evaluated

the production of superoxide in the cerebral arterioles of

prenatally alcohol-exposed adolescent and adult rats [52, 53],

given that oxidative stress has been found to enhance

neurovascular and neuronal damage and death in multiple

brain locations in FASD (Figure 1A). PAE increased the
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baseline levels of superoxide in the parietal cortex tissue of rats

(Figure 1B), even when NADPH, which was used to enhance

NADPH oxidase activity, was administered. NOX-2 and NOX-4

are isoforms of the NADPH oxidase system that are found in

endothelium and vascular smooth muscle and play a crucial role

in the generation of superoxide [80–84]. Alcohol exposure during

gestation increases the expression of NOX-2 and NOX-4 in

microvessels. In addition, they discovered that apocynin, a

powerful antioxidant, lowered superoxide levels (Figure 1C)

and relieved impairment of eNOS- and nNOS-dependent

responsiveness of cerebral arterioles in rats exposed to alcohol

during gestation. This indicated an increase in superoxide

generation in these animals, which may lead to an increase in

oxidative stress in rats exposed to alcohol during gestation [52,

53]. Importantly, they discovered that apocynin reduces the

likelihood of brain injury in adult rats after cerebral ischemia

[53]. As apocynin was a nonspecific inhibitor of superoxide

anion, the particular subcellular route underlying the

impairment of cerebral vascular function remained unclear.

Saha et al. used rosiglitazone, an agonist for the gamma

subtype of peroxisome proliferator-activated receptors

(PPARs) to determine the specific vascular anti-oxidant

mechanism [54]. It has been shown that these receptors sit on

vascular smoothmuscle and endothelium [85,86,87]. In addition,

both acute and chronic treatment of male and female adult rats

with rosiglitazone protected decreased eNOS and nNOS-

dependent vascular function in alcohol-exposed male and

female adult rats. In addition, acute rosiglitazone decreased

superoxide levels (Figure 1C) in parietal cortex tissue,

indicating the anti-oxidant mechanism(s) via which

FIGURE 1
Role of oxidative stress in causing neurovascular damage in FASD. (A) Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide
synthase (nNOS) are some of the targets for prenatal alcohol-induced oxidative stress in the neurovascular unit. (B) Superoxide levels at baseline in
parietal cortex tissue from adult control rats, rats exposed to alcohol in utero, control + apocynin rats, control + rosiglitazone rats, alcohol +
apocynin, and alcohol + rosiglitazone rats [Adapted and combined from 53 & 54 with proper permission from publisher, John Wiley and Sons].
*p < 0.05 versus levels before treatment with apocynin and rosiglitazone. (C) Proposed pathway for a physiological relationship between in utero
alcohol exposure and impaired cerebral arterioles due to superoxide production. Expansion for NOX = NADPH oxidase.

Advances in Drug and Alcohol Research Published by Frontiers07

Saha and Mayhan 10.3389/adar.2022.10818

66

https://doi.org/10.3389/adar.2022.10818


rosiglitazone enhanced vascular function [54]. PAE (three

percent ethanol for entire gestation period) induced

dysfunction in the ability of specific potassium channels to

dilate in rat cerebral arterioles. This dysfunction appears to be

mediated by an increase in oxidative stress, as acute apocynin was

able to enhance the response [unpublished data].

Neurohormonal alteration
Vasoactive intestinal peptide (VIP) operates as a

nonadrenergic, noncholinergic neurotransmitter or

neuromodulator in both the peripheral and central nervous

systems, where it acts on specific receptors to dilate cerebral

arteries, pial arterioles, and intracerebral arterioles [88–91].

Alcohol exposure during gestation decreases VIP levels

permanently in the rat fetal brain [92]. Alcohol exposure

during pregnancy dramatically affected the dilator response

of adult intracerebral arterioles to VIP in an adult sheep model

of binge-drinking during pregnancy [50]. This decrease may

suggest a loss of neuronal connections, including neurons

carrying VIP, or a change in VIP receptor density in the

adult brain. This is the first research to indicate that

exposure to alcohol during fetal development may have

long-lasting consequences on vasomotor responses in adult

brain arteries.

Mechanism of modifications of
morphology and integrity of NVC in
response to prenatal alcohol exposure

PAE has profound impacts on angiogenesis and endothelial

cell survival on the formation of cortical blood vessels. The

molecular processes behind these effects are poorly

understood. VEGF is an effective blood vessel

development regulator. VEGF-R1, VEGF-R2, and VEGF-

R3 receptors [93] mediate the biological actions of

VEGFs. Jégou et al. [33] evaluated VEGF-R1 and VEGF-

R2 protein levels in cerebral microvessel extracts of P2 mice

exposed to prenatal alcohol in 2012. They observed an

upregulation and also a simultaneous downregulation of

VEGF1 and VEGF2 receptor proteins respectively in the

cortical microvascular network during PAE; these changes

were found to be associated with detrimental alterations in

density and radial organization. Thus, disruption of these

receptor subtypes is one of the mechanisms behind the

VEGF-mediated modification of the cerebral

microvascular network in rats prenatally exposed to

alcohol. One of their in vitro experiments revealed that

exogenous VEGF reduced the deleterious effect of ethanol

on the vascular plasticity of the cortical glia [94].

During fetal development, well-controlled autophagy

promotes vascular development and also protects against

autophagic cell death. It is especially vital in ECs, one of the

principal components of the developing blood vessels, as they

help to adjust their bioenergetic and biosynthetic requirements in

response to shifting environmental conditions, the presence of

angiogenic stimuli, or intrinsic and extrinsic damages. PAE may

inhibit autophagy in brain endothelial cells, hence leading to

changes in angiogenesis and the resultant brain abnormalities

identified in individuals with pFAS/FAS. PAE increases the

frequency of autophagic vacuoles in the endothelium of

cortical microvessels in human fetal brain tissues and in a

mouse model of PAE in neonates, indicating defective

autophagy [94, 95]. Girault et al. discovered that the levels of

autophagy marker proteins, such as microtubule-associated

protein 1A/1B-light chain 3 (LC3) LC3 and ubiquitin-binding

protein p62, were considerably enhanced in endothelial cells

treated with 50 mM ethanol in order to understand the process.

In addition, a reduction in Rab7, a protein that plays a crucial

function in endocytosis, was detected, which may account for the

impaired autophagosome–lysosome fusion. Importantly, these

effects of ethanol were eliminated in the presence of 4-

methylpyrazole, which inhibits the synthesis of the ethanol

metabolite acetaldehyde. These findings showed that

acetaldehyde (MeCHO) triggers the process of autophagy

dysregulation in cerebral microvessels after alcohol

exposure [94].

In addition, it was shown that the increase in autophagy

vacuoles after alcohol exposure was associated with a

downregulation of the mammalian target of rapamycin

(mTOR) pathway. They also demonstrated that activating

autophagy with the mTOR inhibitor rapamycin reduces

ethanol-induced endothelial cell death and restores vascular

plasticity [94]. Overall, this shows that ethanol adversely

affects angiogenesis by promoting endothelial autophagy in

the cortical layer.

Previous research has shown that the neuroprotection

afforded by autophagy may originate from the elimination of

damaged mitochondria. And the lowered degree of autophagy

may promote ROS production and excessive mitophagy [96],

hence enhancing ethanol-induced cell death. In murine

pulmonary microvascular endothelial cells (MPMVEC),

Girault et al. found that ethanol impairs mitochondrial

integrity and triggers apoptosis-inducing factor (AIF) protein

release and nuclear translocation, which may result in

programmed cell death. Therefore, they hypothesized that

activation of autophagy by rapamycin may similarly shield

endothelial cells from ethanol-induced mortality and aid

cortical angiogenesis in individuals with pFAS/FAS [94].

Among numerous pathways of cell death generated by fetal

brain alcohol exposure, fetal cerebral artery mitochondria-linked

cellular apoptosis has been documented in an animal model of

prenatal alcohol exposure and FASD-related brain injury [97].

Alcohol-induced abnormalities in prenatal cerebrovascular

mitochondria may result from both direct targeting by alcohol

[29, 98] and secondary damage resulting from alcohol-induced
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changes in fetal cerebral blood flow [41, 46]. Therefore,

mitochondria-targeted therapies with ROS scavengers and

antioxidants might be a viable therapeutic strategy for the

treatment of FAS/FASDs.

The integrity of cortical microvessels is necessary for optimal

vascular development. Permeability of the BBB and matrix

metalloproteinases (MMP)-induced proteolysis of the

neurovascular matrix may influence cortical vascular

development. BBB permeability has also been proposed as

a possible site of PAE-induced change in cerebral capillaries.

However, no documented evidence of prenatal ethanol-

induced BBB permeability currently exists. In contrast,

MMP-induced proteolysis of the neurovascular matrix

may also cause programmed cell death by cell separation

from the extracellular matrix [99, 100]. Indeed, glutamate-

induced activation of the endothelium protease MMP-9 from

pial microvessels of neonates was seen in a mouse model of

PAE [101].

As yet, no global mechanism of alcohol-induced impairment

to embryonic or fetal brain development has been revealed,

and it is very unlikely that a single mechanism can explain

the various components of the FASD presentation. In

addition, while alcohol is often regarded the principal

chemical that causes birth defects (i.e., a teratogen),

alcohol’s breakdown products (i.e., its metabolism) may

also play a role. For instance, acetaldehyde, a toxin

produced by the breakdown of alcohol in the liver and

other organs, may accumulate in the fetal brain during

prenatal alcohol exposure and may contribute to the

development of FASD. Each individual shows a unique

mix of alcohol-related consequences, which is influenced

by the time, amount, pattern, and length of the mother’s

drinking, in addition to hereditary variables. This variation

makes it difficult to compare the effects of drinking across

individuals.

Conclusion

There is currently no readily available treatment for

intentional or unintentional alcohol intake during pregnancy.

The inadequate mechanistic knowledge of FASD’s pathogenesis

is one of the explanations. More research is required to

understand the underlying mechanisms through which alcohol

might affect the structure and function of cells. Understanding

these multiple mechanisms and seeking to inhibit them may help

us to reduce the negative effects of alcohol exposure on

embryonic development in the future. Additionally, efforts

must be made to improve public awareness of the detrimental

consequences of even little alcohol intake during pregnancy.

Author contributions

Study conception and design: PS and WM; Draft manuscript

preparation: PS. All authors reviewed the contents and approved

the final version of the manuscript.

Funding

Original studies from our laboratory were supported by a

grant from the National Institute on Alcohol Abuse and

Alcoholism (1 R01 AA027206-01) and funds from the

Sanford School of Medicine at the University of South Dakota.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

References

1. Dejong K, Olyaei A, Lo JO. Alcohol use in pregnancy. Clin Obstet Gynecol
(2019) 62(1):142–55. doi:10.1097/GRF.0000000000000414

2. Finer LB, Zolna MR. Declines in unintended pregnancy in the United States,
2008-2011. N Engl J Med (2016) 374(9):843–52. doi:10.1056/NEJMsa1506575

3. Mattson SN, Schoenfeld AM, Riley EP. Teratogenic effects of alcohol on brain
and behavior. Alcohol Res Health (2001) 25(3):185–91.

4. Caputo C, Wood E, Jabbour L. Impact of fetal alcohol exposure on body
systems: a systematic review. Birth Defects Res C Embryo Today (2016) 108(2):
174–80. doi:10.1002/bdrc.21129

5. Thomas JD, Warren KR, Hewitt BG. Fetal alcohol spectrum disorders: from
research to policy. Alcohol Res Health (2010) 33(1-2):118–26.

6. Riley EP, Infante MA, Warren KR. Fetal alcohol spectrum disorders: an
overview. Neuropsychol Rev (2011) 21:73–80. doi:10.1007/s11065-011-9166-x

7. Bukiya AN, Dopico AM. Fetal cerebral circulation as target of maternal alcohol
consumption. Alcohol Clin Exp Res (2018) 42(6):1006–18. doi:10.1111/acer.13755

8. Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review.
Acta Physiol (2014) 210(4):790–8. doi:10.1111/apha.12250

9. Iadecola C. The neurovascular unit coming of age: a journey through
neurovascular coupling in health and disease. Neuron (2017) 96(1):17–42.
doi:10.1016/j.neuron.2017.07.030

10. Bayer S, Altman J, Russo R, Zhang X. Timetables of neurogenesis in the
human brain based on experimentally determined patterns in the rat.
Neurotoxicology (1993) 14(1):83–144.

11. Norman MG, O’Kusky JR. The growth and development of microvasculature
in human cerebral cortex. J Neuropathol Exp Neurol (1986) 45(3):222–32. doi:10.
1097/00005072-198605000-00003

12. Tam SJ, Watts RJ. Connecting vascular and nervous system development:
angiogenesis and the bloodbrain barrier. Annu Rev Neurosci (2010) 33:379–408.
doi:10.1146/annurev-neuro-060909-152829

13. Walchli T, Wacker A, Frei K, Regli L, Schwab ME, Hoerstrup SP, et al. Wiring
the vascular network with neural cues: a CNS perspective. Neuron (2015) 87:
271–96. doi:10.1016/j.neuron.2015.06.038

14. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and
disruption of the blood-brain barrier. Nat Med (2013) 19:1584–96. doi:10.1038/nm.
3407

Advances in Drug and Alcohol Research Published by Frontiers09

Saha and Mayhan 10.3389/adar.2022.10818

68

https://doi.org/10.1097/GRF.0000000000000414
https://doi.org/10.1056/NEJMsa1506575
https://doi.org/10.1002/bdrc.21129
https://doi.org/10.1007/s11065-011-9166-x
https://doi.org/10.1111/acer.13755
https://doi.org/10.1111/apha.12250
https://doi.org/10.1016/j.neuron.2017.07.030
https://doi.org/10.1097/00005072-198605000-00003
https://doi.org/10.1097/00005072-198605000-00003
https://doi.org/10.1146/annurev-neuro-060909-152829
https://doi.org/10.1016/j.neuron.2015.06.038
https://doi.org/10.1038/nm.3407
https://doi.org/10.1038/nm.3407
https://doi.org/10.3389/adar.2022.10818


15. Kim J, Jin H, Park JA, Lee SW, Kim WJ, Yu YS, et al. Blood-neural barrier:
intercellular communication at glio-vascular interface. J Biochem Mol Biol (2006)
39:339–45. doi:10.5483/bmbrep.2006.39.4.339

16. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational
significance of the neurovascular unit. J Biol Chem (2017) 292:762–70. doi:10.1074/
jbc.R116.760215

17. Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel
formation. Development (2011) 138:4569–83. doi:10.1242/dev.062323

18. Siqueira M, Araujo APB, Gomes FCA, Stipursky J. Ethanol gestational
exposure impairs vascular development and endothelial potential to control
BBB-associated astrocyte function in the developing cerebral cortex. Mol
Neurobiol (2021) 58(4):1755–68. doi:10.1007/s12035-020-02214-8

19. Bake S, Tingling JD, Miranda RC. Ethanol exposure during pregnancy
persistently attenuates cranially directed blood flow in the developing fetus:
evidence from ultrasound imaging in a murine second trimester equivalent
model. Alcohol Clin Exp Res (2012) 36(5):748–58. doi:10.1111/j.1530-0277.2011.
01676.x

20. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev
Cancer (2003) 3:401–10. doi:10.1038/nrc1093

21. Carmeliet P, Collen D. Vascular development and disorders: molecular
analysis and pathogenic insights. Kidney Int (1998) 53:1519–49. doi:10.1046/j.
1523-1755.1998.00936.x

22. Ulrich F, Carretero-Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, et al.
Reck enables cerebrovascular development by promoting canonical wnt signaling.
Development (2016) 143:1055–159. doi:10.1242/dev.136507

23. Wang X, Kroenke CD. Utilization of magnetic resonance imaging in research
involving animal models of fetal alcohol spectrum disorders. Alcohol Res (2015) 37:
39–51.

24. Williams JK, Baptista PM, Daunais JB, Szeliga KT, Friedman DP, Soker S. The
effects of ethanol consumption on vasculogenesis potential in non human primates.
Alcohol Clin Exp Res (2008) 32:155–61. doi:10.1111/j.1530-0277.2007.00558.x

25. Radek KA, Matthies AM, Burns AL, Heinrich SA, Kovacs EJ, Dipietro LA.
Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound
healing. Am J Physiol Heart Circ Physiol (2005) 289:H1084–H1090. doi:10.1152/
ajpheart.00080.2005

26. Radek KA, Kovacs EJ, Gallo RL, DiPietro LA. Acute ethanol exposure disrupts
VEGF receptor cell signaling in endothelial cells. Am J Physiol Heart Circ Physiol
(2008) 295:H174–H184. doi:10.1152/ajpheart.00699.2007

27. Wang LL, Yang AK, He SM, Liang J, Zhou ZW, Li Y, et al. Identification of
molecular targets associated with ethanol toxicity and implications in drug
development. Curr Pharm Des (2010) 16:1313–55. doi:10.2174/
138161210791034030

28. Alimov A, Wang H, Liu M, Frank JA, Xu M, Ou X, et al. Expression of
autophagy and UPR genes in the developing brain during ethanol-sensitive and
resistant periods. Metab Brain Dis (2013) 28:667–76. doi:10.1007/s11011-013-
9430-2

29. Bisen S, Kakhniashvili D, Johnson DL, Bukiya AN. Proteomic analysis of
baboon cerebral artery reveals potential pathways of damage by prenatal alcohol
exposure. Mol Cel Proteomics (2019) 18(2):294–307. doi:10.1074/mcp.RA118.
001047

30. West JR. Fetal alcohol-induced brain damage and the problem of determining
temporal vulnerability: a review. Alcohol Drug Res (1987) 7(5–6):423–41.

31. Popova EN. Prenatal moderate effects of alcohol on ultrastructure of cortical
capillaries in the offspring. Biull Eksp Biol Med (1992) 113:161–4.

32. Kelly SJ, Mahoney JC, West JR. Changes in brain microvasculature resulting
from early postnatal alcohol exposure. Alcohol (1990) 7:43–7. doi:10.1016/0741-
8329(90)90059-l

33. Jégou S, El Ghazi F, de Lendeu PK, Marret S, Laudenbach V, Uguen A, et al.
Prenatal alcohol exposure affects vasculature development in the neonatal brain.
Ann Neurol (2012) 72(6):952–60. doi:10.1002/ana.23699

34. May PA, Gossage JP. Maternal risk factors for fetal alcohol spectrum
disorders: not as simple as it might seem. Alcohol Res Health (2011) 34(1):15–26.

35. Maier SE, West JR. Drinking patterns and alcohol-related birth defects.
Alcohol Res Health (2001) 25(3):168–74.

36.West JR, Kelly SJ, Pierce DR. Severity of alcohol-induced deficits in rats during
the third trimester equivalent is determined by the pattern of exposure. Alcohol
Alcohol Suppl (1987) 1:461–5.

37. Falconer J, Leonhardt RA, Agarwal DP, Werner Goedde H. Effect of
acute ethanol drinking on alcohol metabolism in subjects with different
ADH and ALDH genotypes. Alcohol (1990) 25:413–8. doi:10.1016/0741-
8329(90)90025-8

38. Mann LI, Bhakthavathsalan A, Liu M, Makowski P. Effect of alcohol on fetal
cerebral function and metabolism. Am J Obstet Gynecol (1975) 122:845–51. doi:10.
1016/0002-9378(75)90726-7

39. Richardson BS, Patrick JE, Bousquet J, Homan J, Brien JF. Cerebral
metabolism in fetal lamb after maternal infusion of ethanol. Am J Physiol
(1985) 249:R505–R509. doi:10.1152/ajpregu.1985.249.5.R505

40. Gleason CA, Hotchkiss KJ. Cerebral responses to acute maternal alcohol
intoxication in immature fetal sheep. Pediatr Res (1992) 31(6):645–8. doi:10.1203/
00006450-199206000-00021

41. Parnell SE, Ramadoss J, Delp MD, Ramsey MW, Chen WJ, West JR, et al.
Chronic ethanol increases fetal cerebral blood flow specific to the ethanol-sensitive
cerebellum under normoxaemic, hypercapnic and acidaemic conditions: ovine
model. Exp Physiol (2007) 92(5):933–43. doi:10.1113/expphysiol.2007.038091

42. Kochunov P, Castro C, Davis DM, Dudley D, Wey HY, Purdy D, et al. Fetal
brain during a binge drinking episode: a dynamic susceptibility contrast MRI fetal
brain perfusion study. NeuroReport (2010) 21:716–21. doi:10.1097/WNR.
0b013e32833b5047

43. North K, Tobiasz A, Sullivan RD, Bursac Z, Duncan J, Sullivan JP, et al.
Prenatal alcohol exposure, anesthesia, and fetal loss in baboon model of pregnancy.
J Drug Alcohol Res (2018) 7:236064.

44. Simakova M, Tobiasz A, Sullivan RD, Bisen S, Duncan J, Sullivan JP, et al.
Gestational age-dependent interplay between endocannabinoid receptors and
alcohol in fetal cerebral arteries. J Drug Alcohol Res (2019) 8:236068. doi:10.
4303/jdar/236068

45. Tobiasz AM, Duncan JR, Bursac Z, Sullivan RD, Tate DL, Dopico AM, et al.
The effect of prenatal alcohol exposure on fetal growth and cardiovascular
parameters in a baboon model of pregnancy. Reprod Sci (2018) 25:1116–23.
doi:10.1177/1933719117734317

46. Seleverstov O, Tobiasz A, Jackson JS, Sullivan R, Ma D, Sullivan JP, et al.
Maternal alcohol exposure during mid-pregnancy dilates fetal cerebral arteries via
endocannabinoid receptors. Alcohol (2017) 61:51–61. doi:10.1016/j.alcohol.2017.
01.014

47. Mayock DE, Ness D, Mondares RL, Gleason CA. Binge alcohol exposure in
the second trimester attenuates fetal cerebral blood flow response to hypoxia. J Appl
Physiol (2007) 102(3):972–7. doi:10.1152/japplphysiol.00956.2006

48. Mayock DE, Ngai AC, Mondares RL, Gleason CA. Effects of binge alcohol
exposure in the second trimester on intracerebral arteriolar function in third
trimester fetal sheep. Brain Res (2008) 1226:111–5. doi:10.1016/j.brainres.2008.
05.077

49. Gleason CA, Iida H, Hotchkiss KJ, Northington FJ, Traystman RJ. Newborn
cerebrovascular responses after first trimester moderate maternal ethanol exposure
in sheep. Pediatr Res (1997) 42:39–45. doi:10.1203/00006450-199707000-00007

50. Ngai AC, Mondares RL, Mayock DE, Gleason CA. Fetal alcohol exposure
alters cerebrovascular reactivity to vasoactive intestinal peptide in adult sheep.
Neonatology (2008) 93:45–51. doi:10.1159/000105524

51. Turcotte LA, Aberle NS, Norby FL, Wang GJ. Influence of prenatal ethanol
exposure on vascular contractile response in rat thoracic aorta. Alcohol (2002) 26:
75–81. doi:10.1016/s0741-8329(01)00198-7

52. Cananzi SG, Mayhan WG. In utero exposure to alcohol alters reactivity of
cerebral arterioles. J Cereb Blood Flow Metab (2017) 39:332–41. doi:10.1177/
0271678X17728163

53. Cananzi SG, Mayhan WG. In utero exposure to alcohol impairs reactivity of
cerebral arterioles and increases susceptibility of the brain to damage following
ischemia/reperfusion in adulthood. Alcohol Clin Exp Res (2019) 43:607–16. doi:10.
1111/acer.13979

54. Saha PS, Kim Sawtelle KR, Bamberg BN, Arrick DM,Watt MJ, Scholl JL, et al.
Rosiglitazone restores nitric oxide synthase-dependent reactivity of cerebral
arterioles in rats exposed to prenatal alcohol. Alcohol Clin Exp Res (2021) 45(7):
1359–69. doi:10.1111/acer.14634

55. Saha PS, Knecht TM, Arrick DM, Watt MJ, Scholl JL, Mayhan WG.
Constrictor responses of cerebral resistance arterioles in male and female rats
exposed to prenatal alcohol. Physiol Rep (2021) 9(21):e15079. doi:10.14814/phy2.
15079

56. Parkington HC, Kenna KR, Sozo F, Coleman HA, Bocking A, Brien JF, et al.
Maternal alcohol consumption in pregnancy enhances arterial stiffness and alters
vasodilator function that varies between vascular beds in fetal sheep. J Physiol (2014)
592:2591–603. doi:10.1113/jphysiol.2013.262873

57. Daft PA, Johnston MC, Sulik KK. Abnormal heart and great vessel
development following acute ethanol exposure in mice. Teratology (1986) 33:
93–104. doi:10.1002/tera.1420330112

58. Coffin JM, Baroody S, Schneider K, O’Neill J. Impaired cerebellar learning in
children with prenatal alcohol exposure: a comparative study of eyeblink

Advances in Drug and Alcohol Research Published by Frontiers10

Saha and Mayhan 10.3389/adar.2022.10818

69

https://doi.org/10.5483/bmbrep.2006.39.4.339
https://doi.org/10.1074/jbc.R116.760215
https://doi.org/10.1074/jbc.R116.760215
https://doi.org/10.1242/dev.062323
https://doi.org/10.1007/s12035-020-02214-8
https://doi.org/10.1111/j.1530-0277.2011.01676.x
https://doi.org/10.1111/j.1530-0277.2011.01676.x
https://doi.org/10.1038/nrc1093
https://doi.org/10.1046/j.1523-1755.1998.00936.x
https://doi.org/10.1046/j.1523-1755.1998.00936.x
https://doi.org/10.1242/dev.136507
https://doi.org/10.1111/j.1530-0277.2007.00558.x
https://doi.org/10.1152/ajpheart.00080.2005
https://doi.org/10.1152/ajpheart.00080.2005
https://doi.org/10.1152/ajpheart.00699.2007
https://doi.org/10.2174/138161210791034030
https://doi.org/10.2174/138161210791034030
https://doi.org/10.1007/s11011-013-9430-2
https://doi.org/10.1007/s11011-013-9430-2
https://doi.org/10.1074/mcp.RA118.001047
https://doi.org/10.1074/mcp.RA118.001047
https://doi.org/10.1016/0741-8329(90)90059-l
https://doi.org/10.1016/0741-8329(90)90059-l
https://doi.org/10.1002/ana.23699
https://doi.org/10.1016/0741-8329(90)90025-8
https://doi.org/10.1016/0741-8329(90)90025-8
https://doi.org/10.1016/0002-9378(75)90726-7
https://doi.org/10.1016/0002-9378(75)90726-7
https://doi.org/10.1152/ajpregu.1985.249.5.R505
https://doi.org/10.1203/00006450-199206000-00021
https://doi.org/10.1203/00006450-199206000-00021
https://doi.org/10.1113/expphysiol.2007.038091
https://doi.org/10.1097/WNR.0b013e32833b5047
https://doi.org/10.1097/WNR.0b013e32833b5047
https://doi.org/10.4303/jdar/236068
https://doi.org/10.4303/jdar/236068
https://doi.org/10.1177/1933719117734317
https://doi.org/10.1016/j.alcohol.2017.01.014
https://doi.org/10.1016/j.alcohol.2017.01.014
https://doi.org/10.1152/japplphysiol.00956.2006
https://doi.org/10.1016/j.brainres.2008.05.077
https://doi.org/10.1016/j.brainres.2008.05.077
https://doi.org/10.1203/00006450-199707000-00007
https://doi.org/10.1159/000105524
https://doi.org/10.1016/s0741-8329(01)00198-7
https://doi.org/10.1177/0271678X17728163
https://doi.org/10.1177/0271678X17728163
https://doi.org/10.1111/acer.13979
https://doi.org/10.1111/acer.13979
https://doi.org/10.1111/acer.14634
https://doi.org/10.14814/phy2.15079
https://doi.org/10.14814/phy2.15079
https://doi.org/10.1113/jphysiol.2013.262873
https://doi.org/10.1002/tera.1420330112
https://doi.org/10.3389/adar.2022.10818


conditioning in children with ADHD and dyslexia. Cortex. (2005) 41:389–98.
doi:10.1016/s0010-9452(08)70275-2

59. Bell SH, Stade B, Reynolds JN, Rasmussen C, Andrew G, Hwang PA, et al. The
remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum
disorders. Alcohol Clin Exp Res (2010) 34:1084–9. doi:10.1111/j.1530-0277.2010.
01184.x

60. Guerri C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and
alterations in brain and behaviour. Alcohol Alcohol (2009) 44:108–14. doi:10.
1093/alcalc/agn105

61. Heistad DH, Lawton WJ. Pathogenesis of acute hypertensive encephalopathy.
In: JL Izzo HR Black, editors. Hypertension Primer. 2. Baltimore, MD: Lippincott
Williams and Wilkins (1999). p. 186–7.

62. Miller MW. Effects of alcohol on the generation and migration of cerebral
cortical neurons. Science (1986) 233(4770):1308–11. doi:10.1126/science.3749878

63. Bonthius DJ, West JR. Alcohol-induced neuronal loss in developing rats:
increased brain damage with binge exposure. Alcohol Clin Exp Res (1990) 14(1):
107–18. doi:10.1111/j.1530-0277.1990.tb00455.x

64. Ikonomidou C, Bittigau P, Koch C, Genz K, Hoerster F, Felderhoff-Mueser U,
et al. Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol
(2001) 62(4):401–5. doi:10.1016/s0006-2952(01)00696-7

65. Marcussen BL, Goodlett CR, Mahoney JC, West JR. Developing rat purkinje
cells are more vulnerable to alcohol-induced depletion during differentiation than
during neurogenesis. Alcohol (1994) 11(2):147–56. doi:10.1016/0741-8329(94)
90056-6

66. Karl PI, Kwun R, Slonim A, Fisher SE. Ethanol elevates fetal serum glutamate
levels in the rat. Alcohol Clin Exp Res (1995) 19(1):177–81. doi:10.1111/j.1530-0277.
1995.tb01488.x

67. Thomas JD, Weinert SP, Sharif S, Riley EP. MK-801 administration during
ethanol withdrawal in neonatal rat pups attenuates ethanol-induced behavioral
deficits. Alcoholism Clin Exp Res (1997) 21(7):1218–25. doi:10.1111/j.1530-0277.
1997.tb04441.x

68. Hoffman PL, Rabe CS, Moses F, Tabakoff B. N-methyl-D-aspartate receptors
and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochem
(1989) 52(6):1937–40. doi:10.1111/j.1471-4159.1989.tb07280.x

69. Hughes PD, Kim YN, Randall PK, Leslie SW. Effect of prenatal ethanol
exposure on the developmental profile of the NMDA receptor subunits in rat
forebrain and hippocampus. Alcoholism Clin Exp Res (1998) 22(6):1255–61. doi:10.
1111/j.1530-0277.1998.tb03906.x

70. Jones PJ, Leichter J, Lee M. Placental blood flow in rats fed alcohol before and
during gestation. Life Sci (1981) 29(11):1153–9. doi:10.1016/0024-3205(81)90204-6

71. Mukherjee AB, Hodgen GD. Maternal ethanol exposure induces transient
impairment of umbilical circulation and fetal hypoxia in monkeys. Science (1982)
218(4573):700–2. doi:10.1126/science.6890235

72. Abel EL. Prenatal effects of alcohol. Drug Alcohol Depend. (1984) 14(1):1–10.
doi:10.1016/0376-8716(84)90012-7

73. Abel EL. Prenatal effects of alcohol on growth: a brief overview. Fed Proc
(1985) 44(7):2318–22.

74. Kennedy LA. Changes in the term mouse placenta associated with maternal
alcohol consumption and fetal growth deficits. Am J Obstet Gynecol (1984) 149(5):
518–22. doi:10.1016/0002-9378(84)90028-0

75. Pennington SN, Boyd JW, Kalmus GW, Wilson RW. The molecular
mechanism of fetal alcohol syndrome (FAS). I. Ethanol-induced growth
suppression. Neurobehav Toxicol Teratol (1983) 5(2):259–62.

76. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with
special emphasis on diabetic embryopathy. Reprod Toxicol (2007) 24(1):31–41.
doi:10.1016/j.reprotox.2007.04.004

77. Pollard I. Neuropharmacology of drugs and alcohol in mother and fetus.
Semin Fetal Neonatal Med (2007) 12(2):106–13. doi:10.1016/j.siny.2006.12.001

78. Feng MJ, Yan SE, Yan QS. Effects of prenatal alcohol exposure on brain-
derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain
Res (2005) 1042(2):125–32. doi:10.1016/j.brainres.2005.02.017

79. Miller MW. Expression of transforming growth factor-beta in developing rat
cerebral cortex: effects of prenatal exposure to ethanol. J Comp Neurol (2003)
460(3):410–24. doi:10.1002/cne.10658

80. Chrissobolis S, Banfi B, Sobey CG, Faraci FM. Role of NOX isoforms in
angiotensin II induced oxidative stress and endothelial dysfunction in brain. J Appl
Physiol (2012) 113:184–91. doi:10.1152/japplphysiol.00455.2012

81. De Silva TM, Faraci FM. Effects of angiotensin II on the cerebral circulation:
role of oxidative stress. Front Physiol (2012) 3:484. doi:10.3389/fphys.2012.00484

82. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. NADPH oxidases
in vascular pathology. Antioxid Redox Signal (2014) 20:2794–814. doi:10.1089/ars.
2013.5607

83. Lynch CM, Kinzenbaw DA, Chen X, Zhan S, Mezzetti E, Filosa J, et al. Nox2-
derived superoxide contributes to cerebral vascular dysfunction in diet-induced
obesity. Stroke (2013) 44(11):3195–201. doi:10.1161/STROKEAHA.113.001366

84. Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased
NADPH-oxidase activity and Nox4 expression during chronic hypertension is
associated with enhanced cerebral vasodilatation to NADPH In Vivo. Stroke (2004)
35:584–9. doi:10.1161/01.STR.0000112974.37028.58

85. Fukunaga Y, Itoh H, Doi K, Tanaka T, Yamashita J, Chun TH, et al.
Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists,
regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis
(2001) 158:113–9. doi:10.1016/s0021-9150(01)00430-0

86. Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARgamma activation
in human endothelial cells increases plasminogen activator inhibitor type-1
expression: PPARgamma as a potential mediator in vascular disease. Arterioscler
Thromb Vasc Biol (1999) 19:546–51. doi:10.1161/01.atv.19.3.546

87. Marx N, Schönbeck U, Lazar MA, Libby P, Plutzky J, Schonbeck U.
Peroxisome proliferator-activated receptor gamma activators inhibit gene
expression and migration in human vascular smooth muscle cells. Circ Res
(1998) 83:1097–103. doi:10.1161/01.res.83.11.1097

88. Grant S, Lutz EM, McPhaden AR, Wadsworth RM. Location and function of
VPAC1, VPAC2 and NPR-C receptors in VIP-induced vasodilation of porcine
basilar arteries. J Cereb Blood Flow Metab (2006) 26:58–67. doi:10.1038/sj.jcbfm.
9600163

89. Gaw AJ, Aberdeen J, Humphrey PP, Wadsworth RM, Burnstock G.
Relaxation of sheep cerebral arteries by vasoactive intestinal polypeptide and
neurogenic stimulation: inhibition by L -NG-monomethyl arginine in
endothelium-denuded vessels. Br J Pharmacol (1991) 102:567–72. doi:10.
1111/j.1476-5381.1991.tb12213.x

90. Wei EP, Kontos HA, Said SI. Mechanism of action of vasoactive intestinal
polypeptide on cerebral arterioles. Am J Physiol (1980) 239:H765–H768. doi:10.
1152/ajpheart.1980.239.6.H765

91. Dacey RG, Bassett JE, Takayasu M. Vasomotor responses of rat intracerebral
arterioles to vasoactive intestinal peptide, substance P, neuropeptide Y, and
bradykinin. J Cereb Blood Flow Metab (1988) 8:254–61. doi:10.1038/jcbfm.1988.56

92. Spong CY, Auth J, Vink J, Goodwin K, Abebe DT, Hill JM, et al. Vasoactive
intestinal peptide mRNA and immunoreactivity are decreased in fetal alcohol
syndrome model. Regul Pept (2002) 108:143–7. doi:10.1016/s0167-0115(02)
00104-0

93. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor
signalling: in control of vascular function. Nat Rev Mol Cel Biol. (2006) 7:
359–71. doi:10.1038/nrm1911

94. Girault V, Gilard V, Marguet F, Lesueur C, Hauchecorne M, Ramdani Y, et al.
Prenatal alcohol exposure impairs autophagy in neonatal brain cortical
microvessels. Cell Death Dis. (2017) 8:e2610. doi:10.1038/cddis.2017.29

95. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain
development in rodents and humans: identifying benchmarks of maturation and
vulnerability to injury across species. Prog Neurobiol (2013) 106–107:1–16. doi:10.
1016/j.pneurobio.2013.04.001

96. Chen G, Ke Z, Xu M, Liao M, Wang X, Qi Y, et al. Autophagy is a protective
response to ethanol neurotoxicity. Autophagy (2012) 8:1577–89. doi:10.4161/auto.
21376

97. Bukiya AN. Fetal cerebral artery mitochondrion as target of prenatal alcohol
exposure. Int J Environ Res Public Health (2019) 16(9):1586. doi:10.3390/
ijerph16091586

98. Manzo-Avalos S, Saavedra-Molina A. Cellular and mitochondrial effects of
alcohol consumption. Int J Environ Res Public Health (2010) 7:4281–304. doi:10.
3390/ijerph7124281

99. Tagaya M, Haring HP, Stuiver I, Wagner S, Abumiya T, Lucero J, et al. Rapid
loss of microvascular integrin expression during focal brain ischemia reflects
neuron injury. J Cereb Blood Flow Metab (2001) 21(7):835–46. doi:10.1097/
00004647-200107000-00009

100. Chen ZL, Strickland S. Neuronal death in the hippocampus is promoted by
plasmin-catalyzed degradation of laminin. Cell (1997) 91(7):917–25. doi:10.1016/
s0092-8674(00)80483-3

101. Léger C, Dupré N, Laquerrière A, Lecointre M, Dumanoir M, Janin F, et al. In
utero alcohol exposure exacerbates endothelial protease activity from pial
microvessels and impairs GABA interneuron positioning. Neurobiol Dis (2020)
145:105074. doi:10.1016/j.nbd.2020.105074

Advances in Drug and Alcohol Research Published by Frontiers11

Saha and Mayhan 10.3389/adar.2022.10818

70

https://doi.org/10.1016/s0010-9452(08)70275-2
https://doi.org/10.1111/j.1530-0277.2010.01184.x
https://doi.org/10.1111/j.1530-0277.2010.01184.x
https://doi.org/10.1093/alcalc/agn105
https://doi.org/10.1093/alcalc/agn105
https://doi.org/10.1126/science.3749878
https://doi.org/10.1111/j.1530-0277.1990.tb00455.x
https://doi.org/10.1016/s0006-2952(01)00696-7
https://doi.org/10.1016/0741-8329(94)90056-6
https://doi.org/10.1016/0741-8329(94)90056-6
https://doi.org/10.1111/j.1530-0277.1995.tb01488.x
https://doi.org/10.1111/j.1530-0277.1995.tb01488.x
https://doi.org/10.1111/j.1530-0277.1997.tb04441.x
https://doi.org/10.1111/j.1530-0277.1997.tb04441.x
https://doi.org/10.1111/j.1471-4159.1989.tb07280.x
https://doi.org/10.1111/j.1530-0277.1998.tb03906.x
https://doi.org/10.1111/j.1530-0277.1998.tb03906.x
https://doi.org/10.1016/0024-3205(81)90204-6
https://doi.org/10.1126/science.6890235
https://doi.org/10.1016/0376-8716(84)90012-7
https://doi.org/10.1016/0002-9378(84)90028-0
https://doi.org/10.1016/j.reprotox.2007.04.004
https://doi.org/10.1016/j.siny.2006.12.001
https://doi.org/10.1016/j.brainres.2005.02.017
https://doi.org/10.1002/cne.10658
https://doi.org/10.1152/japplphysiol.00455.2012
https://doi.org/10.3389/fphys.2012.00484
https://doi.org/10.1089/ars.2013.5607
https://doi.org/10.1089/ars.2013.5607
https://doi.org/10.1161/STROKEAHA.113.001366
https://doi.org/10.1161/01.STR.0000112974.37028.58
https://doi.org/10.1016/s0021-9150(01)00430-0
https://doi.org/10.1161/01.atv.19.3.546
https://doi.org/10.1161/01.res.83.11.1097
https://doi.org/10.1038/sj.jcbfm.9600163
https://doi.org/10.1038/sj.jcbfm.9600163
https://doi.org/10.1111/j.1476-5381.1991.tb12213.x
https://doi.org/10.1111/j.1476-5381.1991.tb12213.x
https://doi.org/10.1152/ajpheart.1980.239.6.H765
https://doi.org/10.1152/ajpheart.1980.239.6.H765
https://doi.org/10.1038/jcbfm.1988.56
https://doi.org/10.1016/s0167-0115(02)00104-0
https://doi.org/10.1016/s0167-0115(02)00104-0
https://doi.org/10.1038/nrm1911
https://doi.org/10.1038/cddis.2017.29
https://doi.org/10.1016/j.pneurobio.2013.04.001
https://doi.org/10.1016/j.pneurobio.2013.04.001
https://doi.org/10.4161/auto.21376
https://doi.org/10.4161/auto.21376
https://doi.org/10.3390/ijerph16091586
https://doi.org/10.3390/ijerph16091586
https://doi.org/10.3390/ijerph7124281
https://doi.org/10.3390/ijerph7124281
https://doi.org/10.1097/00004647-200107000-00009
https://doi.org/10.1097/00004647-200107000-00009
https://doi.org/10.1016/s0092-8674(00)80483-3
https://doi.org/10.1016/s0092-8674(00)80483-3
https://doi.org/10.1016/j.nbd.2020.105074
https://doi.org/10.3389/adar.2022.10818


Common developmental
trajectories and clinical
identification of children with
fetal alcohol spectrum disorders:
A synthesis of the literature

Douglas Waite1* and Larry Burd2

1Developmental Pediatrics, Bronxcare Health System, Mount Sinai School of Medicine, New York, NY,
United States, 2Department of Pediatrics, School of Medicine and Health Sciences, University of North
Dakota, Grand Forks, ND, United States

At an estimated prevalence of up to five percent in the general population, fetal

alcohol spectrum disorders (FASD) are the most common neurodevelopmental

disorder, at least if not more prevalent than autism (2.3%). Despite this prevalence in

the general population, pediatricians and other developmental specialists have thus

far failed to diagnose this disability, leaving most children and adults without the

supports provided for most other disabilities. This paper will provide a review of

clinically relevant literature that describes the developmental challenges of children

with fetal alcohol spectrumdisorders and addresses similarities to and differences of

FASD fromother neurodevelopmental disorders such as autismand attention deficit

hyperactivity disorder. A subsequent discussion will describe how a diagnosis of an

FASD can establish a basis for understanding the developmental and behavioral

challenges of children with an FASD, and how specific interventions can help

support child development and maximize adult independence.

KEYWORDS

prenatal alcohol exposure, fetal alcohol syndrome, fetal alcohol spectrum disorders,
neurodevelopmental disorder associated with prenatal alcohol exposure, prenatal
substance exposure, foster care

Introduction: The prevalence of children with fetal
alcohol spectrum disorders

In the 50 years since the effects of prenatal alcohol exposure upon fetal development

were first described as a constellation of facial features, growth impairment, and

neurodevelopmental impairments designated fetal alcohol syndrome (1), the effects of

alcohol upon prenatal brain development and its subsequent neurodevelopmental
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sequelae have been expanded to include developmental

challenges even in the absence of facial features and/or growth

impairment associated with fetal alcohol syndrome. This broader

category are the fetal alcohol spectrum disorders (FASD).

Fetal alcohol spectrum disorders are so common that a

physician can be certain he or she has cared for a child with this

disorder. Physicians can be just as certain that no professional

previously diagnosed that child with an FASD (unless they were

the person who suspected this diagnosis). Despite widespread

warnings, women often receive conflicting messages from

professionals on the safety of alcohol use during pregnancy and

alcohol use during pregnancy continues to be prevalent. A recent

CDC study found that 13.5% of pregnant adults reported current

drinking and 5.2% reported binge drinking in the past 30 days (2).

Estimates of alcohol consumption by non-pregnant women of child-

bearing age (18–44 years) range from 53% of any alcohol use to

18.2% of womenwho binge drink with themajority of women being

college-educated and employed (3). This statistic becomes especially

important since many women do not discover their pregnancy until

after missing their regular menstruation at 4–6 weeks gestational

age, during which time brain development has already been effected

by neurotoxic exposure. Common reasons for alcohol use in

pregnancy are lack of awareness of the adverse effects of alcohol

upon the fetus, the belief that only excessive alcohol use is harmful,

maternal stress during pregnancy, unwanted or unplanned

pregnancy, and alcohol dependence (4).

A study of first grade children in schools across four sites in

the Midwest United States, found a total prevalence of FASD of

1.1%–5% (up to one in twenty children) (5). While the span in

prevalence estimates likely reflects regional variation across the

US in alcohol use during pregnancy, this figure highlights that

FASD is a disorder as common as any other medical condition

physicians diagnose and treat each day. The US Census Bureau

estimates that in 2020, there were 72.8 million children living in

the United States1, making the range of the number of children

with FASD between 0.8 and 3.64 million children based upon

FASD prevalence documented above. Yet compared to asthma, a

disease with an estimated prevalence of 1 in 12 children (8.3%)

(6) or the 1 in 44 children with autism (2.3%) (7), physicians and

other professionals rarely consider FASD among their

differential diagnosis as a cause of developmental and

behavioral challenges.

FASD is even more prevalent among children in foster care,

where an estimated 16.9% of children are affected by an FASD

(8). Yet a diagnostic clinic evaluating children referred from

foster care for developmental and behavioral challenges, found

80% of children who were subsequently diagnosed with an FASD,

had never been previously identified with this disorder (9).

Parental substance and alcohol use disorders are one of the

most common reasons for foster care placement (10).

Screening of all children entering child welfare for prenatal

exposure to alcohol and other substances is far from routine.

Even when prenatal exposure to other substances such as

cannabis, cocaine, or opioids is documented in newborn

medical records, screening for prenatal alcohol exposure is

notably absent in most obstetric, pediatric, and child welfare

records (11, 12).

Current clinical guidelines for diagnosis and assessment state

that “assignment of an FASD diagnosis is a complex medical

diagnostic process best accomplished through a structured

multidisciplinary approach by a clinical team comprising

members with varied but complementary experience,

qualifications, and skills” (13). But multiple and often discrepant

classification systems and standards of what constitutes a diagnosis

of FASD in the United States create a major barrier to diagnosis

because of the lack of uniform language to define FASD. Countries

such as Canada and Australia have adopted uniform diagnostic

criteria that allow a nation-wide, consistent approach to diagnosis

with detailed clinical practice guidelines to support assessment,

treatment, and disability qualification (14,15). Persistent

recommendations for a comprehensive, multidisciplinary

assessment might be appropriate if such resources were readily

available in the United States. However, given the prevalence of

FASD and the scarcity of diagnostic resources in the United States,

how can children with an FASD be more readily identified and

treated? Can children with an FASD be differentiated from children

with other neurodevelopmental disorders? Is there sufficient

consensus in the literature to suggest a diagnostic path that can

allow physicians and other professionals a means to provisionally

identify children with FASD in the absence of a multidisciplinary

team and initiate treatment recommendations?

This article reviews common developmental trajectories of

the neurodevelopmental disorders, including autism, global

developmental delay, speech delay, ADHD, intellectual

disability, and FASD. After reviewing similarities and

differences across the neurodevelopmental disorders and a

process for screening for prenatal alcohol exposure, the

criteria of neurodevelopmental disorder associated with

prenatal alcohol exposure is described as a pathway for

practitioners to begin identifying and treating children with

suspected FASD.

Methodology

Literature searches were completed through PubMed for

all articles utilizing the search terms of “prenatal alcohol

exposure” crossed with “developmental trajectory” and

“diagnosis” for the years 2010–2022 in all languages yielded

a total of 21 results in PubMed. A more restricted search

limited to review articles using the terms

“neurodevelopmental disorders crossed with
1 https://www.childstats.gov/americaschildren/tables/pop1.asp

(Accessed 26 July, 2022).
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“developmental trajectory” and “diagnosis” for the years

2010–2022 in all languages yielded a total of 773 articles. A

total number of 794 articles were subsequently reviewed by

title and abstract for relevance to the topic of this article

(Figure 1).

These results, including citations and references, were

reviewed based upon their relevance to the similarities and

differences of development among children with an FASD

compared to other neurodevelopmental disorders. Additional

focused searches were made based upon the need for supporting

documentation during the writing of the article.

Results

A structured clinical approach to diagnosis and intervention

was synthesized based upon the diagnostic criteria for

neurodevelopmental disorder associated with prenatal alcohol

exposure (16,17) to help clarify a clinical means of identifying

and initiating interventions for children with suspected FASD in

general pediatric practice and during other developmental

assessments.

Common neurodevelopmental disorders
and their developmental trajectories

The category of neurodevelopmental disorders spans

developmental challenges that present during early childhood

as manifestations of manifold and yet to be clearly defined

differences in brain development. Estimated prevalence rates

for the neurodevelopmental disorders range from 0.63% to 3%

for intellectual disability, 5%–11% for ADHD, 3%–10% for

specific learning disorders, 42% for communication disorders,

and 0.76%–17% for motor disorders (18). Causes of

neurodevelopmental disorders range from genetic

abnormalities, pre- or post-natal infections, asphyxia,

prematurity, epigenetic changes prior to or after birth,

prenatal or post-natal exposure to neurotoxins, nutritional

deficiencies, and prenatal fetal or maternal medical conditions

including maternal mental health (19). The interplay across this

list is complex and captured in the relatively new fields of

epigenetics and the neuroendocrine immune system (20). The

result is manifested as disabilities such as global developmental

delay, intellectual disability, autism, attention deficit disorders,

learning disabilities, speech/language disorders, and fetal alcohol

spectrum disorders. Figure 2 shows the lower and upper

estimates for the primary neurodevelopmental disorders

discussed in this article compared to more commonly known

specific disabilities of Trisomy 21 and cerebral palsy.

The pretense of these terms becomes apparent in clinical

practice as these disorders manifest many common

characteristics and often appear simultaneously with a great

overlap of developmental challenges. The wide prevalence

estimates given above for each neurodevelopmental

disorder further hint at the great overlap among these

diagnoses (Figure 2). This overlap leads inevitably to the

question of whether the neurodevelopmental disorders are

distinct disorders. Comorbidity among the

neurodevelopmental disorders is the rule rather than the

exception and the spectrum of these developmental

challenges exists along a continuum of severity (26). In

addition, developmental challenges often shift and become

more differentiated over time leading to a clearer, more

specific diagnosis with advancing chronological age. In

clinical practice, the question becomes to what extent a

specific diagnosis provides a context for a discussion of a

child’s behavioral challenges with the family and a starting

point to obtain intervention services (27).

The primary challenge in assessing a child with developmental

delay becomes one of differentiating a child with autism, FASD, or

global developmental delay, from a child with isolated speech delay

(communication disorder). Diagnosis often relies upon the pattern

of developmental challenges as measured across developmental

domains on standardized tests that document function outside of

the normal range of development (28). The lack of specific biological

markers and lack of specific distinct etiologies makes developmental

assessment more challenging and subjective despite the use of

standardized developmental tests. Nevertheless, the concept of a

neurodevelopmental disorder as developmental delays that present

over the course of development is useful in seeking to identify

children who require intervention, gives a language to communicate

with parents and other professionals, and provides a pathway for

obtaining community-based services. A detailed history that focuses

upon the pattern of a child’s early developmental trajectories across

FIGURE 1
Depiction of methodological search of literature.
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domains of developments forms the basis for distinguishing the

neurodevelopmental disorders to facilitate diagnosis and

intervention. Prior to reviewing the spectrum of developmental

delays found in the neurodevelopmental disorders, this article will

briefly review the trajectory of normal development from birth to

age 3 years.

Because the diagnosis criteria for ADHD which include

impairments in attention and self-regulation (hyperactivity/

impulsivity) are often present across most neurodevelopmental

disorders, I will focus on this neurodevelopmental disorder last as

a diagnosis of exclusion of the four core neurodevelopmental

disorders: fetal alcohol spectrum disorders, autism, global

developmental delay, and speech/language disorders.2

A simplified clinical approach to
developmental assessment

Gessell noted that normal development proceeds in an

orderly, timed, and sequential process that occurs with such

regularity that it is predictable (29). While there is variation

from child to child within the framework of normal

development, a common normal trajectory is depicted

below in Figure 3 (30). The departure from expected

developmental trajectories helps to identify children

needing assessment. Current recommendations by the

American Academy of Pediatrics recommend

developmental screening of all children using a validated

developmental screening test at the 9-, 18-, and 30-month

visits. This recommendation aids in identification of children

at risk of developmental delays and autism. Screens typically

include the Ages to Stages Questionnaires and Modified

Checklist for Autism (31).

Evaluation for speech delay is the most common cause of

referral for developmental evaluation. The initial task in

evaluating speech delay is determining whether this is a case

of isolated speech delay (communication disorder), or a

neurodevelopmental disorder that spans other domains of

development such as autism, global developmental delay,

and FASD.

In obtaining a developmental history, initial queries can

focus on the temperament of a child including patterns of

sleep, ability to be soothed, and activity level. Infant

temperament is associated with attachment which is the basis

for gains in social interactions and subsequent acquisition of

speech and language (32, 33). Absence of eye contact and reactive

smile in the first months of infancy is often one of the first signs of

autism (34, 35). Eye contact and social engagement lead to

FIGURE 2
Prevalence of common causes of disability (21–25)2. Abbreviations: GDD/ID, global developmental delay/intellectual disability; ASD, autism
spectrum disorders; FAS, fetal alcohol syndrome; FASD, fetal alcohol spectrum disorders; ADHD, attention deficit hyperactivity disorder.

2 https://www.cdc.gov/ncbddd/adhd/data.html (Accessed 15 January,
2023).
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reactive cooing and the first stages of verbal interaction that

subsequently progress to use of repetitive syllables (babbling)

between 6 and 9 months and intelligible speech around age 1 year

(36). Motor milestones proceed in a cephalo-caudal direction

with progression from gaining head control by 3 months, to

lifting chest when prone by 5 months, to sitting at 6 months,

crawling at 9 months, and walking by 1 year. The development of

speech and ambulation allows the infant to explore the world and

engage more readily in interactions with others. Social

development includes eye contact, use of non-verbal gestures

such as indicative pointing, and motivation to seek out social

interactions. These processes are concurrent with increased

attention and cognitive ability that allow the acquisition of

sustained and symbolic play by age 2 years. While children

around age 2 years tend to engage in parallel play (minimally

interactive play in proximity to other children), by age 3 years

children engage in interactive play and goal-directed behavior

(37). Concurrent with this development is the emerging ability to

regulate emotions such as frustration that facilitates social

interactions (38). Children with neurodevelopmental disorders

frequently present with variable patterns of delays in

development across developmental domains. Figure 4 charts

an example of the developmental trajectory of a child with a

neurodevelopmental disorder. This deviation from expected

patterns of development allows practitioners to identify a

constellation of developmental challenges that helps establish

a differential diagnosis.

Children with global developmental delay present the

clearest example of altered trajectories of development.

Pervasive delays across two or more developmental domains

of cognitive, adaptive, social-emotional, gross and fine motor,

and speech domains characterize the challenges of children with

global developmental delay (39). The diagnosis of global

developmental delay is limited to children under the age of

5 years who are unable to undergo systematic assessments of

intellectual functioning, including children who are too young to

participate in standardized testing (16,40). While use of

standardized testing measures such as those employed in

evaluation by early intervention and schools can verify clinical

suspicion, cognitive ability in children younger than 3 years is in

flux and isolated testing is often unreliable (41). A common

clinical practice is the use of the developmental quotient obtained

by dividing the child’s estimated developmental age over their

current chronological age. Developmental quotients below

70 strongly suggest delays in that specific domain. While

intellectual disability may later be diagnosed in a child with

global developmental delay (the prevalence of global

developmental delay, like that of intellectual disability, is

estimated to be 1% to 3%) (21), not all children with

global delays will go on to meet criteria for an intellectual

disability (42).

Overall prevalence rates for specific language impairment in

kindergarten children is estimated to be 7.4% with higher

prevalence for boys (8%), compared to girls (6%) (43). A

study of 7,267 children aged 4–5 years found the estimated

prevalence of language disorder of unknown origin to be

7.58% while the prevalence of language impairment associated

with intellectual disability and/or other medical diagnosis was

2.34% (44). While children with language disorder may have

greater symptoms of social, emotional, and behavioral challenges

compared to peers and often have later challenges in school

achievement, they lack the major delays in the other

developmental domains of socio-emotional, adaptive, and

cognitive ability and the repetitive behaviors and lack of social

FIGURE 3
Milestones of normal development.
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interest found among children with autism. Thus, in assessing a

child with speech delay, concurrent delays in other domains of

development can help differentiate the primary

neurodevelopmental disorders (45). An audiologist should

evaluate all children with speech delay to rule out conductive

or sensorineural hearing loss.

In contrast to the global delays or isolated speech delays

described above, a diagnosis of autism rests upon impairments in

social and communication domains along with signs of restricted

interests and repetitive behaviors (16). These include

impairments in social-emotional interaction such as eye

contact, lack of socially reactive smile or emotion, and lack of

interest in initiating or responding to social interactions.

Restricted, repetitive patterns of behavior, interests, or

activities can be seen as repetitive motor movements, use of

objects, or speech such as pacing, spinning, repetitive hand-eye

movements, and echolalia. Insistence on sameness and rigid

routines leads to severe emotional dysregulation, and highly

restricted, fixated interests that are abnormal in intensity or

focus (strong attachment to single objects), as well as hyper-

or hypo-reactivity to sensory input (sounds, textures, smell,

touch, visual fixation on details or lights or movement) (46).

It is therefore unsurprising that up to 62.3% of children with

global developmental delay also meet diagnostic criteria for

autism (47). In some cases regression of development occurs

after the first year of life, prior to which socio-communicative

skills might have appeared normal to parents (48). Beyond

neurodegenerative disorders such as Rett syndrome, few other

neurodevelopmental disorders present with the regressive loss of

communication or social interaction described by parents of

children with autism. Broad estimates across studies suggest

11%–65% of school-age children with autism subsequently

also have the additional diagnosis of intellectual disability

(49). Children with autism or global developmental delay

often have severe behavioral challenges, the severity of which

inversely correlates with the child’s developmental quotient and

cognitive ability (50). Symptoms of inattention and hyperactivity

can easily be diagnosed as ADHD without recognition of an

underlying diagnosis of autism or intellectual disability. Genetic

evaluation and testing should be considered in all children with

suspected autism, global developmental delay, and intellectual

disability as well as children with suspected FASD to help exclude

genetic causes of developmental challenges which can be present

in addition to prenatal alcohol exposure.

Neurodevelopmental disorder associated
with prenatal alcohol exposure

A path to increase identification of children with
FASD

Given the breadth and overlap of the three primary

neurodevelopmental disorders highlighted above, how can

pediatricians begin to discern children with an FASD from

other neurodevelopmental disorders? How can practitioners

identify and establish interventions for children living with an

FASD in the absence of an FASD multidisciplinary diagnostic

center? The DSM-5 diagnostic criteria for neurodevelopmental

disorder associated with prenatal alcohol exposure (ND-PAE)

provides a straightforward path for practitioners to establish a

provisional diagnosis much as pediatricians currently identify

children with suspected autism (see Figure 5). One or more

impairments in neurocognitive function, one or more

impairments in self-regulation, and two or more deficits in

FIGURE 4
An example of a common developmental trajectory of a child with a neurodevelopmental disorder.
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adaptive function (with at least one being one of the first two

symptoms highlighted by an asterisk) are sufficient to establish a

diagnosis of ND-PAE if there is confirmed history of prenatal

alcohol exposure (51).

Since its inclusion in the DSM-5 as a “condition for further

study,” there appears to be strong correlation between the

diagnostic categories of FASD and ND-PAE (52, 53). The

advantage of ND-PAE criteria however is the emphasis on

neurodevelopmental manifestations that practitioners see daily

without extensive focus upon facial features and growth

impairment that are often a barrier to diagnosis. While the

clinical diagnostic guidelines for a diagnosis of ND-PAE may

be less sensitive and specific than the traditional standards for the

diagnosis of FASD, the utility of ND-PAE guidelines for front-

line practitioners make this a step toward identifying children

with an FASD (54).

A diagnosis of ND-PAE requires:

(1) One or more neurocognitive deficits

(2) One or more impairments in self-regulation

(3) Two or more impairments in adaptive skills, one of which

must be communication deficit or impairment in social

communication and interaction

(4) Documentation of more than minimal prenatal alcohol

exposure

Children with FASD range in presentation from global

developmental delay, symptoms of autism, isolated speech

delay, or isolated early behavioral challenges similar to those

seen among children with ADHD (Table 1) (55). Despite the

great overlap across the neurodevelopmental disorders,

differences in developmental challenges become more

apparent with increasing chronological age. For example,

young children with FASD may be diagnosed with autism

because of speech delay, difficulty with transitions, sensory

processing issues, socially inappropriate behaviors, difficulties

with interpersonal interactions, and emotional/behavioral

dysregulation. Challenges in social cognition are a primary

challenge among children with FASD. Individuals with FASD

have greater difficulties interpreting facial emotions than

typically developing children (56). But while children with

FASD share challenges in social skills and behavioral issues

that can lead to a diagnosis of autism, children with FASD

often score low in repetitive behaviors and restricted

interests (57). Table 1 highlights common

developmental challenges of children with FASD between ages

4–12 years.

Yet more subtle differences can distinguish FASD from

autism. The difficulties in initiating social interaction, sharing

affect, and using non-verbal communication common in

children with autism are less common in children with FASD

who tend to seek out social interaction at the exclusion of

awareness of interpersonal boundaries. Similarly, while

children with ASD are often referred to as aloof or

uninterested in social interaction, children with FASD are

more likely to make sustained eye contact, use indicative

pointing to show or express interest or direct attention

(theory of mind), engage in social interaction (often with an

overly social and indiscriminately friendly presence), engage in

interactive play and simple conversation, and offer comfort to

others (58). Children with FASD are often overly friendly and

lack interpersonal boundaries (as opposed to preference for

solitary play). They are also at higher risk for behavioral

challenges with symptoms of hyperactivity, impulsivity, and

aggression easily mistaken for self-willed behaviors and

attributed to a psychiatric disorder (ADHD) or an “emotional

disturbance” instead of as a manifestation of neurological

impairment. These challenging behaviors are the result of

impairments in brain function across memory, learning,

cognitive flexibility, comprehension, attention, planning, social

skill development, and learning (59, 60). School evaluations often

FIGURE 5
Criteria for neurodevelopmental disorder associated with
prenatal alcohol exposure.

TABLE 1 Middle school developmental challenges of children with
FASD.

Developmental challenges of children with FASD: Ages 4–12
years

• Difficulties with receptive language compared to expressive language (auditory
processing); Difficulties with conversation

• Difficulties in peer interactions (reading non-verbal cues, auditory processing,
emotional/behavioral dysregulation, inappropriate interpersonal boundaries)

• Hyperactive, poor attention, disorganized (often referred for ADHD evaluation
by age 3–4 years)

• Impulsivity, lack of awareness of danger and consequences

• Learning challenges (learns it then forgets it)

• Difficulties with tasks of daily living (“you should be able to do this at your age”)

• Confabulation

• Aggressive behavior

• High risk for school suspension or expulsion (as early as kindergarten)

• Sleep difficulties
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view learning challenges among children with an FASD as simple

issues with attention and motivation, rather than as an

underlying static encephalopathy or learning disorder. Because

most children with an FASD are frequently not diagnosed with

this disorder, their behaviors place them at higher risk for school

suspension or school failure.

As noted at the beginning of this article, the prevalence of

ADHD ranges from 5%–11% in the general population. ADHD is

a neurodevelopmental disorder defined by impaired levels of

inattention, disorganization, and/or hyperactivity-impulsivity.

These are manifested by inability to stay on task, seeming not

to listen, losing materials, being overly active, inability to stay

seated or wait, and intruding into other people’s activities at

levels that are excessive and inconsistent with age or

developmental level (16). ADHD is commonly diagnosed

among children with autism, global developmental delay,

intellectual disability, and fetal alcohol spectrum disorder. At

least 41%–48% of children with prenatal alcohol exposure are

diagnosed with ADHD (61,62). Clinical experience suggests this

percentage is far higher but limited by lack of screening for

prenatal alcohol exposure in ADHD prevalence studies (63).

Children with FASD and ADHD both have challenges in

executive function, including working memory, attention,

behavioral regulation, and impulse control. Early challenges in

executive function (the ability to focus attention, engage in

sustained play, have goal-oriented behavior, and regulate

emotions across different environments) and social function

(the ability to engage in joint attention, exhibit social

reciprocity and sharing, and perspective taking) are common

to preschool children with FASD and become more apparent

with age (64). Marked behavioral problems often eclipse the

neurological impairments of FASD, commonly leading to

multiple psychiatric diagnoses (ADHD, ODD, conduct

disorder being the most common). Thus, behavioral referral

of children with undiagnosed FASD nearly always leads to a

diagnosis of ADHD in early childhood. The more recent concept

of complex ADHD describes children with early onset of ADHD

before age 4 years and have moderate to severe functional

impairment, or inadequate response to treatment (65).

Worsening of behavior or failure to respond to stimulant

medication or lack of response to typical behavioral

interventions should suggest a possible underlying diagnosis

of FASD among children with a diagnosis of ADHD (66).

While research is needed to clarify the extent of prenatal

alcohol or other substance exposure among children with

complex ADHD, the severe early developmental trajectory is

strongly similar to those seen with FASD.

FASD is the most common identifiable cause of secondary

morbidities such as intellectual disability, ADHD, anxiety

disorders, and learning disabilities (63, 67). Children with

multiple psychiatric diagnoses such as ADHD, oppositional

deficient disorder, disruptive mood dysregulation disorder,

conduct disorder, or intellectual disability should be screened

for prenatal alcohol exposure to ensure a diagnosis of FASD is

not the underlying cause of the severe emotional/behavioral

dysregulation that attends each of these disorders (67).

Furthermore, challenges in shifting activities and difficulties

with transitions are common among children with autism and

often a primary behavioral challenge of children with FASD,

resulting in emotional/behavioral dysregulation during

transitions or limit-setting (60). Children with FASD

typically require a highly structured environment and

become more dysregulated in overstimulating environments

(68). The poor ability of many children with FASD to regulate

sensory stimulation mirrors the challenges of children with

autism who easily become dysregulated by sensory

overstimulation. This may help explain why children with

FASD often fail to respond well to stimulant medication but

are more responsive to medication that targets emotional/

behavioral dysregulation and symptoms of anxiety (69)3.

Identifying impairments in adaptive function is critical to

understanding the developmental challenges of children with

FASD (Figure 6). Adaptive function is the ability to complete

day-to-day age-appropriate tasks and spans skills such as

receptive and expressive communication, social interaction,

coping skills, and activities of daily living. While children with

FASD, autism, intellectual disability and ADHD often show

adaptive behavior impairments, the relationship of cognitive

ability to adaptive function often helps distinguish children

with FASD from the other neurodevelopmental disorders. The

DSM-V defines intellectual disability as impairments in both

cognitive and adaptive function. In contrast, children with

autism without intellectual disability typically score low in the

communication and socialization domains of adaptive

function and often present with a significant gap between

high non-verbal and low verbal abilities on cognitive testing

(70). Estimates of cognitive ability among children with FASD

vary widely, ranging from 20 to 120, with an average of about

72. Children with FASD typically have significantly lower IQ

scores than those with ADHD and score lower in adaptive

functioning when compared to IQ matched children (71).

While adaptive skills improve with age for children with

ADHD, children with FASD tend to be significantly more

impaired in the daily living skills domain and impairments in

both socialization and communication domains become more

apparent with age (Figure 6) (72, 73).

Individuals with FASD often have normal to borderline

cognitive ability (above 70) and frequently fail to meet criteria

for intellectual disability or autism leading to assumptions

that they can complete tasks “if only they try harder.” Coles

et al. have described two subsets of children with alcohol-

related neurodevelopmental disorder: one with cognitive

3 https://canfasd.ca/algorithm/ (Accessed 16 January, 2023).
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impairment, the other with primarily behavioral

manifestations. Of note, both children with primarily

behavioral manifestations and those with cognitive

impairments both scored low on adaptive function (74).

The Collaborative Initiative on Fetal Alcohol Spectrum

Disorders has proposed a decision tree to help identify

children with PAE, but these criteria rely on psychometric

measures such as the Child Behavioral Checklist and the

Vineland Adaptive Behavioral Scale that are often

unavailable to practitioners without access to

neuropsychological testing (75).

Evaluations by the school can fail to identify impaired

adaptive function in the face of normal to low cognitive ability.

This “intellectual disability equivalence” often leads to

difficulties in learning, social interactions, and behavior

that become increasingly apparent as children move

through adolescence (76) (see Figure 6). The inability to

qualify for services available to individuals with autism and

intellectual disability leaves a gap in services that is one of the

greatest struggles for families caring for children with an

FASD. The failure to identify challenges in adaptive

function and the subsequent blame placed upon children

from early childhood to adulthood for difficulties with

basic age-appropriate tasks not only damages self-esteem,

but over time leads to anxiety, depression, and even suicide

in individuals living with an FASD.

Barriers to FASD diagnosis include lack of awareness of

FASD prevalence, manifestations, and diagnostic criteria and

discomfort of professionals in discussing prenatal exposures.

In addition, there is a lack of systematic screening for

prenatal alcohol exposure by obstetricians, pediatricians,

psychiatrists, psychologists, and social workers; lack of a

biological marker for diagnosis of FASD; and underreporting

of alcohol use during pregnancy due to stigma and fear of

repercussions (77). Early recognition of exposure allows risk

stratification to identify children who need closer

developmental follow up. Stigma against women with

substance and alcohol use disorders continues to be a

barrier to diagnosis, especially in the child welfare system

where parents feel judged and threatened with termination of

their parental rights. Each of these barriers leads to a lack of

resources for interventions services specific to an FASD

diagnosis. The sum of these failures leads to a need for

constant advocacy by providers and families in

gaining services for children whose neurological

impairments frequently manifest as behavioral and

psychiatric challenges.

Screening for prenatal alcohol

When evaluating a child with developmental or behavioral

challenges, screening for prenatal alcohol exposure (PAE) is the

single most important first step in considering a diagnosis of

FASD. Prenatal alcohol exposure alone can be a predictor of child

development. A study comparing documented prenatal exposure

using the biological marker, meconium ethyl glucuronide, and

cognitive deficits and symptoms of ADHD, found a partially

dose-dependent relationship to development (78). Therefore, a

brief review of a process for obtaining a history of prenatal

exposure deserves discussion.

Evaluation can easily incorporate screening as part of

obtaining the prenatal and birth history that is routine for

most practitioners. The effectiveness of weaving questions for

PAE into the prenatal history makes asking questions that are

often uncomfortable for both professionals and parents, easier to

present as a routine part of information gathering. Below is a

simple script practitioners can complete quickly in even the

busiest of practices.

• How far into your pregnancy did you discover you were

pregnant?

• Did you have any medical problems during your

pregnancy?

• Were you prescribed any medications during your

pregnancy?

• How much alcohol did you use prior to finding out you

were pregnant?

• How much alcohol did you use after finding out you were

pregnant?

• What other substances did you use before and after you

found out you were pregnant (such as cannabis, opioids, or

other non-prescribed medications)?

Note the importance of obtaining a history of alcohol and

other substance exposure prior to pregnancy recognition.

After obtaining a positive history of alcohol use prior to or

after pregnancy recognition, further investigation of alcohol

preference (beer, wine, liquor) and the size of a typical drink

helps clarify the extent of alcohol-related neurotoxic exposure.

FIGURE 6
Adaptive function and intellectual disability equivalence.
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Suggested guidelines for significant alcohol exposure have

been made (79), but current evidence documents that even

small amounts of prenatal alcohol exposure can affect brain

development and that there is no known “safe” amount of

alcohol use in pregnancy (80). While there is no safe amount

of alcohol consumption during pregnancy, binge drinking

with sharp elevated maternal blood alcohol levels readily

cross the placenta and carry the highest risk for a fetal

alcohol spectrum disorder. Greater maternal blood alcohol

levels are associated with greater severity within the spectrum

of FASD, with higher levels associated with fetal alcohol

syndrome (81). In addition to a direct maternal interview,

information of alcohol consumption during pregnancy can

also be obtained from a reliable collateral source such as a

family member, social service agency, or prenatal or maternal

medical records. Definitions of significant alcohol exposure

vary, but consumption of six or more drinks per week for more

than 2 weeks or three or more drinks on two or more

occasions can be considered a guideline for determining

significant alcohol consumption (82). Additional history of

significant alcohol consumption can also be obtained from

documentation of social or legal problems associated with

alcohol use or intoxication during pregnancy (83).

Screening for PAE is often an iterative process that may

require revisitation and in which a parent who may initially deny

use of alcohol during pregnancy, later discloses use in the context

of a relationship of trust that focuses upon the wellbeing of the

child. Even with documented prenatal alcohol exposure, a

diagnosis of an FASD is inappropriate until further

psychological standardized testing (including testing for

adaptive function) and evaluations by early intervention or

the school can be completed. The discussion of a diagnosis of

FASD with a parent requires patience, frequently starting with

interventions before clarifying the suspected etiology of

developmental delays. Anticipatory guidance of potential

developmental and behavioral challenges and the possible

need for additional support in the future builds a working

relationship with parents and diminishes the helplessness,

guilt, and feeling of aloneness that comes with caring for a

child with severe developmental and behavioral difficulties.

Interventions: Bending the trajectory

The primary reason for any diagnosis is intervention. Diagnosis

allows education of caregivers about the disabilities and anticipatory

guidance for risks and current or future need for interventions.

Diagnosis also allows individuals with FASD to better understand

their strengths and weaknesses (“blind spots”). Ideally diagnosis also

allows access to disability services. In most cases the subjectivity of a

diagnosis rests upon clinical experience and awareness of the

importance of diagnosis in obtaining services. Diagnosis also

allows a common language for clinicians to discuss developmental

challenges in the context of a diagnosis, including framing a

prognosis, and providing anticipatory guidance for possible future

challenges. Table 2 highlights common developmental challenges of

children as they move through adolescence.

Vygotsky’s model of the zone of proximal developmental

provides a framework for helping parents and teachers greater

awareness of developmental challenges and providing services

that meet the child at the level of their developmental ability

(Figure 7) (84–86). The zone of proximal development is based

upon the three zones of the ability of the child to complete tasks

without help or guidance, with support and guidance, and the

level beyond which the child is unable to complete a task even

with adult support. Identifying these impairments helps guide

interventions that meet a child’s level of function and is

imperative in working with all children with disabilities.

While children with neurodevelopmental disorders such as

speech delay, autism, and intellectual disability have a clear

pathway to services, families of children with an FASD often

find providers who lack training in caring for children with an

FASD. There is an urgent need to establish a community network

of service providers familiar with the challenges and

interventions to support the development of children with an

FASD (Figure 8). This network of services would ideally begin

with early identification of children with an FASD prior to age 3

and include early intervention providers familiar with the

challenges that attend a diagnosis of FASD. It would include

family support services across childhood while ensuring

transition from early intervention services to special education

services and beyond (87). A major barrier to supportive services

for families of a child with an FASD is the lack of inclusion of

FASD as a developmental disability eligible for state-based

disability services under the Individuals with Disabilities Act.

While many states allow eligibility for disability services for

TABLE 2 Developmental challenges of adolescents and young adults
with FASD.

Developmental challenges of adolescents with an FASD: Ages
13–21 years

• Increasing gap between chronological age and developmental age, especially in
adaptive function (tasks of daily living, maintaining safety, difficulties with
managing time and money), “18 going on 10”

• Difficulties with respective language (auditory processing), reading non-verbal
social cues engaging in back-and-forth conversation

• Difficulties making and keeping friends

• Poor interpersonal boundaries, sexually inappropriate behavior

• Gullibility, easily swayed by others to do acts they would not do alone

• Confabulation, taking possessions of others, stealing

• High risk for school failure/drop out

• Parent-child relationship difficulties including increasing use of aggression and
destructive behavior in the home

• Emotional/behavioral dysregulation

• Increased risk of alcohol and/or substance use
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children and adults with fetal alcohol syndrome, children with an

FASD other than fetal alcohol syndrome often do not qualify for

services unless they meet criteria for autism or intellectual

disability despite documentation of severe impairments in

adaptive function and life skills necessary to transition to

adult independence.

Perhaps just as important as addressing current developmental

needs of a child or adolescent with an FASD, providers should

anticipate future challenges as adaptive function falls further behind

age-expected abilities. Medications to target symptoms of ADHD,

mood dysregulation, anxiety, depression, and sleep issues are

common adjuncts to the greater implementation of

environmental supports. Essential environmental supports

include a calm highly structured environment with consistent

routines at both home and at school. Providers often serve as

advocates for services beyond school mandates for a least

restrictive environment. Interventions should also address

educational and vocational needs by highlighting adaptive

function disabilities that often exist in the presence of borderline

to normal cognitive abilities. Multiple interventions have been

documented to specifically address the challenges of children

with an FASD while supporting their families (88). Interventions

should also address educational and vocational needs.

The transition from adolescence to adulthood is a time fraught

with risks for school failure, anti-social or criminal behavior,

substance use, victimization, worsening psychiatric illness,

unemployment, and homelessness. Anticipation of each of these

difficulties allows open discussion with parents who are frequently

hesitant to discuss their concerns. Even following diagnosis of FASD,

adolescents and adults with FASD remain at extreme risk for adverse

outcomes. This risk is compounded by exposure to adverse

childhood experiences, especially when these are frequent and

enduring. Children with FASD are estimated to be at least

3.7 times more likely to have adverse childhood experiences than

children without an FASD (89). Adverse experiences compound the

developmental challenges of FASD to synergistically increase risk for

developmental and behavioral challenges (90). Anticipatory

guidance and ongoing work with families should include

vigilance for adverse outcomes including school failure, recurrent

school suspensions or expulsions, involvement in the juvenile justice

system, sexual and interpersonal victimization, homelessness, and

drug and alcohol use disorders (91,92).

FIGURE 8
Building community supports.

FIGURE 7
Conceptualizing the zone of proximal development.
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In addition to poor family support, adaptive difficulties in

completing age-expected tasks turn simple tasks (e.g., getting to

work or appointments on time, interacting appropriately with

others) into insurmountable obstacles without appropriate

services. Although adolescents with FASD may appear confident

about managing age-appropriate tasks, this apparent self-confidence

often masks impairments in adaptive skills and low self-esteem (93).

Therefore, transition plans should include vocational assessment

and life skills training (e.g., how to schedule and ensure appointment

punctuality, following directions, appropriate workplace social

behavior) as well as support in finding employment and job

coaching (94). Adaptive assessments during the diagnostic

evaluation process should contain information about specific

weaknesses in daily living skills (e.g., hygiene, nutrition,

shopping, cooking, paying bills) that are especially important

during transition. Most adolescents with FASD will need ongoing

support and supervision for adaptive tasks that overwhelm their

capability as they attempt to meet adult responsibilities (95).

Without ongoing support during transition to adulthood to

accommodate deficient executive functioning and associated

adaptive impairments, treatment services—no matter how

extensive—are unlikely to result in a successful transition to

independence and productive integration into society.

Independent living programs, subsidized rent programs, and

home healthcare services can facilitate a successful transition to

adulthood and maximize independence (96).

Conclusion

General pediatricians and early childcare workers are often

the first persons to assess a child with developmental delays. This

means they are the gatekeepers for assessment and intervention

long before specialists evaluate children. The lack of availability

of specialists to diagnose FASD and greater lack of

multidisciplinary FASD diagnostic centers, makes

identification of children with an FASD in the general

population an urgent public health concern. Just as

interventions in other neurodevelopmental disorders improve

outcomes, early identification and intervention is imperative to

supporting children with an FASD. Practitioners can easily

screen all children for prenatal alcohol exposure. Similarly,

practitioners can begin to diagnose children with

developmental delays who have a history of prenatal alcohol

exposure and meet the criteria for ND-PAE. While many might

argue that a diagnosis of FASD or ND-PAE is less helpful in

obtaining services compared to other diagnoses such as autism,

the developmental challenges and developmental trajectory of

children with FASD are different from those with other

neurodevelopmental disorders. Others might argue that the

criteria for ND-PAE lack the sensitivity and specificity of

traditional FASD diagnostic criteria. Yet traditional

requirements for evaluation by a multidisciplinary diagnostic

team have failed to identify the majority of children with an

FASD and such centers as they currently exist will never be able

to meet the demand for diagnostic and intervention services. A

diagnosis of FASD offers a structure for discussion of

developmental challenges with the family within the context

of seeking interventions to maximize independence and

prevent secondary morbidities. After 50 years of research that

has increased our understanding of the effects of prenatal alcohol

exposure upon neurodevelopment, front-line practitioners can

use the knowledge gained from research to address the

developmental and behavioral challenges of families that come

to them seeking help for their children.
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Introduction:With an estimated prevalence of up to five percent in the general

population, fetal alcohol spectrum disorders (FASD) are the most common

neurodevelopmental disorder and more prevalent than autism. Early

identification and subsequent early intervention have the potential to

improve developmental trajectory of children with FASD. In addition, new

research suggests supplementation with choline may ameliorate the

developmental impairments associated with prenatal alcohol exposure.

Availability of a screening tool with acceptable epidemiologic performance

criteria may be clinical useful in identification of young children at increased risk

for FASD. In this paper we describe the Early Fetal Alcohol Spectrum Disorder

Screening Test (E-FAST) to identify young children at increased risk for an FASD.

Methods:We developed the E-FAST dataset from previously published studies,

comprised of 281 children under 5 years of age, 180 (64.1%) were diagnosed

with FASD and 101 (35.9%) were non-FASD.

Analysis: The analysis identified seven useful variables (prenatal alcohol

exposure, ADHD (Attention Deficit Hyperactivity Disorder), foster care or

adopted, small OFC (occipital frontal circumference), communication

impairments, impaired social skills, and cognitive deficits. All variables were

categorized as yes/no for ease of use in a screening tool. Risk ratios for each of

the seven indicators were estimated using two-way table analyses. Weights for

each variable were estimated based on the relative strength of their odds ratios.

Results: The average age was 2.7 years of age (S.D. 1.29) and ranged from infant

(6.4%) to 4 years old (35.9%). Maternal alcohol use alone had a sensitivity of 0.97,

specificity 0.65, and accuracy 0.86. For the combined seven variables, sensitivity

was 0.94, specificity 0.74, and accuracy 0.87. Thus, the seven-item E-FAST

screen had acceptable epidemiologic screening characteristics.

Discussion: In the United States, up to 547 infants with FASD are born each day

which far exceeds the capacity of multidisciplinary diagnostic clinics. During

routine clinical management of infants and young children the use of an

evidence-based screening tool provides a time efficient means to exclude

large numbers of young children from further follow-up for FASD. Conversely, a
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positive screen identifies a smaller number of children at increased risk for FASD

requiring more intensive evaluation and follow-up.

KEYWORDS

screening, fetal alcohol spectrum disorder, prenatal alcohol exposure,
neurodevelopmental disorder, infancy

Introduction

Despite widespread public information efforts to increase

awareness of the risks of alcohol use during pregnancy, rates of

alcohol use in pregnant women have been increasing [1, 2]. A

CDC study found that 13.5% of pregnant women reported

current alcohol use and 5.2% reported drinking four or more

drinks on an occasion(binge-drinking) [3]. Among women of

child-bearing age, 53.6% used alcohol in the past month and

18.2% binge drank [4]. Because up to 50% of pregnancies are

unplanned, many of these women will have children with

prenatal alcohol exposure [5]. Upon confirmation of

pregnancy, most women quit or reduce alcohol use but

10.2% continue to drink [4] and recent studies indicate that

over 8% of pregnant women are drinking at the end of

pregnancy [6].

Prenatal alcohol exposure has been demonstrated to have

a negative effect on the developmental trajectories of

infants and young children language, cognitive and motor

skills [7, 8]. In addition prenatal alcohol exposure increase risk

for fetal alcohol spectrum disorder (FASD). FASD is the

most common cause of noninheritable developmental

disability in the United States. A study of first-graders in

four regions of the United States found a conservatively

estimated prevalence rate of 1.1%–5.0% [9]. Global

prevalence of FASD is at least 2.2% with wide variation

across countries and subpopulations [10]. These prevalence

rates demonstrate that FASD is a disorder as common as any

other medical condition physicians diagnose and treat each

day. Yet both screening for prenatal alcohol exposure or for

FASD is far from routine.

Even when prenatal exposure to other substances such as

cannabis, cocaine, or opioids is documented in newborn medical

records, screening for prenatal alcohol exposure is notably absent

in most obstetric, pediatric, and child welfare records. In addition

to stigma against women who use alcohol during pregnancy [11],

identification of children with an FASD is complicated by the

need to obtain a history of prenatal alcohol exposure. Accurate

ascertainment of history of prenatal alcohol exposure is

complicated by the frequency in which children at the highest

risk for an FASD often do not reside with their biological parents.

In a recent study of 151 children/young adults screened for

FASD, only 4 (2.6%) were raised by biological family members.

Information on prenatal care and alcohol and other substance

exposure can be very challenging to obtain in these

circumstances [12].

Another challenge in the diagnosis of FASD is the lack of a

screening tool for practitioners to utilize to easily identify infants

and young children at risk for an FASD. A comprehensive review

of FASD screening tools identified 20 unique screening tools for

FASD utilized in 45 cross-sectional or case-controlled studies

[13]. Typical screening tools analyze facial dysmorphology,

growth retardation, behavioral and developmental indicators,

along with characteristics of parents. Of the 20 screening

tools, only 5 studies included children under the age of six

and only 3 included children ages 2 to 3; no studies included

children under 2. Another recent study retrospectively analyzed

151 subjects all of which were seen in a national FASD clinic [12].

The ages in this study ranged from 3.75 to 22 years. Within this

range, 78% (118 of 151) were between ages 6 and 16 and no data

was presented for children under age 3.7 years. These two articles

demonstrate the need for an early screening for FASD to allow

early identification and intervention to maximize child

neurodevelopment. In this manuscript we discuss a new

screening tool for FASD which was developed for use in

young children during routine healthcare visits or when

developmental delays are a concern.

In this manuscript we respond to this issue by reporting on

the development of a screening test for FASD for very young

children (Early Fetal Alcohol Spectrum Disorder Screen for

Young Children) the E-FAST.

Methods

The E-FAST data set was developed from three deidentified

data sets which have been previously published (FAS Diagnostic

Checklist 2002; n = 405, FAS Screen 1997; n = 264, and data from

the ARND (alcohol related neurodevelopmental disorder)

Behavioral Checklist n = 47. The initial criteria for diagnosis

is determination of prenatal alcohol exposure. The diagnostic

criteria and the methodology for diagnosis has been presented in

detail in [14]. In brief, each child with a diagnosis of FASD had an

exposure assessment which consisted of the One-Question

Screen “When was your last drink?”, and a Maternal Risk

Score and a dosimetry assessment [14–16]. This data is then

reviewed and a five item Likert scale is used to assess clinician

confidence in exposure. The five scale intervals are confirmed

prenatal alcohol exposure, prenatal alcohol exposure, no-

reporter, no exposure and confirmed no-prenatal alcohol

exposure. The dosimetry assessment collects data on drinking

days per week, drinks per drinking day, number of binge episodes
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(four or more standard drinks on an occasion), what is a drink(s)

and days per week for cigarette smoking and number of cigarettes

per smoking day. The second criterion includes meeting the

neurobehavioral phenotype for FASD [14, 17]. This included

assessment of relevant records for previous intellectual testing,

neuropsychological testing, adaptive behavior testing, assessment

for attention deficit hyperactivity disorder, speech and language

testing, memory testing, executive function testing, vision and

FIGURE 1
The number of young children with fetal alcohol spectrum disorder (FASD) and non-FASD comparison children who had or did not have one of
the seven E-FAST risk factors included in the analysis. PAE, prenatal alcohol exposure; ADHD, attention deficit hyperactivity disorder; OOH, foster
care, adopted, living out of parents home; HC, head circumference; Talking, verbal communication impairments; Social, social skill deficits;
Cognitive, cognitive impairments.

TABLE 1 Logistic regressions for different combinations of variables for the E-FAST Screen for FASD and the assigned variable weights for the items
included in the screen.

N E-FAST variables E-FAST variable # B Est P OR Weight

Model 1

269 PAE 1 2.176 <.001 63.502 20

Model 2

234 ADHD 2 2.5081 <.001 12.282 10

OOH 3 1.0584 .0044 2.882 3

HC 4 1.5070 <.001 4.513 5

Talking 5 0.1725 .6629 1.188 1

Social 6 0.2975 .7309 1.346 1

Cognitive 7 −0.0102 .9837 0.990 1

Model 3

222 PAE 1 3.2671 <.001 26.236 20

ADHD 2 2.4848 <.001 11.999 10

OOH 3 0.9122 .0497 2.490 3

HC 4 1.3010 .004 3.676 5

Talking 5 0.1173 .8154 1.124 1

Cognitive 7 0.1990 .7672 1.220 1

PAE, prenatal alcohol exposure; ADHD, attention deficit hyperactivity disorder; OOH, foster care, adopted, living out of parents home; HC, head circumference; Talking, verbal

communication impairments; Social, social skill deficits; Cognitive, cognitive impairments.
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hearing testing, number of adverse childhood experiences, and

number of foster home placements. Where needed additional

testing was completed during the assessment or by referral.

Children with other comorbid disorders were not excluded

from the FASD group if they met criteria for FASD.

The ARND data set (n = 47) did not include data on occipital

frontal head circumference (OFC) or the size of the child (height

or weight). Those values were imputed using estimated values

from a logistic regression that used smoking, age, sex, and race as

input variables.

Determination of screening variables

The final dataset included 281 children under age 5 years

included in the analysis. All variables were categorized as yes/no

for ease of use as variables in a screening tool. Occipital frontal

circumference (OFCs) under the 20th percentile for their age

were considered at risk. Children placed in foster care or adopted

were combined into one variable. The variable ADHD included a

diagnosis of ADHD and behavioral observations of attention

deficits or impulsiveness. Speech and language disorders

included diagnosed speech and language disorders, stuttering,

or observations of communication impairments. The variable

social problems included social skills deficits, difficulty or

inability to make friends, or noticeable deficits in relating to

other children. Cognitive impairments included IQ below 85,

learning disability, memory impairments, need for special

education services, therapy, or early intervention services due

to learning deficits.

Multiple other variables were available but not included in

the analysis. They included maternal variables such as age and

smoking status, information on the father or siblings

(substance use, diagnoses, mortality), and variables

regarding the child such as other diagnosis or birth

information. These were excluded since the variables did

not have sufficient observations or positive values to be

useable. Other variables such as mother’s age, were so

closely related to other variables their collinearity rendered

them unusable. Birthweight, which had to be controlled for

gestation, was too complicated and OFC gave an easier and

quick measure of a child’s size. There were no facial or other

FIGURE 2
The two receiver operating characteristics (ROC) curves and the area under the curve for each of the two models. (A) Included six of the seven
E-FAST Screening variables (prenatal alcohol use was not included in this model). (B) Models all seven E-FAST screening variables.

TABLE 2 Receiver operating characteristics (ROC) analysis using suggested cutoffs for combinations of screening variables for FASD three variable
models of the E-FAST. The E-FAST variables numbers are in parenthesis.

N Cutoff Variables Sensitivity Specificity Accuracy AUC

269 ≥20 PAE (1) .9713 .6526 .8587 .8119

281 ≥7 ADHD (2), OOH (3), HC (4), Talking (5), Social (6), and Cognitive (7) .7778 .6436 .7295 .7579

269 ≥21 PAE (1), ADHD (2), OOH (3), HC (4), Talking (5), Social (6), and Cognitive (7) .9368 .7368 .8662 .9061

PAE, prenatal alcohol exposure; ADHD, attention deficit hyperactivity disorder; OOH, foster care, adopted, living out of parents home; HC, head circumference; Talking, verbal

communication impairments; Social, social skill deficits; Cognitive, cognitive impairments.
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physical features included other than OFC. Other variables like

depression were not included since these are typically

diagnosed in older children.

Statistical analysis

The initial analysis of the E-FAST dataset was designed to

identify useful screening variables. Risk ratios for each of the

potential indicators were estimated using two-way table analyses.

Multiple logistic regressions of the variables predicting FASD

were estimated for just maternal drinking alone, the other six

variables, and all seven variables together. From these

regressions, weights for each variable were estimated based on

the relative strength of their odds ratios. Composite variables

from different combinations of indicator weights were summed

and used to produce receiver operating characteristic curves

(ROC). Variable combinations included 1) maternal alcohol

exposure alone, 2) ADHD, speech and language disorders,

social skill deficits, cognitive impairments. These in turn were

used to estimate cutoff values for the composite variable models

that maximized sensitivity and specificity of the indicators.

Results

Of the 281 children who had screening variables useable

for this analysis, 180 (64.1%) were diagnosed with FASD and

101 (35.9%) were non-FASD. In this sample 161 (57.5%) were

male and 84 (29.9%) were white. The average age was

2.67 years (S.D. 1.29) and ranged from infant (6.4%) to

4 years old (35.9%).

The initial analysis of the E-FAST dataset identified seven

variables that were useful. Figure 1 presents the number of

children with any of the seven screening variables by FASD

group (FASD or non-FASD). Alcohol use during pregnancy

(variable 1) was reported in nearly all children with a

diagnosis of FASD. Children diagnosed with FASD were over

twice as likely to have ADHD (variable 2) or be in foster care or

adopted (variable 3), and nearly twice as likely to have small OFC

(variable 4) or communication impairments (variable 5).

Children with FASD were also at increased risk for

socialization (variable 6) or cognitive deficits (variable 7).

Table 1 shows the logistic regressions of different

combinations of E-FAST risk factors. Alcohol use during

pregnancy had the highest odds ratio of 63.5. When the six

risk factors were taken together, without alcohol use, ADHD had

the highest OR of 12.3, Children who were in foster care or

adopted OR was 2.9, and small OFC OR was 4.5. Talking, social,

and cognitive difficulties were not significant with ORs near one.

Weights for composite scores, based on ORs, ranged from

20 points for alcohol to 1 point for cognitive impairments.

Figure 2.

ROC curves were used to find cutoff scores for the screening

combinations of the weights. Table 2 shows the sensitivity,

specificity, accuracy, and area under the ROC curve (AUC)

for maternal alcohol use alone, risk factors without alcohol

use, and all variables together. Sensitivity of the E-FAST was

highest for the two models where alcohol use during pregnancy

data was available (.97 and .94), though specificity increased with

the addition of the other six risk variables (.74). Although the

E-FAST ROC values were lowest for positive screening scores

without alcohol use, the six variable model accuracy was still

over 70%.

Figure 3 is the final E-FAST Screening tool. Scoring the

E-FASD is simple. If the score exceeds 7, the screen is positive

and this suggests the child is at increased risk for having and

FASD. Among the options for the clinician is placing the child in

a more intensive follow-up system to increase the frequency of

well child visits. This effort could include increased screening for

common problems these would include vision and hearing, sleep,

speech and language delays. Identification of exposure to adverse

experiences of childhood or placement in foster care would

suggest increased risk for FASD. In the accompanying

manuscript we describe an office-based approach for

identification and management FASD developed for

pediatricians and other pediatric providers (8).

Discussion

In the United States, FASD prevalence rates are as high as one in

20 school-aged children or about 5% of first grade students (7)This

suggests that in an annual birth cohort of 4.0 million births in the

United States approximately 200,000 are infants are born with FASD

each year. This figure equates to 3,800 infants with FASD born each

week or 547 every day. Only a very small fraction of children with

FASD can be seen in the few multidisciplinary clinics currently

operating in the United States. Strategies for office-based

identification by pediatricians and other early child health

providers is urgently needed to facilitate identification and

intervention in early childhood [8]. One potentially useful strategy

is the E-FAST which can be used to exclude a majority of infants and

young children from those who require further assessment for FASD.

This is an important function of screening in an office-based practice.

The E-FAST functions has acceptable epidemiologic performance

characteristics and clinicians could expect thatmost infants and young

children with a negative E-FAST screen will not have FASD.

The second role of screening is to identify a population of infants

and young children requiring further assessment. The E-FAST is

useful for screening for potential cases since some of the common

features of FASD are included as variables in the screen. Lastly, a

history of prenatal alcohol exposure may often be a key in the

differential diagnosis of FASD. On the E-FAST a positive finding of

maternal alcohol use represents a positive screen. However, where

information on prenatal alcohol exposure is not available the other
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six variables can be used to screen. Since information on prenatal

alcohol exposure may not always be accurate, the other six variables

on the E-FAST can provide a rational for ongoing observation and

alternative strategies for exposure assessment.

Concerns about ADHD prior to diagnosis would also provide

a useful rational for ongoing monitoring for FASD as well since

50% of children diagnosed with FASD also have either ADHD or

concerns about ADHD [18]. FASD is much more prevalent

among children in foster care or who have been adopted [19].

The E-FAST can be used in this setting where maternal disclosure

of alcohol use has potential for hindering reunification or when

direct interview of the mother is not possible.

The primary gatekeepers to identification of children with an

FASD are general pediatricians and other front-line early childhood

providers. Children identified by the E-FASD screen as at risk for

FASD, can be readily referred for further evaluation.Given the paucity

of FASD diagnostic centers in the United States especially in rural

areas, further assessment might be completed by telemedicine

evaluation which has the potential to dramatically increase the

number of children diagnosed with an FASD [20]. In the

management of children in foster care or with developmental

disorders routine screening for exposure to prenatal alcohol is an

important step. The basis of FASD diagnosis rests upon prenatal

alcohol exposure. The E-FAST-screening tool should not be

considered an alternative to screening all children for prenatal

alcohol exposure which is a separate clinical issue. The E-FAST

offer a rapid means for front-line practitioners to screen, identify,

and refer children for FASD diagnosis while also providing a rational

for starting intervention services. Finally, new research suggests that

pre- and even post-natal choline supplementationmay have potential

for mitigating the effects of prenatal alcohol exposure [21]. While

evidence for the benefits of choline supplementation remains sparse,

many experts and families may decide to use choline given the

minimal risk of side effects of supplementation in children at risk

for FASD.

This study is limited by lack its relatively small sample size,

limited inclusion of children from a wide range of diverse settings,

cultures and ethnic diversity. When other tools become available for

use in this young population comparative studies should promptly

be initiated to contrast different approaches to determine optimal

screening strategies. It may be that different diagnostic criteria for

FASD would result in different screening variables and these

variables may have different screening weights in other screening

tools.

FIGURE 3
The early fetal alcohol spectrum disorder screening test for infants and young children (E-FAST).
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Further areas of study should also include population-based

application of the E-FAST in general pediatric settings to assess the

efficiency, efficacy and effectiveness of the tool. Such studies may

also refine the performance characteristics of the tool. In addition,

further pathways for referral of children screening positive should be

clarified to help practitioners know about next steps after a positive

screen or diagnosis of FASD [8]). Despite these limitations, this

study provides an initial strategy to improve the identification

of children with FASD. More importantly, the E-FAST screen

has the potential for use to address under identification of

children with FASD. Early identification and entry into

services is an important management strategy for children

and families impacted by FASD. This screening tool may be a

part of a system to identify young children who are currently

undiagnosed and a first step in entry into appropriate

intervention services.
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Opioid use during pregnancy continues to rise at alarming rates with a parallel

trend in the number of infants and children exposed to opioidmedications each

year. Prenatal opioid exposure (POE) occurs at a critical timepoint in

neurodevelopment disrupting intricate pathways essential for neural-

immune maturation with the potential for devastating long-term

consequences. Understanding the mechanisms underlying injury associated

with POE is essential to address long-term outcomes and identify diagnostic

and therapeutic biomarkers in this vulnerable patient population. Using an

established preclinical model of POE, we investigated changes in cerebral

and peripheral inflammation and peripheral blood mononuclear cell (PBMC)

activity. We hypothesized that neuroinflammation, as defined by changes in

specific cerebral immune cell populations, would exist in adult rats following

POE concomitant with sustained peripheral immune hyperreactivity (SPIHR).

Our data demonstrated alterations in cerebral immune cells at postnatal day 60

(P60) typified by increased regulatory T cells (p < 0.01) and neutrophils (p < 0.05)

in rats with POE compared to controls. Evaluation of serum revealed increased

levels of IL-6 (p <0.05) andCXCL1 (p <0.05) at P21 in rats with POE compared to

controls with no significant difference in cytokine or chemokine levels between

the two groups at P60. Additionally, PBMCs isolated from rats with POE at

P21 demonstrated baseline hypersecretion of IL-6 (p < 0.01) and SPIHR with

increased levels of TNF-α (p < 0.05) and CXCL1 (p < 0.05) following stimulation

with LPS. At P60, however, there was no significant difference found in cytokine

or chemokine levels secreted by PBMCs isolated from rats with POE at baseline

or with LPS stimulation when compared to controls. Taken together, these data

demonstrate cerebral inflammation months after prenatal opioid exposure and

long after the resolution of systemic inflammation and SPIHR seen at toddler
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age equivalent. Chronic alterations in the cerebral immune cell populations

secondary to prenatal opioid exposure may underly long-term consequences

of developmental brain injury including deficits in cognition and attention.

These findings may be invaluable to further investigations of precise

biomarkers of injury and targeted therapeutics for this vulnerable population.

KEYWORDS

methadone, inflammation, prenatal opioid exposure, immune priming, PBMC, SPIHR

Introduction

The crisis of opioid use in the United States continues to grow

and has a significant impact on many populations including

pregnant women and children. Opioid use disorder during

pregnancy has risen at alarming rates in the past decade with a

131% increase from 2010 to 2017 in womenwith amaternal opioid-

related diagnosis at time of delivery (1). Paralleling this epidemic has

been a sharp increase in the number of infants exposed in utero to

opioid medications each year. Neonatal opioid withdrawal

syndrome (NOWS) is a well-recognized consequence of prenatal

opioid exposure (POE) in the first few weeks of life leading to an

extended length of hospitalization for many newborn infants.

However, the long-term adverse outcomes associated with POE

are just beginning to be understood (2). As the epidemic grows,

understanding the mechanisms underlying POE and the long-term

consequence of this exposure is paramount to supporting the health

and development of this vulnerable population.

Prenatal opioid exposure occurs as a result of maternal use or

misuse of prescription opioid medications including oxycodone,

hydrocodone, morphine, codeine and fentanyl, or illicit opioids,

such as heroin. While it is known that POE is associated with an

increased risk of fetal growth restriction and preterm birth, the

effects of POE on the developing central nervous system remain

poorly understood (3–5). Clinical data shows evidence of

abnormal brain development with decreased brain volumes

and aberrant structural connectivity in children exposed to

opioid medications prenatally (6–12). Others have shown

significant cognitive and motor dysfunction in school-age

children with POE when compared to age-matched peers

without prenatal opioid exposure (13). Larger cohort studies

are limited by social, economic, and environmental confounding

factors, but demonstrate higher risk of attention deficit

hyperactivity disorder and symptoms in school-age children

with prenatal opioid exposure as well (3, 14). Elegant

preclinical studies using animals show similar findings and

elicit concern for long-term neurobehavioral consequences in

this patient population. Specifically, prenatal methadone

exposure changes open field activity, and impairs

sensorimotor developmental milestone acquisition

concomitant with reduced neuronal density in motor cortex

and aberrant circuit connectivity (15). Prenatal Methadone

and buprenorphine cause impaired recognition memory, and

nonspatial reference learning in young adult rats (16)

corroborating reports of impaired cognitive flexibility and

learning acquisition older adults after POE using a

touchscreen platform (17). Similarly, buprenorphine and

methadone impair social interaction and novel object

recognition, diminish elevated plus maze performance, and

induce anxiety (18). Studies using other opioids yield similar

results. Prenatal fentanyl exposure alters sensory processing

defined by multiple changes in synapses, regional changes in

excitatory and inhibitory tone, and diminished dendritic arbor

(19). Prescription opioids, including oxycodone, disrupt afferent

regulation of dopamine activity in the ventral tegmental area

during development suggesting disruption of the trajectory of

mesolimbic circuity maturation and providing connection to

common neuropsychological outcomes such as anxiety,

attention, and depression (20).

Understanding the mechanism of opioid-induced neural injury

and the lasting impact of this injury across the lifespan is key to

identifying therapeutic targets and tailoring intervention to high-risk

patients at crucial times in development. The ability to recognize

patients at higher risk of long-term adverse outcomes fromPOEwith

precise biomarkers is also essential in guiding clinical management

for diagnosis and treatment (21–23). Here, we defined alterations in

the immune system following POE to test whether adults with POE

had persistent brain inflammation. Specifically, we conducted

investigations of serum inflammatory cytokine and chemokine

profiles and evaluated peripheral immune hyper-reactivity from

toddler age equivalent at P21 to an adult human age equivalent at

P60. We also used multiparameter flow cytometry to interrogate

cerebral and peripheral blood immune cell population dynamics in

adulthood. We hypothesized that POE would induce

neuroinflammation that could be detected in adulthood, defined

by changes in infiltrating immune cells. We also predicted there

would be sustained inflammation alongside disruption in the

function and composition of the peripheral immune system.

Methods

Animals

Sprague-Dawley rat dams and litters were maintained in a

temperature and humidity-controlled facility with food and
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water available ad libitum. A 12-h dark/light cycle was

maintained for all animals with lights on at 0800 h. All

experiments were performed in strict accordance with

protocols approved by the Institutional Animal Care and Use

Committee (IACUC) at the Johns Hopkins University School of

Medicine. Protocols were developed and performed consistent

with National Research Council and ARRIVE guidelines (24).

Litter size was similar between methadone-exposed and saline-

exposed litters. As previously published, (17) weights were

significantly lower in methadone-exposed litters as compared

to saline-exposed litters. For each experiment described, the data

represents true n (individual rats). For every experiment and

outcome measure, we used offspring from at least 4 different

litters per condition to control for litter effects. Male and female

offspring were used in every outcome measure, and in

approximately equal numbers where possible and dictated by

experimental endpoint.

Methadone exposure

Per previously published methods, on embryonic day 16

(E16) osmotic mini pumps (ALZET, Cupertino, California)

were implanted subcutaneously in the nape of the neck of

pregnant rat dams for 28 days of continuous methadone

(12 mg/kg, 0.25 μL/h flow rate) or sterile saline infusion

(Figure 1) (17, 25). Methadone is a synthetic, long-acting,

µ-opioid receptor agonist that readily crosses the placenta and

blood-brain barrier. Specifically, following induction and

maintenance of anesthesia with inhaled isoflurane, dams

underwent minipump placement with a 1.5 cm transverse

skin incision followed by careful blunt dissection of the

subcutaneous space. Osmotic pumps were prefilled and

primed prior to insertion, followed by closure of the space

with sutures. The total duration of anesthesia was no longer

than 7 min. Dams were carefully monitored following the

procedure for full recovery. Rat pups were born at E23/

postnatal day 0 (P0) following completion of gestation and

remained with their dams. Pups continued to receive

methadone or saline through the maternal milk supply

until weaning on P21 (17, 25). Daily health checks were

performed for pup wellbeing.

Blood and brain collection

At P21 and P60, brain and blood were collected. Specifically,

at the conclusion of each experiment, rats were deeply

anesthetized, and venous blood was collected from the right

atrium in pyrogen-free, K2 EDTA, vacutainers (BD Vacutainer,

Franklin Lakes, NJ). Whole blood was then aliquoted as dictated

by endpoint assays to further undergo PBMC isolation or serum

separation. Brains from each animal were harvested at the time of

blood collection.

Flow cytometry

At P60, brain and peripheral blood mononuclear cells

(PBMCs) were collected from adult rats for flow cytometry

consistent previous reports (17, 25–31). Using a Miltenyi adult

brain dissociation kit and Miltenyi gentleMACS™ protocol,

FIGURE 1
POE and Experimental Paradigm. Osmotic mini pumps were implanted into pregnant rat dams at embryonic day 16 (E16) for continuous
methadone or saline exposure. Rat pups were born at term on E23/postnatal day 0 (P0) and continued to receive methadone or saline through
maternal milk until weaning at P21. At P21 and P60, serum was collected and PBMCs isolated from all animals. At P60, brain and PBMCs were also
collected for multiparameter flow cytometric analyses (Figure created with Biorender.com).
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whole cerebrum was digested for single-cell suspension

(22–24). This suspension was passed through 70-µm cell

filters and then underwent debris elimination using debris

removal solution. Miltenyi red blood cell lysis solution (1x)

was then used for complete removal of erythrocyte

populations. Live cells were counted on a Countess™ II

Automated Cell Counter (Thermo Fisher Scientific). Next,

1x106 live cells were incubated with a saturating solution of Fc

block (Clone D34-485, BD Biosciences, San Jose, CA) followed

by staining with fluorochrome-conjugated viability dye and

antibodies against: CD45-PerCp Cy5.5 or CD45-APC Cy7

(Clone OX1; eBiosciences, Waltham, MA), CD11b/c BV605

(Clone OX42; eBiosciences, Waltham, MD), Ly6G-FITC

(Clone RB6-8C5, AbCam, Cambridge, MA), CD3-APC

(Clone 1F4; BD Biosciences, San Jose, CA), CD4-APC Cy7

(W3/25; Biolegend, San Diego, CA), and CD25-BV421 (OX-

39; BD Biosciences, San Jose, CA). Data were acquired using a

BD LSR-II flow cytometer (BD Biosciences, San Jose, CA) and

analyzed using FlowJo software v.10.7.1 (FlowJo LLC,

Ashland, OR). Cells were first gated based on size and

granularity (forward scatter (FSC) vs. side scatter (SSC)),

followed by gating on live cells confirmed with viability dye

staining. Single cells were then identified using FSC-A vs FSC-

H. CD-45+ cells were identified and further analyzed for CD

11b/c expression. CD45+CD11b/c+ cells could then be gated

for Ly6G expression to identify neutrophils (27, 32, 33). In the

brain, CD45+ cells were further characterized.

CD45highCD11b/c+ cells were considered macrophages and

CD45low/medCD11b/c+ cells were considered resident

microglia (23, 27, 28). Using a separate panel, T cells

were identified by assessing CD45+CD3+ cells.

CD45+CD3+CD4+ were classified as helper T cells and

CD45+CD3+CD4+CD25+ as regulatory T cells (Tregs) (22,

23, 29, 30) (Figures 2A–G).

FIGURE 2
Adult rats have significantly altered central immune cell population dynamics following POE. Multiparameter flow cytometric analyses were
used to identify changes in lymphocyte populations in blood and brain isolated from rats with POE and controls at P60. Lymphocytes were identified
by size, granularity, and viability dye staining (A–C). Further gating for CD45 (D), CD3 (E), CD4 (F) and CD25 (G) is shown. Increased regulatory T cells
(H) and neutrophils (I) were observed in the brains of rats with POE compared to controls. No significant differences were found in regulatory
T cells and neutrophils (J,K) in PBMCs isolated from rats with POE and controls (Mann-Whitney U-test for all, *p < 0.05, **p < 0.01, FSC, forward
scatter; SSC, side scatter).

Advances in Drug and Alcohol Research Published by Frontiers04

Madurai et al. 10.3389/adar.2022.10792

96

https://doi.org/10.3389/adar.2022.10792


Serum collection

Consistent with published methods, whole blood at

P21 AND P60 was centrifuged at 6000 x g for 15 min at 4°C

(17, 27, 32–36). Serum was then removed and stored at −80°C

until cytokine and chemokine analysis. Repeated freeze-thaw

cycles were avoided.

Peripheral blood mononuclear cell
isolation

PBMCs were isolated from saline-exposed and methadone-

exposed rats using a Ficoll-gradient separation consistent with

previously published methods (17, 25–27). In sterile 15-ml

conical tubes, equal volumes of venous blood and RPMI

(Roswell Park Media Institute) 1640 media (Gibco, Waltham,

MA, United States) were placed in a layer on top of Ficoll-Plaque

Plus (GE Healthcare, Chicago, IL, United States) and centrifuged

at 400 x g for 30 min at room temperature. The PBMC cell layer

was then collected and transferred into a new 15 ml conical tube

and resuspended in RPMI media. Two wash cycles with RPMI

media were performed by centrifuging the sample at 400 x g for

10 min at room temperature, followed by supernatant disposal

and resuspension of the pellet. Following the wash cycles, the

PBMC cell pellet was resuspended in media and a cell density of

1 × 106 cells/mL per well was plated in duplicate on 3.5 cm Petri

dishes.

Peripheral blood mononuclear cell
treatment with LPS

PBMCs from saline-exposed and methadone-exposed rats

were plated and treated with media only or stimulated with LPS

at a concentration of 100 ng/ml (17, 25–27). Media and cells were

collected at 3 h after stimulation and 24 h after stimulation to

assess PBMC secretory activity and changes prior to and after

protein synthesis. Cells and supernatant were stored in sterile

tubes at −80°C until further analysis. Each culture, condition and

exposure were performed in duplicate. Repeat freeze-thaw cycles

were avoided.

Multiplex electrochemiluminescent
immunoassay

Cytokines and chemokines in serum samples and supernatant

from cultured PBMCs (secretome) were analyzed using a V-PLEX

Proinflammatory Panel 2 Rat Kit (K15059D; Meso Scale Diagnostics,

Rockville, MD, United States) (17, 18, 22, 23, 25, 26, 31, 32). The

following cytokine and chemokine secretionswere assessed: interferon

gamma (IFN-γ), interleukin-1β (IL-1 β), IL-4, IL-5, IL-6, IL-10, IL-13,
chemokine (C-X-C motif) ligand 1 (CXCL1) and tumor necrosis

factor-α (TNF-α). The assay was performed according to

manufacturer specifications. Each sample of PBMC culture media

and serum was diluted 1:3 and loaded in duplicate with prepared

standards onto blocked and washed 96-well plates. Following a series

FIGURE 3
POE leads to elevations in serum inflammatory cytokines and chemokines at P21. Osmotic mini pumps with methadone or saline were
implanted in pregnant dams at E16. Pups were born and serum was collected at P21 and assayed using a translatable multiplex
electrochemiluminescent biomarker platform. At P21, methadone-exposed rats demonstrate significantly elevated levels of IL-6 (E) and CXCL1 (F)
compared to controls reflecting persistent peripheral inflammation following POE at a toddler age equivalent. (t-test for all, *p < 0.05).
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of washes and incubation with antibody detection solution, plates

were washed and loaded with read buffer onto a Quickplex SQ

120 Imager (25–27, 37–40). Consistent with the standard in the field,

samples reading below the detectable limit of the assay or with a

coefficient of variation greater than 25% in an individual assay were

removed from further analysis (25–27, 37–40). The V-PLEX pro-

inflammatory panel assay is performed with less than 10% variability

between runs and sensitivity in sub pg/mL ranges.

Statistical analysis

Data are represented as mean ± the standard error of the

mean (SEM). Data was tested for normality using the Shapiro-

Wilk test. Statistical differences between 2 groups of parametric

data were established with Student’s t-test and non-parametric

data with the Mann-Whitney test with p < 0.05 considered

statistically significant. GraphPad Prism 9.3.1 software was

used to perform statistical analyses.

Results

Prenatal opioid exposure induces changes
in central immune cell populations

At P60, using multiparameter flow cytometric analyses,

PBMCs and brain immune cell populations were examined

in-depth for rats with POE versus controls (n = 10/group

(5 males; 5 females) for saline, n = 9/group (5 males;

4 females) for methadone). Flow cytometric analyses of the

brain revealed immune cell population changes following

POE, with a significant increase in regulatory T cell

(CD45+CD3+CD4+CD25+) populations in rats with POE as

compared to controls (saline: 28.57 ± 1.35%, methadone:

38.95 ± 2.58%, mann whitney U-test, p < 0.01) (Figure 2H).

Furthermore, there was a significant increase in CD45+CD11b/

c+Ly6G+ neutrophils in the brains of rats with POE as compared

to controls (saline: 12.33 ± 1.18%, methadone 19.24 ± 2.86%,

mann whitney U-test, p < 0.05) (Figure 2I). There was no

significant difference in helper T cell (CD45+CD3+CD4+)

populations, resident microglia (CD45low/medCD11b/c+) or

infiltrating macrophages (CD45highCD11b/c+) in the brain

(data not shown). Flow cytometric analyses of immune cells

in the blood revealed no significant differences in helper T cells,

regulatory T cells, infiltrating macrophages, or neutrophils

(Figures 2J,K). Overall, these data demonstrated cerebral

inflammation at P60 defined by increased regulatory T cells

and neutrophils in rats with POE.

Peripheral inflammation from POE is
evident beyond the neonatal period

Detailed investigation of inflammatory markers in serum

was undertaken at both P21 and P60 to establish potential

FIGURE 4
Peripheral inflammation secondary to prenatal opioid exposure normalizes by P60. Osmotic minipumps primedwithmethadone or saline were
implanted in pregnant dams at E16. Pups were born and serum was collected at P60 and assayed using a translatable multiplex
electrochemiluminescent biomarker platform. At P60, no significant differences were observed between methadone-exposed and saline-exposed
rats (t-test for all).
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differences in secreted proteins with methadone exposure and

inflammatory network activation. Analysis of the serum

following POE began with measurement of cytokine and

chemokine levels at P21, approximately human toddler age

equivalent (n = 15/group; 7 males; 8 females) (33). Rats with

POE had a significant elevation in IL-6 (saline: 68.11 ±

6.34 pg/ml, methadone: 93.08 ± 8.11 pg/ml, t-test, p < 0.05)

(Figure 3E) and CXCL1 (saline: 111.9 ± 24.8 pg/ml,

methadone: 183.6 ± 21.2 pg/ml, t-test, p < 0.05) compared

to controls (Figure 3F). At P60, an adult equivalent age (23),

evaluation of serum cytokine and chemokines revealed no

statistically significant difference in levels of IFN-γ, TNF-α,
IL-1β, IL-5, IL-6, CXCL1, and IL-10 when comparing rats with

POE to controls (n = 14/group; 7 males and 7 females)

(Figure 4). In summary, this data shows increases in pro-

inflammatory serum biomarkers at P21 following POE,

defined by significant elevation of IL-6 and CXCL1 in rats

with POE, and normalization of serum inflammatory markers

at P60.

POE alters the baseline PBMC secretome

Following our assessment of peripheral serum cytokine and

chemokine levels, we further investigated peripheral immune

system reactivity with evaluation of the baseline and stimulated

PBMCs secretome at P21 (n = 4/group for saline; 2 males;

2 females, n = 6/group; 3 males; 3 females for methadone). At

baseline, the conditioned media of PBMCs isolated from rats

with POE demonstrated elevated levels of TNF-α levels at

baseline in rats with POE after 3 h in culture (saline: 1.051 ±

0.220 pg/ml, methadone: 3.009 ± 0.721 pg/ml, t-test, p = 0.0655)

although this failed to reach statistical significance (Figure 5A).

IL-6 was significantly elevated at baseline compared to control

rats (saline: 23.22 ± 7.74 pg/ml, methadone: 62.56 ± 4.19 pg/ml,

t-test, p < 0.01) (Figure 5B). No other statistically significant

differences were noted in baseline secretion of cytokines from

PBMCs in culture after 3 h (Figures 5C,D) or 24 h (Figure 6) in

culture, including CXCL1, IL-10, IFN-γ, IL-5, and IL-1β.
Together, these results indicate that the PBMC secretome at

FIGURE 5
POE causes alterations in the PBMC secretome at baseline. PBMCs were isolated from P21 pups prenatally exposed to saline or methadone.
Conditioned media was then assessed for cytokines and chemokines after 3 h in culture. PBMC secretome from rats with POE demonstrated
significant elevation in IL-6 compared to controls. There was no significant difference in other cytokine and chemokine levels between the two
groups (t-test for all, **p < 0.01).
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baseline in P21 rats with POE is altered and favors a pro-

inflammatory microenvironment.

POE induces sustained peripheral immune
hyper-reactivity (SPIHR)

We next assessed the reactivity of PBMCs following a

secondary immune challenge performed with LPS (n = 4/

group for saline; 2 males; 2 females, n = 6/group; 3 males;

3 females for methadone). This was necessary to unmask

characteristics of PBMC responsiveness following a secondary

insult. There were significant elevations in TNF-α levels in

PBMCs isolated from P21 rats with POE after LPS challenge

at both 3h and 24 h in culture. Specifically, there was a notable

2.5-fold increase in TNF-α levels in rats with POE compared to

controls following LPS stimulation at 3 h (saline: 69.68 ±

18.42 pg/ml, methadone: 175.9 ± 22.0 pg/ml, t-test, p < 0.01)

(Figure 7A). There was also a more than three-fold increase in

CXCL1 levels in rats with POE compared to controls after 3 h in

culture with LPS (saline: 6.226 ± 0.65 pg/ml, methadone: 20.68 ±

11.6 pg/ml, t-test, p < 0.05) (Figure 7C). These increases in TNF-

α and CXCL1 levels in the PBMC secretome of rats with POE was

also seen after 24 h in culture with an almost 2-fold increase in

TNF-α levels (saline: 193.4 ± 47.2 pg/ml, methadone: 360.6 ±

30.8 pg/ml, t-test, p < 0.01) (Figure 8A), and a 2-fold increase in

CXCL1 levels (saline: 48.89 ± 18.07 pg/ml, methadone: 100.7 ±

12.3 pg/ml, t-test, p < 0.05) (Figure 8C). Following secondary

immune challenge with LPS, the PBMC secretome in rats with

POE demonstrates SPIHR with significant elevation in TNF-α
and CXCL1 after both 3 and 24 h in culture.

Peripheral immune reactivity and
hypercytokinemia normalize by P60

After assessing peripheral immune reactivity and the

inflammatory profile at P21, we expanded our assessment by

investigating the PBMC secretome at baseline and with LPS

challenge from rats with POE and controls at P60 (n = 5/group

for saline (2 males; 3 females), n = 7/group (4 males; 3 females)

for methadone). Overall, individual cytokine and chemokine

FIGURE 6
Alterations in baseline PBMC secretome are not observed after 24 h in culture. PBMCs were isolated from P21 pups prenatally exposed to saline
or methadone. Conditioned media was then assessed for cytokines and chemokines after 24 h in culture. There were no significant differences in
cytokine and chemokine levels between rats with POE and control animals (t-test for all).
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expression levels were lower than the levels noted at earlier

timepoints and developmental stages. There were no

significant differences in any of the cytokine or chemokine

levels including TNF-α, IL-6, CXCL1, IL-10, IFN-γ, IL-5, and
IL-1β at baseline between POE and controls after both 3 and 24 h

in culture (p > 0.05 for all, t-tests, data not shown). Following

stimulation with LPS, cytokine and chemokine levels increased

but again remained similar between the methadone-exposed and

saline-exposed groups with no significant differences found after

both 3 and 24 h in culture (p > 0.05 for all, t-tests, data not

shown).

Discussion

Given the continued rise in opioid use across the globe, there

is an urgent need to address the evolving public health crisis

affecting countless pregnant women and children exposed to

opioid medications in utero. Alongside growing recognition of

the long-term neurologic impact associated with in utero opioid

exposure, an improved understanding of the mechanisms

underlying the brain injury caused by POE is imperative to

establish biomarkers for identification of injury and to

determine novel therapeutic targets. POE occurs at a critical

timepoint in development disrupting delicate pathways essential

for proper maturation of neural-immune function. Opioids

readily cross the placenta and blood-brain barrier and lead to

direct stimulation of inflammatory pathways via TLR4-mediated

signaling (41–43). By shifting these pathways towards a pro-

inflammatory state, opioids alter the developing immune system,

and this alteration is sustained throughout the lifespan (2, 17, 44).

In this study, we show shifts in cerebral immune cell

populations, defined specifically by increased neutrophils and

regulatory T-cells, occurring months after prenatal opioid

exposure. Furthermore, we demonstrate evidence of peripheral

inflammation alongside immune priming and sustained

peripheral immune reactivity (SPIHR) following prenatal

opioid exposure that extends beyond the neonatal period.

Even as markers of serum inflammation and SPIHR

normalize into adulthood, elevated cerebral neutrophil and

regulatory T-cell levels remain, highlighting the long-term

impact of prenatal opioid exposure on the brain.

FIGURE 7
POE induces sustained peripheral immune hyper-reactivity (SPIHR) after 3 h in culture. PBMCs were isolated from P21 with POE. Conditioned
media was then assessed for cytokine and chemokine levels after PBMCs were in culture for 3 h and following challenge with LPS. PBMC secretome
from rats with POE demonstrated significant elevation in TNF-α levels compared to controls when stimulated with LPS (t-test for all, *p < 0.05,
**p < 0.01).
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Understanding the precise mechanisms underlying this injury is

crucial to identifying those children at high risk of injury and to

identifying targets for neuroimmunomodulation.

Previously, using the same model of POE, we identified a

robust systemic inflammatory response syndrome and

immune system dysfunction during the neonatal period

concomitant with microstructural white matter injury and

cognitive deficits in adulthood (17). POE led to priming of the

immune system in the immediate perinatal period with

significant baseline elevation in secretion of pro-

inflammatory cytokines and chemokines, as well as an

exaggerated inflammatory response from PBMCs acutely

after stimulation with LPS (25). Specifically, we found of

significant elevation of the inflammatory cytokines IL-1β,
TNF-α, IL-6, and CXCL1 in the peripheral circulation at

P10, around human term age equivalent, in POE rats

suggesting a systemic inflammatory response syndrome

(SIRS)-like response. We also showed that PBMCs, at P7,

demonstrate significant baseline hypersecretion of TNF-α,
CXCL1, and IL-6 with decreased levels of anti-

inflammatory interleukin-10 (IL-10) and an exaggerated

response to LPS stimulation with increased levels of TNF-α,

CXCL1, IL-6, and IL-10 in rats with POE compared to

controls (17, 25). Here, we extend those finding to show

increased serum CXCL1 and IL-6 at P21, in POE rats

concomitant with pro-inflammatory, dynamic, PBMC

reactivity at P21, toddler age equivalent. CXCL1 is a potent

chemokine responsible for neutrophil chemotaxis that has

been implicated in significant intrauterine, placental, and fetal

inflammation secondary to chorioamnionitis (26, 27, 33).

Dysregulation in peripheral cytokine levels is not unique to

POE and has also been identified in children with neonatal

encephalopathy, cerebral palsy, and trisomy 21 (45–48). Our

PBMC data reveals baseline hypersecretion of IL-6 that

persists at P21. Further interrogation of PBMCs in culture

with LPS stimulation at P21 demonstrates dysregulation in

immune response following POE. After a 3 and 24 h

incubation period, we note hypersecretion of TNF-α and

CXCL1 in methadone-exposed PBMCs compared to saline-

exposed PBMCs. These alterations in the baseline immune

system function and immune response are indicative of

SPIHR. The implications of inflammation during this

timeframe from the neonatal period into toddler age

equivalent cannot be understated, as it coincides with the

FIGURE 8
POE induces SPIHR after 24 h in culture. PBMCs were isolated from P21 pups. Conditioned media was then assessed for cytokine and
chemokine levels after 24 h in culture following challenge with LPS. PBMC secretome from rats with POE demonstrated significant elevation in TNF-
α and CXCL1 levels compared to controls (*p < 0.05, **p < 0.01).
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elaborate neurodevelopmental program guiding myelination,

oligodendrocyte maturation, and neural circuit formation that

remains vulnerable to disruption (49, 50). Taken together with

emerging clinical literature supporting priming of the

immune system secondary to opioid exposure in utero,

these data support a unique inflammatory signature

followed by increased sensitivity to future insults. This

altered immune landscape may lead to aberrant neural

maturation and long-term cognitive and functional

impairment that is just starting to be recognized in

countless children and adults who have been exposed to

opioid medications prenatally and has been demonstrated

in elegant preclinical studies (15, 19–23).This suggests

important future directions to identify correlations with

severity of brain injury with functional magnetic resonance

imaging, longitudinal assessment of white matter injury, and

assessment of additional domains of cognition, including

attention and inhibitory control using the touchscreen

platform.

To our knowledge, this is the first investigation highlighting

changes in cerebral immune cell populations into adulthood

following opioid exposure commencing in utero. Our data

shows persistently abnormal populations of cerebral

lymphocytes following POE, with increased regulatory

T cells and neutrophils compared to control rats. This

finding offers invaluable insight into long-term immune

alterations that coincides with long-term deficits seen in

individuals with prenatal opioid exposure (51–53). It also

underscores the need for improved biomarker development

to better identify those at risk of persistent inflammation into

adulthood including imaging or functional assessments of

injury. Furthermore, increased regulatory T cells in the brain

is consistent with other models of perinatal brain injury that

show tissue injury, neuronal loss, and abnormal long-term

neurodevelopment associated with increases in T cells (54).

Indeed, modulation of regulatory T cells may be

neuroprotective under specific conditions of developmental

brain injury and offers an important therapeutic avenue for

neuroimmunomodulation to treat brain injury and

neuroinflammation secondary to POE (54). Serum elevations

of IL-6 and CXCL1, as well as hypersecretion of TNF-α and

CXCL1 following LPS stimulation of PBMCs in rats with POE

at P21 may also serve as valuable markers of earlier dysfunction

in the toddler age equivalent that could suggest risk for future

persistent immune alterations. This is evident as CXCL1, a

potent chemokine in neutrophil chemotaxis, is upregulated

after POE and exerts a lasting impact on cerebral

inflammation with a persistent increase of neutrophils

months after opioid exposure. Promoting homeostasis, rather

than antagonism of these unbalanced inflammatory pathways,

may be crucial in the treatment of brain injury secondary to

POE due to key neurodevelopmental roles of both CXCL1 and

TNF-α.

Critically, our data in rats with POE also suggests that the

period in which to intervene, from a clinical perspective, extends

beyond the neonatal period. While ongoing inflammation,

detected even months after cessation of exposure to opioids,

can negatively impact brain function into adulthood (44), it also

potentially broadens the timeframe for intervention. Targeting

persistent inflammation into toddlerhood may still influence

long-term developmental outcomes in this high-risk

population. Further investigation of changes in immune cell

populations in the peripheral circulation using flow cytometric

analyses across a similar time course beginning at P21 may offer

insight into the specific pattern of inflammation and immune

dysregulation associated with POE and provide guidance for

discovery of earlier biomarkers, especially in discrete

developmental subsets. Additionally, analysis of central

immune cell populations in animals, including inflammatory

activation and morphology assessments, may help characterize

the impact of these alterations on the developing and aging CNS.

There are limitations to the design and scope of our study and

future investigations will address these constraints. Firstly, our

study was not powered to evaluate differences in outcome

measures based on sex. Further investigation into sex as a

modifier of inflammation secondary to POE is important to

identifying at-risk infants and children and evaluating

responsiveness to novel therapeutic approaches including

neuroimmunomodulation. Second, opioid exposure in this

model occurs from E16 through P21 and does not capture

opioid exposure from the onset of pregnancy (E0). Last, a

brief period of isoflurane anesthesia was administered during

the third trimester of rat gestation to implant osmotic

minipumps, and this may have been an additional

inflammatory stimulus during pregnancy. Future studies will

address the correlation between immune function, functional

and structural brain injury, and deficits of cognition and

attention in adulthood. Longitudinal assessment of

inflammation and the immune system following POE in the

same rat, over time would be beneficial.

In conclusion, we provide evidence of peripheral inflammation

alongside immune hyper-reactivity following prenatal opioid

exposure. The importance of neural-immune communication

and crosstalk with the peripheral immune system and central

immune system is further highlighted with durable changes in

cerebral immune cell populations of regulatory T cells and

neutrophils months after POE. Beyond molecular inflammation,

this study demonstrates immune cell population changes in

adulthood secondary to prenatal exposure that may be critical to

understanding the underpinnings of injury associated with opioid

exposure. This study adds to a growing body of important literature

linking sustained changes in immune reactivity with developmental

brain injury (45–48). Furthermore, this study offers insight into

potential treatment targets and widens the time course for potential

intervention to help countless children with brain injury resulting

from prenatal opioid exposure.
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